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Interference of indirect transition amplitudes with the direct transition amplitude for deuteron stripping
on deformed nuclei is investigated. The indirect transitions that are considered are those that arise via
intermediate rotational excitations of the target and product nuclei. These indirect transitions are introduced
by generalizing the initial and Gnal distorted waves so that they include inelastic amplitudes. A straight-
forward coupled-channel treatment of the generalized distorted waves is described. However, a quantitative
investigation of the coupled-channel formulation is not attempted because of the enormous numerical
difhculties that such a procedure would present. Instead, the rotational motion of the target is treated adia-
batically; thereby, in principle, inelastic amplitudes in all rotational channels are accounted for simultane-
ously. Further simplification is achieved by treating the coupling of the rotational coordinates to the pro-
jectile coordinates only to first order. Calculations are performed for deuteron stripping on Mg~ and U
The calculations indicate that: (a) the indirect amplitudes are small; (b) the indirect amplitudes are af-
fected more strongly by intermediate excitations in the deuteron channel than by intermediate excitations
in the proton channel; (c) the indirect amplitudes generally Batten the angular distributions of the reaction
protons; and (d) the ratio of the strength of the indirect transitions to that of the direct transition is fairly
independent of the mass of the target. Although the spin-orbit force is neglected, the theory predicts a I de-
pendence in the angular distributions that is significant at all angles. The indirect stripping amplitudes are
small; however, they produce measurable effects in the differential cross section when they add coherently
to the direct amplitude. The most dramatic effects of the indirect amplitudes are changes of the angular
distributions of the reaction protons. In addition, the calculated spectroscopic coefBcients are changed by
a significant amount when the indirect amplitudes are taken into account.

1. INTRODUCTION

&HE deuteron stripping reaction has been treated
most successfully by the distorted-wave Born

approximation (DWBA), ' ' under the assumption that
the transition takes place directly from the incident
deuteron channel to the exit proton channel, without
any intermediate step that excites internal variables of
the target nucleus.

However, intermediate inelastic excitations may well

play a role in the stripping process. For example, the
incident deuteron might excite the target nucleus prior
to the stripping event, or the emergent proton might
excite the residual nucleus. Such processes would cause
"indirect" contributions to the stripping amplitude and
these might violate selection rules to which the direct
amplitude is subject, or they might interfere to an
appreciable extent with the direct amplitude in case it
is allowed. The present paper is devoted to an investiga-
tion of such indirect contributions to the stripping
amplitude. It is related to other recent work by Penny
and Satchler, ' Kozlowsky and de-Shalit, ' Sorensen,
Dillenburg, and Drisko, ' ~ and Levin.
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Ke treat only collective inelastic excitations of the
target and residual nuclei, because these are known to be
much stronger than single-particle excitations. '"Also,
even though the general methods of this paper are
equally applicable for collective rotations or vibrations,
the analysis to be given will be specialized to the treat-
ment of rotational excitations of permanently deformed
nuclei.

The inelastic excitations are treated in the same
manner that is employed by Penny and Satchler';
namely, distorted waves that are generalized to account
for inelastic scattering are introduced into the usual
DWBA theory. Each such generalized distorted wave,
whether in the incident or emergent channel, describes
scattering of a projectile by a spheroidally deformed
optical potential. Of course, eigenfunctions of deformed
single-particle potentials also are used for the bound
orbitals of deformed nuclei. "However, the effects intro-
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duced in stripping theory by the use of such bound
orbitals are accounted for fully by computing the
appropriate spectroscopic coefFicients, as was first done

by Satchler. " The use of distorted waves that are
affected by the nuclear deformation will now introduce
additional effects.

The effects caused by using distorted waves that are
affected by the deformation were first investigated by
Sawicki and Satchler"; however, they only introduced
distortion by the device of using an angle-dependent
cutoff in the Butler plane-wave theory. The present
article can be regarded as a generalization of the work of
Sawicki and Satchler. As in their work, the collective
coordinates are treated adiabatically""; thus, it is
considered that during the course of the stripping event
the deformed nucleus changes neither its deformation
nor its orientation. Not only does this adiabatic ap-
proximation greatly simplify the calculation, but it
parallels closely the physical picture of deformed bound
states. Thus the present article carries on equal terms all
the effects of nuclear deformation.

In Sec. 2, a formal description of the stripping process
is presented. This description is used to compare the
distorted-wave treatment and two models which account
for indirect stripping processes. ' ' In Sec. 3, the adia-
batic approximation is discussed in relation to its
application to the inelastic scattering of projectiles on
deformed nuclei. In Sec. 4, the adiabatic model of
stripping is developed and, in Sec. 5, the model is
applied to deuteron stripping on Mg'4 and U'38.

Further details of the present work may be found in
Ref. 16.

2. DESCRIPTIONS OF THE
STRIPPING REACTION

The theory to be presented will be cast in terms of the
reaction, A(d, p)B; however, it is readily extended to
other stripping and pickup reactions. The dynamical
system consists of the neutron and proton of the incident
deuteron plus the A nucleons of the target nucleus.

The Hamiltonian for this system of A+2 nucleons will

be displayed in six parts. Assuming the target to be
in6nitely heavy, the Hamiltonian for the system is

P=II;($)+T,+T~+V„+V~+V „, (2.1)

where h; is the Hamiltonian of the isolated A nucleons
of the target nucleus. The variable $ represents the
internal coordinates of the target. T„ is the kinetic-
energy operator of the neutron motion. T„ is the
kinetic-energy operator of the proton motion. V„ is the
interaction of the neutron with the target nucleus.

V„ is the interaction of the proton with the target

'2 G. R. Satchler, Ann. Phys. (N.Y.) 3, 275 (1958).
'3 J. Savricki and G. R. Satchler, Nucl. Phys. 7, 289 (1958).
'4 S. I. Drozdov, Zh. Eksperim. i Teor. I"iz. 28, 734 (1955);

28, 736 (1955) I English transls. : Soviet Phys. —JKTP 1, 591
{1955);I, 588 i1955)j."J.S. Blair, Phys. Rev. 115, 928 (1959).

'6 P. J. Iano, thesis, University of Pittsburgh, 1965 (un-
published).

nucleus. V „is the interaction between the neutron and
proton.

The state of motion of the system before the collision
will be. assumed to consist of a deuteron plane wave
incident on a target nucleus in its ground state. The
quantity to be calculated is the transition amplitude
from the initial system to a final configuration con-
sisting of a proton plane wave and a product nucleus in
either its ground state or some low-lying excited state.

Ignoring the small exchange ("knockout") term, 'r

the stripping amplitude is"

Tg =(N+1)'l'(Pexpik r jS„„(o )+~(n, g),

LV-.+V.j+"+'(n,P, P)) (2 2)

The symbols n and p label the neutron and proton of the
incident deuteron. The variable e represents the spin
o „and space r„coordinates of the neutron; and p repre-
sents the spin O„and space r„coordinates of the proton.
The function S„„is the spin function of the proton, with
spin projection hp~. The wave function +~ represents
the internal motion of the product nucleus and is anti-
symmetric in the neutron and proton coordinates
separately. The target nucleus is assumed to contain E
neutrons. The function 0;&+& is an eigenfunction of the
Hamiltonian H of the entire system, such that

S„„(o„,or)y„r(r„„)
&(4'~(f) expskq rq+outgoing waves. (2.3)

The function 5„„is the spin function of the deuteron,
and p„„is the wave function of the internal motion of
the deuteron. The wave function %~ represents the
target nucleus in its ground state and is taken anti-
symmetric in the neutron and proton coordinates
separately.

The transition amplitude can be cast in a more
symmetric form by incorporating the effects of V„ into
the fina-state wave function. Equation (2.2) becomes"

T=(N+1)' '(er (n,p, &),V.—,@;+(n, p, &)), (2.4)

where

(LIE;($)yr y V„g+ LT +V„j—E}e =0. (2.5)

The boundary conditions on @ft' ~ are

S„,(o,)%'n(n, &)

&(expik„r~+incoming waves. (2.6)

Most theories of the deuteron stripping reactions use

Eq. (2.4) to one degree"of approximation or another.

2.1. Distorted-Wave Born Ayproximation

The most successful theory of deuteron stripping has
been the distorted-wave Born approximation. ' 3 This
theory assumes that most of the amplitude of 4;&+& is

"L.S. Rodberg, Nucl. Phys. 47, 1 (1963).
"M. L. Goldberger and K. M. Watson, Collision Theory

Qohn Wiley sr Sons, Inc., New York, 1964).
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in the elastic channel, and therefore approximates
e;&+& by

4' +'=S„,(0„,0„.)y„.„(r„„)eg(f)xg&+i(rg). (2.7)

The wave function X~~+) describes the elastic scattering
of the deuteron in the entrance channel. Similarly, the
final-state wave function is approximated as

+&' '=SF,(&n)'pii(»&)"s' '(rn) (2 8)

where X~~ & is the elastic-scattering wave function of
the proton in the exit channel. The distorted waves,
X~&+' and X~& ', are calculated with optical-model po-
tentials, the parameters of which are chosen to reproduce
the elastic-scattering data. The transition amplitude,
Eq. (2.4), becomes

T~ Toy
where

To= (1V+1)'I'(Xs' &,(5„„%gI5„„+'g)D„~xgi+i) . (2.9)

The function D„„is defined as

(2.10)

and is usually taken to have zero range; thus, the six-
dimensional integration over the spatial coordinates r~
and r reduces to a more manageable three-dimensional
integral.

2.2. Generalized Distorted-W'ave Method

The estimate of the transition amplitude can be im-
proved by including inelastic amplitudes in the entrance
and exit wave functions. At present, a straightforward
application of this approach is being carried through by
Penny and Satchler. ' The wave function +,(+' of Kq.
(2.4) is approximated by

The wave function +;&+' is a generalized distorted wave
in that it describes not only the scattering in the en-
trance channel, A'= A, but also in the inelastic channels,
A'WA. The wave functions of relative motion obey the
boundary conditions

X~ (+i 5~~ expikq rd+outgoing waves. (2.12)

Similarly, the final-state wave function of Eq. (2.4)
is approximated as

difI'erential equations:

where T& is the kinetic-energy operator for the deuteron
center of mass. The equations, (2.15), are made manage-
able by limiting the calculation to a few chosen channels,
A'. All other channels are ignored. The interaction
V(t, rd) is a generalized optical potential, that describes
both the elastic scattering that may take place in each
of the chosen channels, and also the inelastic coupling
among the channels. The detailed form of this interac-
tion is determined by whatever model of the deuteron-
nucleus interaction may seem appropriate. For example,
if collective excitations of deformed nuclei should be of
interest, as in the present work, then one generally uses
a deformed optical potential for V(),rz) Eq.uations
(2.15) present a typical coupled-channel problem. They
are solved by numerical integration.

The wave functions X~& & are handled in a similar
fashion.

The transition amplitude of Eq. (2.4) becomes

Tc.c. y

where

T.., = (%+1)"'
Xg~.s, (xs. I(5„,%Ii ~S„„e-g,)D„„X„.+ ). (2.16)

Again, D„„can be approximated to have zero range,
and therefore the six-dimensional integration over r„
and r„reduces to a three-dimensional integral.

The theory to be developed in this work will essen-
tially be a coupled-channel theory. However, advantage
will be taken of the assumption that the target and prod-
uct nuclei are strongly deformed. The wave functions
in the deuteron and proton channels will be calculated
under an adiabatic approximation" ";thus, in principle,
all rotational excitations are coupled in simultaneously.

2.3. Core-Excitation Model

There is a variant method in use to account for in-
elastic excitations in the exit channel. Kozlowsky and
de-Shalit' call it the "core-excitation model. " cwork on
this method is also being carried out by Sorensen,
Dillenburg, and Drisko; and by Levin. '

The proton interaction V~ is divided as

+f&—i=S„,Ps. +s (n, ))Xii & i(r„). (2.13) V~= V~'+ V~'. (2.17)

Here the wave functions of relative motion obey the
boundary conditions

ass expik~ r~+incoming waves. (2.14)

Both (2.11) and (2.13) assume spin-independent inter-
actions between projectile and target.

In the entrance channel, for example, the wave func-
tions of relative motion obey the set of simultaneous

The first term V„' is taken to be just the optical po-
tential that describes the elastic scattering of the pro-
tons, therefore the remaining term V~' is the part of
the proton interaction which couples inelastic states to
the proton elastic channel. The transition amplitude
now takes the form

T= (1V+1)'I'(4's(»&)5„„(0„)Xs&i(r ),
LV '+ V„1%;+'(»p,$)). (2.18)
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3. ADIABATIC APPROXIMATION

In this section, the scattering of projectiles by de-
formed nuclei will be discussed. The rotational motion of
the deformed nucleus will be treated adiabatically and a
first-order perturbation theory will be developed in the
context of the adiabatic approximation.

3.1. Adiabatic Ayyroximation

The subject of discussion is an approximation pro-
cedure for calculating the wave function that describes
the scattering of a projectile by a spheroidal rotator.
The Hamiltonian for the system is

H =h(8)+ fT+ V(8,r)j, (3.1)

where h(8) is the Hamiltonian of the rotator. T is the
kinetic-energy operator of the projectile. V(H, r) is the
deformed optical well which represents the interaction
between the projectile and the rotator. The intrinsic
nuclear coordinates are not displayed explicitly in Eq.
(3.1), since the model ignores excitations of the intrinsic
structure.

The Schrodinger equation for the scattering wave
function is

(H—E)+~+&(H,r) =0.
The boundary conditions on @~+& are

(3.2)

+~+& 4'p(8) expik r+outgoing waves, (3.3)

where 4'0 is the rotator wave function in the entrance
channel. It obeys the following Schrodinger equation.

ih(8) —«l+o(8) =o. (3 4)

In most cases of physical interest, 00 is the ground-
state rotator wave function.

This expression is exact as it stands. For computational
purposes, however, +;&+' is replaced by the distorted-
wave Born approximation, Eq. (2.7). The transition
amplitude then becomes

T=Tp+T~,
where

Tp= (IV+1)'Is
&&(Xs' ' (~..+s I

Vp'I ~-+~)4-.~~"') (2 19)

The amplitude Tp is given by Eq. (2.9). Because the
initial-state wave function in Eq. (2.18) is replaced by
an elastic-scattering wave function contributions to
the transition amplitude from inelastic deuteron chan-
nels are not accounted for.

The amplitude To is the usual distorted-wave ampli-
tude. The additional amplitude T„ is more dificult to
handle than To. The computation of To is simplified due
to the short range of D„„;however it is clear that an
accurate calculation of T„would require a Qnite-range
treatment of the spatial coordinates.

4't+&(H, r) =%p(8)X&+&(Hr). (3.8)

The function X~+&(H,r) obeys the boundary conditions

X&+&(H,r) expik r+outgoing waves. (3.9)

Furthermore, substitution of (3.8) into (3.7) yields

LT+ V(8,r) —(E—«) jx&+&(H,r) =0. (3.10)

Equations (3.8), (3.9), and (3.10) constitute the adia-
batic approximation.

The validity" of the approximation depends on the
size of the term that has been neglected in Eq. (3.7),
(h —«)+&+&. The function @&+& can be expanded into a
complete set of rotator states

+'+'(H, r) =2' +'(8)4 "+'(r) (3.11)

where the sum extends over all possible rotational exci-
tations coupled in by the interaction V(8,r). In terms of
this channel representation of 0'&+~, the neglected term
becomes

(h —«)4'+'=gg(p; —«)4& +'. (3.12)

If the channels that are coupled strongly to the entrance
channel are of such a nature that (p;—«) is much smaller
than E, little error is made by neglecting (h —«)%'~+ in
Eq. (3.7). These criteria are met easily in the case of
the scattering of medium-energy projectiles (10—30
MeV) by deformed nuclei. The interaction that couples
rotational excitations to the entrance channel is pri-
marily of a quadrupole nature. Thus, only the lowest
two or three states of rotational excitation are coupled
directly. These states are typically within 200 keV of
each other for nuclei in the region 150&2&190, and
within 100 keV of each other for nuclei in the region
A &222. The excitations of the directly coupled levels
are considerably larger for nuclei in the region 3=25.
The excitation energy of the second excited level of the
ground-state rotational band of Al" is about 3.4 MeV.

Equation (3.10) has a direct physical interpretation.
The projectile is regarded as being scattered by a de-

» David M. Chase, Phys. Rev. 104, 838 (1956).

The adiabatic approximation is an approximation of
the wave equation, Eq. (3.2). Substitution of (3.1)
into (3.2) yields

Lh(8)+T+ V(H, r)pe~+&(H, r) =Em&+&(H,r). (3.3)

This equation is rewritten in a slightly diGerent form.

(«+T+ V)% &+&+(h—«)% &+& =M &+&. (3.6)

The adiabatic approximation neglects the term
(h —«)+&+'. Equation (3.6) therefore becomes

[so+T+ V(H, r) Ej%—&+&(H,r)'=0. (3.7)

The approximate Hamiltonian employed in (3.7) de-
pends on 8 only parametrically. This fact, together
with the boundary condition (3.3) leads us to factor
4&+&(H,r) into two parts:
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formed well that has a fixed spatial orientation. The
scattering eigenfunction X&+& of Eq. (3.10) is a function
of the orientation of the well. The full wave function
4&+&, given by Eq. (3.8), weights x&+& with the amplitude
of the rotator wave function 0 0. Even though the rota-
tor is regarded as Axed for the purposes of calculating
X(+', the full wave function 0 (+) has amplitudes in in-
elastic channels. These are expressed. in Eq. (3.11). In
other words, the projectile is treated as though it scat-
ters elastically from the rotator, but because the wave
function x&+) depends on the nuclear orientation, in-
formation about the inelastic scattering has been gained.

V(8,r) = V(r') . (3.13)

In this form the dependence of V(r') on the Euler
angle 8 is implicit. Since the s' axis is along the nuclear
symmetry axis, the optical potential V(r') is also
axially symmetric about this axis. Therefore, the pro-
jection of the angular momentum of the projectile
along the s' axis is a good quantum number.

It is helpful to consider the partial-wave solutions
X& &+& of Eq. (3.10) that are generated from an incoming
wave in one single orbital channel. The orbital angular
momentum in this channel is l and its projection onto
the s' axis is zl. Equation (3.10) becomes

[—(k'/2t&z) V'+ V(r') —(E—pp) 7X&„&+&(r')=0. (3.14)

However, although m is a good quantum number, l is
not. The function X& &+'(r') can be expanded in terms
of the spherical harmonics.

X&~'+'(r') =r ' Pv g&v"(r)z' F'v"(1') . (3 15)

The boundary conditions obeyed by the g&p are that

at the origin, and that

g&v"(r) = (z/2)[8&vfIv*(kr) —bv&v(kr)7 (3.16)

when r is outside the range of the nuclear forces. The
functions H&* and IJ& are, respectively, the incoming
and outgoing spherical Coulomb wave functions. "

2' R. C. Barrett, Nucl. Phys. Sl, 27 (1964).
"M. H. Hull and G. Breit, Hundbuch der I'hysik, edited by S.

Plugge (Springer-Verlag, Berlin, 1959), Vol. 41, Pt. 1, p. 408.

3.2. Formal Solution to the Adiabatic-
Scattering Problem

A partial-wave solution for the wave function X&+'

will be developed in this section.
It is to our advantage to work with solutions of Eq.

(3.10) in the intrinsic coordinate frame; i.e., the co-
ordinate frame that is attached to the rotator and whose
quantization axis is along the nuclear symmetry axis."
The convention to be adopted is that coordinates that
are evaluated relative to the intrinsic frame will be
a%xed with a prime. - The generalized or deformed
optical potential then takes the form

The coeflicients $&v are generalized reflection coeBicients.
The wave number k is given by k= [2zn(E p—p)/k'7'&'

The Coulomb waves have the asymptotic property that

and

where

and

a) expi8$

H &*-exp(—i8&),

8&=kr —zz in(2kr) —4./2+o &,

o g
——argi'(i+ 1+izz),

n= Zz&ze'/|'z'k.

Substitution of Eq. (3.15) into (3.14) yields the
coupled system of equations

{—(k'/2zzz) [d'/dr' —i'(l'+ 1)/r'7 —(8 pp) )g&v
"(r—)

=-2-"'-'(V -IVIV-")g -"() (3»)
Equation (3.17) and the boundary conditions (3.16)
uniquely determine the radial waves g&v (r).

The physical scattering wave function X&+&(8,r) is a
linear combination of the X& &+&(r). The expression for
X&+&(8,r) is

X&+&(8r)=(4&r/kr)g&„(expio&)F &*( k) X„&+&(&r')

= (4zr/kr) P &v „(expio&)g&v"(r)
XV&"*(k')i'Yv"(r'). ("3.18)

The phase and normalization of (3.18) are chosen so that
asymptotically

X&+&(8,r) = expik r+outgoing waves.

The time-reversed wave function is given as usual by
the Wigner relation.

X&-&P(k) =X&+&(—ir) . (3.19)

The formal solution to the adiabatic scattering problem
presented here is the full coupled-orbital treatment
which is the analog of the coupled-channel treatment of
the nonadiabatic theory.

3.3. First-Order Perturbation Solution of
the Scattered Waves

Ideally, the full adiabatic wave functions of Eq. (3.8)
should be used for 4;&+& and %r& & in Eq. (2.4). How-

ever, such a procedure would involve many computa-
tional difhculties. Instead, it was decided to treat the
departure from sphericity by 6rst-order perturbation
theory. Although such a treatment may describe the
effects of the inelastic processes inaccurately, it should

provide some orientation as to the size of the effects and
as to their consequences for the interpretation of
stripping-reaction data.

As remarked above, the optical potential well will be
taken to have a deformed shape that corresponds to the
deformation of the target nucleus. In the phenomenologi-
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UI v"(r) ~ III(kr) . (3.2g)

The vector-coupling coef6cients in Eq. (3.25) impose the
condltlons

l'=3, 1~2. (3.29)

Parity is a good quantum number for all orders of the
expansion in P, because the nuclear interaction is even
under inversion of the coordinate axes.

"Aage Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 26, No. 14 (1952).

cal theory of Bohr," the deformation of the nuclear
surface is described by an angle-dependent nuclear
radius. If the deformation has cylindrical symmetry,
the nuclear radius is

R=RoL1+pYIo(P'}]. (3.20)

It is customary to make a Taylor expansion of the opti-
cal potential about the radius Eg, so that

V(r') = Vo(r)+P YIo(r"') Ro(d/dR) Vo(r)+ . (3.21)

Here Vo(r) is the optical potential for a spherical nucleus
of radius Ro. The potential V(r ) is a generalized optical
potential for a deformed nucleus.

The Taylor expansion of the generalized optical
potential, (3.21), can be employed in Eq. (3.17). The
coupled differential equations for gII ~(r) then become

{—(k'/2m) 9'/«' —L'(L'+1)]+Vo(r) —(R—«) }gI v "(r)
= —Q p i" '(Yp "(r"')

~ p YIo(r"')Ro(d/dR)

XVo(r)+
~
Yp "(r"'))gIp "(r). (3.22)

The partial waves g~I (r) also can be expanded in

powers of the deformation parameter:

gI p "(r)= L'&I p fI(r)+PuIv "(r)+". . (3 23)

Here the function fI(r) describes elastic scattering on a
sPherical nucleus of radius Ro, and the function PuI v "(r)
is the 6rst-order correction to fI(r} due to the deforma-
tion. Substituting Eq. (3.23) for gIp"(r) in Eq. (3.22)
and equating like orders of P yields

{—(k'/2m) Ld'/dr' —L(L+1)/r']
+Vo(r) —(E—oo) }f&(r)=0, (3.24)

and yields

{—(k'/2m) Ld'/dr' —L(L+1)/r']
+V.()-(R-")}."()

i' '(5—/4s -) '"(L/L') (Lm20
~
L'm}(L020

~
L'0)

XRo/(d/dR) Vo(r)]fI(r) . (3.25)

At the origin fI and uIp obey the boundary conditions

f&(0) =uI p "(0)=0. (3.26)

Beyond the range of the nuclear interaction, they obey

fI(r) = ,'i )BI*(kr) r&IIII(k-r)], —(3.27)

It is highly desirable to separate u&v™(r) into a
geometric factor and a radial function that is inde-
pendent of m. This is possible because the terms in Kq.
(3.25) that are homogeneous in uIp {r) do not them-
selves depend upon ys. Then

uI p "(r)=i—' v(5/4Ir) '"}/L'(Lm20
~

L'm)

X (L020 i
L'0)RopI p(r) . (3.30)

The function sIv(r) satis6es a simplified differential
Cquatlon:

{—k'/2mt d'/dr' —L'(L'+1)/r']+ Vo(r) —(E—oo) }
X~Iv{r)=—L(dldR) Vo(r)]fI(r). (3 31)

The boundary conditions on sIp(r) are the same as those
on uI p (r). Although the function oIp(r) does not itself
reflect the nonspherical shape of the nuclear interaction,
it does contain all aspects of the dependence of uIv~(r)
on the strength of the optical potential and on the varia-
tion of the potential with respect to radius parameter.

The physical scattered wave X&+}may now be evalu-
ated to 6rst order in P.

x"'(«)=x "&(r)+pxI'"&(«)+" (3 32)

Substitution of Eq. (3.23) for g&p"(r) in Eq. (3.18)
yields

xo&+&(r) = (4o/kr)QI„(expiog)
XfI(r) YI™*(k)i'YI"{r) (3 33)

XII+&{Hr)=(4m/kr)QIp (expioI)

XuIp (r)YI *(k')i'Yp (r'). (3.34)

Equation {3.33) is the familiar partial-wave expansion of
a wave function that describes elastic scattering by a
spherical nucleus. In Eq. (3.34} the dependence of
xy~+~ on thc Eulcl Rnglcs ls iIQpllcit lnsoQluch as t|' Rnd
f' are functions of 8.

For later use, Eq. (3.34) will be rewritten in order to
cxhiblt cxpllcltly its dcpcndcncc on thc Euler Rnglcs.
The spherical harmonics in (3.34) are transformed to the
space-6xed frame and Eq. (3.30) is substituted for
uIp~(r). After some standard Racah algebra is per-
formed, Eq. (3.34) becomes

XI&+&(8,r) = (4n/kr) P I„p„ i'-'(5/4s ) 'I'(L/L')

X(Lm2 a~ L'm)(L0—20~ L'0)u .o'*(|&)(expio I)

XRoI&Ip(r) Yp*(k)opY p™(r). (3.35)

The time-reversed scattering functions that corrcspond
to Eqs. (3.33) aild (3.35) arc glvell by tile Wlgncr I'ela-

tion, Eq. (3.19).

xo&
—&~(r) = (4or/kr)QI„(expio. g}

Xfg(r) YI"(k)i-'YI"*(r). (3.36)

"&-&*(e, )=(4-/k )Z ..-"-(5/4-) I P/~)
X (Lm2 —n

~

L'm')(L020
~
L'0)n o'(8) (expio I)

XRoI&Ip(r) YI"(k)i 'Yv"'~(r) . (3.37)
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4. ANALYSIS OF THE STRIPPING MODEL

In this section, the deuteron stripping amplitude will
be formulated to erst-order in the deformation param-
eter" P. An approximation will be introduced which will
considerably simplify the 6rst-order amplitudes. The
sects of nonlocality of the optical potential will be
analyzed and it will be seen that these sects add little
complication to the stripping amplitude.

4.1. Adiabatic Stripping Amplitude

In this subsection, the transition amplitude for the
stripping process will be cast in the language of the
adiabatic approximation. The amplitude of Eq. (2.4)
is rewritten, in slightly modi6ed form, as

T~„=/V+1)'&'(%f& '(n-, p, 8,f), V„„O,&+&(n,p, 8,&)) (4..1)

In this expression the Euler angles are displayed ex-
plicitly. The coordinates $ are now to be thought of as
only the intrinsic coordinates of the deformed target
nucleus. The asymptotic boundary conditions obeyed
by the initial and final wave functions are

+A(8 t)x'+'(8 «)
@2&

—&=@~(8,n, g)X
—
& &(8,r„).

(4.12)

In Eq. (4.12) the separation of the projectile coordinates
from the intrinsic coordinates of the target nuclei is
complete. Only rotational inelastic excitations are being
accounted for. The Schrodinger equations for the quasi-
elastic scattering wave functions are:

1
Tg+ Vg(8, rg) —(E—~g—~g)]&&~&+& (8,rd) =0,

(4.13)
)To+ V~(8,ro) (E oI&—)]x»—& &*(8,r, )-=0.

The operator h2 is the Hamiltonian for the isolated prod-
uct nucleus:

[hm(8, n, $) e—»]%+(8,n, &) =0. (4.10)

The term T„is the kinetic-energy operator for the pro-
ton. The Gnal wave function is a product of two factors:

+f&-& =S„,(o„)+2&-&(8,n, ),r„). (4.11)

As in Sec. 3, the adiabatic approximation will be used
in the evaluation of C~&+~ and %2& &:

The solutions of Eqs. (4.13) were discussed in Sec. 3.
The adiabatic transition amplitude is obtained by

substituting Eqs. (4.6), (4.11), and (4.12) for 4;&+& and
4'f & & in Eq. (4.1):

@;+ -S„,(o „,o,)P„,(r„„)%&(8,g)

Xexpikq rq+outgoing waves.

mr& &-S„,(o,)eo(n—,8,g)

Xexpii&„r„+incoming waves.

(4.2)

Tgo (1V+1)'I'(S„,(——o „)@»(8,n, &)&&& '(8,r~),

V.P .( )«+ (V)x'+'(8, )) (4 14)In close analogy with Eq. (3.5), the Schrodinger equa-
tion for the entrance-channel wave function is

Equation (4.14) lends itself to qualitative physical
interpretation. In order to avoid unnecessary clutter in
the discussion the nucleons will be assumed, for now, to
be spinless particles and the bound-state wave functions
will be chosen simply to be

(h (8,$)+(T„,+V„,)
+[T +V~(8,r~)] E)+,&+&(n,p, 8,&)—=0. (4.3)

The portion h~ is the Hamiltonian for the isolated target
nucleus; i.e.,

(4.15)

%s(8 n $) QB(8)&P~(r ', $') . (4.16)

[hg(8, $) og]+g(8, $—)=0 (4. .4)
and

The term T„„is the kinetic-energy operator for the
deuteron internal motion, so that

(T „+U ~
—

eg)&& „~=0. (45)

The term T~ is the kinetic-energy operator for the
deuteron center-of-mass motion. The initial wave func-
tion then becomes a product of three factors:

4;&+&=S„,(o„,o,)p „4,&+. &(8,$,r'~). (4.6)

The functions S~ and S~ are rotational wave functions
and represent the probability amplitudes of the orienta-
tions of the target and product nuclei, respectively. The
wave functions &P~ and &Ps are intrinsic wave functions.
Their arguments are primed in order to emphasize that
these functions represent intrinsic con6gurations. For
these simple wave functions Eq. (4.14) becomes

The asymptotic boundary conditions for the factor
e &+~ are

@&&+& 4g(8, f) exp'iirq rq+ outgoing waves. (4 7) where

Tgo= d'8 K)a*(8)TeSg(8), (4.17)

The Schrodinger equation for +&'+' is

fhg(8, $)+To+ Vg(8, rg)
—(E—Eg)]% '&+( &8,rz) =0. (4.8)

Similarly, the Schrodinger equation for the exit-channel
wave function is

[h2(8,n, j)+T~+V~(8,ro) E]+r& &t(n,p, 8,$) =0—. (4.9)

T&&= (%+1)'"(X&—'(8,r„),
(A(r-', f) 14~(Y))D-.X&"&(8,r.)), (4 Ig)

and
D„„=—V„„y.„.

Because X& ) and X&+) can be regarded as describing scat-
tering by a fixed deformed well, Tp can be thought of as
the transition amplitude for stripping on a deformed
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T~~= To+pT1+ (4.19)

nucleus whose orientation in space is fixed. In other
words, the model assumes that the deformed nucleus
rotates by a negligible degree in the time required for
the stripping reaction to take place. The true stripping
amplitude T&„ is found by weighting T& by the proba-
bility amplitudes of the orientations of the target and
product nuclei.

Returning now to the development of the transition
amplitude, Eq. (4.14) is expanded up to first order in p.
Substitution of (3.32) for Xi+& and a similar expression
for X&—) yields

The angular momentum of an orbital of a deformed
well is not, generally, a good quantum number. In
terms of functions that do have definite angular
momentum,

~ ( ') =Z C (fl)H ( '),S ( ')}, (4 23)

where pi is an orbital function and S»2 is a nucleon spin
function. The wave function ($1,S1&2}io is constructed
by vector coupling the orbital and spin angular momenta
of the ith neutron:

(pi, sl&2}p= g„(lm 2n m~j—n)p&„S;g „
where

To (N+1)'&——2(S„+i&Xo& &,D„„S„,+gXoi+&),

and

(4.20)
Therefore in the uncoupled representation

Uo=Z& «(fl)A S;n-,
where

(4 26)

T,= (1V'+1)»2L(S +i&xi& &,D„„S—„,+gxo&+&)

+(S„,@r&Xoi &,D„+„,—e„X,&+&)g. (4.21)

The amplitude To is the familiar distorted-wave Born
approximation amplitude for the stripping reaction.
The amplitude Tj is the first-order term in a perturba-
tion expansion of Tq~ in the deformation parameter. It
is the first-order approximation of the contributions of
the inelastic channels to the stripping amplitude.

4.2. Zero-order AmyHtude

The results of the integrations over the t&, $, and spin
coordinates in Eq. (4.20) will be presented. Equation
(4.20) is just the zero-order term in the stripping ampli-
tude for a deformed target nucleus and has previously
been studied by Satchler. "The amplitude To is zero
order in P, insofar as the scattering of the incident
deuteron and the exit proton are treated to zero order
in P. However, a Nilsson wave function is used for the
captured-neutron orbital.

The strong-coupling wave function for a deformed
nucleus is" "

where A is the atomic number of the nucleus,
I=—(2I+1)'&2, and

The wave functions @~and p„are antisymmetrized prod-
ucts of single-particle orbitals. More explicitly, the
neutron wave function is

y~= eLU(nl) U(22~) j, (4.24)

where 6, is the antisymmetrization operator. The single-
particle wave functions U& are not completely specified
by 0; however any other quantum numbers that are
needed to specify U& may conveniently be left implied.
The proton wave function has a similar structure.

"Aage Bohr and Ben R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 27, No. 16 (1953).

ai„(Q)=Q;(lm'20 —m
~
jQ)C&,(Q) . (4.27)

By using a specific model for the deformed single-
particle potential, Nilsson calculated the coeKcients
a& (0) for the eight major shells of nuclei, as a function
of the nuclear deformation. "

The intrinsic wave function P o($) of Eq. (4.22) is
equivalent to Po($') except that the sign of the projec-
tion quantum number of each orbital is reversed. The
phase connection used for each of the single-particle
orbitals in f o is

(4.28)

For nonzero overlap, the intrinsic wave functions of
the target and product nuclei must not differ by more
than one neutron orbital UQ. Furthermore, 0=02%0','
where 0& and 02 are the projections onto the symmetry
axis of the intrinsic angular momenta of the target and
product nuclei, respectively. I.et us assume that the
radius and deformation of the product nucleus are only
slightly diferent from the corresponding radius and de-
formation of the target nucleus. Then p;b~, which de-
scribes the zero-point oscillations of the target nucleus,
will have close to unit overlap with p„;P, which de-
scribes the zero-point oscillations of the product nucleus.
In what follows, (p~;P

~
t&&~lb") will therefore be taken as

unity.
The integration of Eq. (4.20) over the target co-

ordinates and the neutron spin coordinate now is
straightforward, and gives"

To= g(A/I2)Zsors& „(2&i~a&12I 1&id)

X (Il~lIiM J
~

I21M 2)(Il~ft 1I0
~
Id 2)

Xpz2r(L3E212„~ Jkf g)Cz J(Q)ko . (4.29)

The factor g has the value g=V2 if either the target or
the product nucleus is even-even, with all of its intrinsic
orbitals paired; otherwise, g=1. The "single-particle
transition amplitude" of Eq. (4.29) is given by

] Ior (x (—&(r )
2- Fi, *(&2„)Fz(r„)D„,Xo (r+g)) . (4.30)
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and

D„„=AS(r„r,), —
A =——(47r) 't2(k'/M) cV,

(4.32)

jo(/2 L /i) = [expi(o 4+o.t,)j
X dr ft, (r)Pi, (r)ft, (r) . (4.33)

The entire dependence of To upon scattering angle is
carried by these single-particle amplitudes. The remain-
ing factors in (4.29) are weighting factors that measure
how well the bound wave functions overlap. After D„„
is replaced by its zero-range approximation and the
scattering wave functions are replaced by their partial-
wave expansions, (3.33) and (3.36), Eq. (4.30) becomes

tP™=A [(4r)at'/koko] Pt,~,t,„,it& ~"(/J//i)
X (/&m&LM

~
/imi)(/20LO

~
/i0) I' t,"'(k,)

X Ft,~'*(kg) jp(/2, L,/i), (4.31)
where

The factor A is the strength of D„~.The mass M is the
mass of a nucleon and Ã is the asymptotic normaliza-
tion of the deuteron internal wave function. "

4.3. First-Order Amplitude

In this subsection, the integrations over the 0, $, and

spin coordinates in Eq. (4.21) will be presented. The
amplitude Ti is first order in P, insofar as the scattering
of the incident and exit projectiles are treated to 6rst
order in P. In other words, Ti is a first-order perturba-
tive correction to To, due to the coupling of the pro-
jectile motion to the rotational motion of the deformed
nucleus, in both the entrance and exit channels.

The continuum wave functions of (4.21) are replaced

by Eqs. (3.33), (3.35), (3.36), and (3.37). Equation
(4.21) then becomes

&i=g(~i/~2)&~~JPn(Yt "2t .I It o)

X(jiMi JM~
~
j2M2)(ji~ pi JQ

~
j~2)

Xpz, ir(LM 2p„i JMg)tp~(J), (4.34)

where

tP~(J) =Pt~(5/4~)'t'(Lmi~Q —m
~
JQ)(Lm20

~
/m)a~ (Q)

X{A[(4~)'t'/k„kg jQ (, ,t, ,(2L+1)/2(/2mmLM
~
/imi) I' t,"'(ko)Ft, '*(ko)

X[Q t,. t'&—'—'&(/i020
~
/i'0)(/20/0

~

/i'0) W(/i/i'L/; 2/2) mojo(/2) /, /i/i')

X(—1)~+'gt, i' ' "(/2020~/2'0)(/i0/0~/2'0)W(/2/2'L/; 2/i)E, jo(/2/2', /, /i)$). (4.35)

The radial overlaps in Eq. (4.35) are given by

and

j=o[e pxi(o. +4o)tj dr f~,(r)jest(r)o~, ~, (r),
0

(4.36)

jo= [expi(ot, +ot,)j dr ot, t,.(r)Ft(r) ft, (r) .
0

(4.37)

Equation (4.35) shows that the orbital angular momentum transfer L is not necessarily equal to the orbital angular
momentum / of the captured nucleon. Instead, the selection rule for the orbital angular momentum transfer is

I/ —2I &L&/+ 2.

In addition, the orbital angular momentum transfer L does not carry the parity of the 6rst-order transition as it
did for the zero-order transition. Instead, the parity is carried by l.

4.4. Approximate First-Order Amplitude

The erst-order amplitude (4.35) is an unwieldy expression. In this section, a simplified approximate form for
Eq. (4.35) will be developed.

The term in brackets in Eq. (4.35) involves two sums over very similar expressions. In each sum, the summation

index appears both in the vector-coupling coefFicients and in the radial integrals. The vector-coupling coeScients
are very sensitive functions of the summation indices. In fact, the product of these coefFicients is nonzero only for2'

l = l, ,l~2. It will be assumed that the variation of the radial integrals over the allowed range of /' is sufficiently small

that the integrals may be assumed independent of l'.

'4 N. Austern, in Fust Neutron I'hysics, II, edited by J. B. Marion and J.I .Fowler (Interscience Publishers, Inc. , New York, 1962)."Due to the symmetry of the two summations, the discussion is the same for both; hence the subscripts 1 and 2 are dropped from
l and l'.



862 P. J. IANO AND N. AVSTERN

It is evident from (4.36) and (4.37) that this approximation essentially replaces v&v by v«. In order to have a
better understanding of the approximation let us consider the integral expression for v~~ .

v~v(r) = —(1/k) dr fr(r&)hv(r&) [dVp(r)/dR]fq(r) .
6

(4.38)

The function h& is the homogeneous solution to (3.31) that behaves asymptotically as

hp(r)-B p(kr) . (4.39)

It then becomes

tP~(J) = (5/4v)'" grpr ic 'a~„(Q)(Lm ,'Q m-( J—Q)(Lm20~ 1m)(l020)LO)

X{2[(4v)PI'/k„4] P~,~,~,„,i" ~"(Qp/lq)(4mpLM
~
lqmq)(40LO~ l~O)

X Y'(,"(kv) 7),"'*(ke)[RvL„(41&,l, i&)+Re(4)l&lgl, )]). (4.41)

The orbital angular momentum transfer I. is now restricted to carry the parity transfer. The loss of the non-
normal parity amplitudes is inconsequential because in any case these amplitudes would not interfere coherently
with the direct amplitudes. The factor in curly brackets in (4.41) now has a structure very much the same as the
single-particle stripping amplitude tpc~ of Eq. (4.31).The difference between the two quantities rests in the radial
integrals.

It will be demonstrated now that the factor in the curly brackets in (4.41) is equivalent to a derivative operation
on a generalized single-particle transition amplitude. Let us consider the differential equation that the partial
wave f& obeys:

(3.24){—(h /2m) [d /dr l(l+ 1)/r ]+—Vp(r) —(R cp) jfi(r) =0. —

The interaction d Vp(r)/dR is localized to the nuclear surface, hence the dependence of v&r on l is contained largely
in the Green's function in the region of the surface. In this region the phase of the Green's function for the lowest
partial waves depends strongly on /'. However, as the centrifugal barrier pushes closer to the surface, the Green's
function adopts a weaker dependence on l'. Consequently, it is not a bad approximation to replace l' by /, provided
that l' is in the neighborhood of / and provided that the centrifugal barrier is near the surface. "In spite of the fact
that the approximation is probably poor for the low partial waves, it will be adopted, on the grounds that it should
at least be accurate enough to serve as a first attempt toward understanding the effects of the nuclear deformation
on the stripping reaction.

Under the approximation that v&v = v«, Eq. (4.35) can be simplified with the use of the Racah formula:

Pr eg(anfy n( cy)(—bPdy n P~
—fy —n)W(—abed; ef) =(anbP ( en+P)(en+Pdy n —

P~ cy—) . (4 40)

Let us suppose that the radius of the optical potential is given a scalar increment h such that the potential remains
spherically symmetric. If we expand in powers of h, and solve for f& as a function of h, then

and
V(Rp+h, r) = Vp(r)+hdVp/dR+

h' d' l(l+1)- dV p(r)
+ Vp(r)+h + —(E—pp) f)(Rp+h, r) =0.

2m dr2 r2 dE

(4.42)

(4.43)

In (4.43) the dependence of f~ on R has been given explicit acknowledgment. As was done for V, f~ is expanded in

f((Rp+h, r) = ft(r)+hd f((r)/dR+ (4.44)

where it is to be understood that f&(r) on the right-hand side of (4.44) is equivalent to f&(Rp,r). Substituting (4.44)
into (4.43) and equating 6rst-order terms in h yields

{—(h'/2m) [d'/dr'+l(l+1)/r']+ Vp(r) —(8—pp))d f~(r)/dR= [dVp(r)/dR] f~(—r) . (4.45)

The differential equation that df&(r)/dR obeys now is seen to be the same one that v«(r) obeys. Moreover, both
df&(r)/dR and v«(r) obey the same boundary conditions. Therefore,

and the radial integrals in (4.41) are given by
v«(r) =df~(r)/dR, (4.46)

Rvl„(44,1)lx)+RdI&(4,1,4lx) = (R,d/dR„+Red/dRa)I p(l p)l, lz) ."¹Austern and J. S. Blair, Ann. Phys. (¹Y.) 33, 15 (1965).

(4.47)
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Using (4.4T), the factor in curly brackets, {), in (4.41) becomes

( )= (R,d/dRs+Rsd/dRs)1g™, (4.48)

where thc gcnclaHzcd single-particle stl'lpplng amphtudc ls glvcn by

sg =AL(4%)'g'/kydj Pg g s"—~"(Lls/lg)(lsmsL3f') lrmg)(lsoLO[ lgo) Yg,"'(k,)I'g,"'*(4)&e(4,&,&g) . (4.49)

The amplitude tg is generalized from to in the sense that it reduces to to~~ in the case that l=L
Using (4.48), Eq. (4.41) becomes

$,zsr(J) = (5/4 )'g'P „sg—
egg „(Q)(Lm-,'Q —m~ JQ)(Lm20~ bs)(l020~ L0)(R„d/dR„+Rsd/H4)&gz~ (4 5o)

Substitution of (4.50) for rgb~(J) in (4.34) and subsequent substitution of {4.34) and (4.29) into {4.19) yields

2'&.——g(S,/Xs)g, ~,„„(-;g;,'» ( 1&.)(J,Jrf,m, (J~ )s(J,~Z JgQ
~
J~s)

Xgz~(LMsr ggs
~
JMs)pg~(Lm-, 'Q —m

~
JQ)ggg„(Q)

XLbgz1zz~+s~g(5/4gr)'gsP(Lm20~lm)(1020~ LO)(R d/dRs+Rdd/dRd)tg™j. (4.51)

It is emphasized here that (4.51) is an approximation to
a 6rst-order theory.

This expression for Tq„ is cj.osely analogous to Kq.
(4b) of the paper of Sawicki and Satchler. "However,
instead of using a distorted-wave treatment of the
initial- and 6nal-state wave functions, they employ
the Butler prescription. The fact that (4.51) has a phase
factor i~' that multiplies the erst-order contributions,
whereas (4b) of Sawicki and Satchler does not, is simply
a reQection of the fact that those authors employ
Nilsson's" phase convention for ggg„(Q). The Nilsson
coeKcients are expansion coefficients in terms of the
spherical functions Fg(r)Fg P')Sig „(o„);whereas the
coefficients ggg (Q) employed in (4.51) are expansion
coeKcients in terms of Fg(r)igFg (1')S1g (o). There-
fore the ggg (Q) of (4.51) are obtained if the Nilsson

coeKcients are multiplied by j-'. Because of the essen-

tial similarity between {4.51) and the results of Sawicki
and. Satchler, the discussion presented in their paper
applies equally to (4.51).

It may be signidcant that the approximation intro-
duced in this section yields a result very much bke the
plane-wave result. Under the conditions of strong ab-
sorption, the low partial waves are suppressed and the
main contributions to (4.35) come from those partial
waves whose orbital angular momenta are near the
classical cutoG value. '~ Hence, under the conditions of

strong absorption, (4.41) is expected to be a good ap-
proximation to (4.35)."Because of the suppression of
the low partial waves, contributions from the nuclear
interior are very small. "In this respect, distorted-wave

theory with strong absorption is similar to the plane-
wave theory.

4.5. Honloeal Optical Potentials

The nuclear optical potential probably is nonlocal;
i.e., the Schrodinger equation for elastic scattering

2~ N. Austern, in SelecteS Topics il Nuclear Theory, edited by
F. Janouch (International Atomic Energy Agency, Vienna, 1963}.

probably should be

—(as/2m)Vsx(r)+ J(r) =Sx(r), (4.52)

I(r)= d'r' V zg,g(r,r') (Xr'). (4.53)

d's H(s) =1, (4.55)

s= [r' r/. —
In the local approximation, H(s) = 3s(s); i.e., y= 0. As y
varies, V must be adjusted in order that the asymptotic
behavior of X should remain constant. Therefore, V is a
function of the range of the nonlocality. In addition, it
has been exhibited both numerically" and analyt-
ically'0 3' that the scattering wave function is damped
in the nuclear interior as the nonlocality is "turned on."
In these treatments, H was chosen to have a Gaussian

dependence on s. The analysis introduces a function

ss F. G. Percy and B. Buck, Nucl. Phys. 32, 333 (1962).
~~F. G. Percy, in Direct Eeteuctions end Nuclear Eegctiow

Mechanism, edited by E. Clementel and C. Villi (Gordon and
Breach, Science Publishers. Inc. , New York, 1963), p. 123.

"N. Austern, Phys. Rev. 137, 8752 (1965).
3' F. G. Percy and D. S. Saxon, Phys. Letters 10, j.07 (j.964).

A prominent effect of thc nonlocality ls a damping of thc
scattering wave function inside the nudeus. In this sec-
tlonq thc cGects of thc deformatlon on thc stllppnlg lc-
action will be analyzed insofar as the deformation
modihes the damping of the initial and' 6nal wave
functions.

Percy and Buck28 investigated a particular factorable
form for the non1ocality:

l'»= l'(I-:Lr+r'jl)&(lr' —rl) (454)

The potential V describes the shape and strength of the
interaction and H carries the range y of the nonlocality.
The factor H is normalized so that
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F(r)=F(r)+PYP(F')RdF(r) dR.

Equation (4.19) becomes

(4.59)

Too——Tp+P(Tz+bTz)+ (4 60)

where 8T~ represents the added indirect contributions
to the stripping reaction that are caused by the second
term of Eq. (4.59).

Equations (4.20) and (4.21) for Tp and Tz are not
altered, except for the insertion of F„~(ro)Fo(rq) in
each term. Under the zero-range approximation, this
quantity has no angular dependence and. is merely
incorporated with the neutron form factor E~. A modi-
6ed form factor is de6ned by

~()=F.'()F ()F.(). (4.61)

The additional first-order amplitude in Eq. {4.60)
is best broken into two parts:

F(y,r) which describes the modification of the local
wave function as the nonlocality is turned on.

xh, r) =F(p,r)x(r). (4.56)

The wave function x(r) on the right-hand side of (4.56)
is understood to be the local wave function; i.e.
x(r)=xi=0, r). The function F(y,r) goes to umty
outside the range of the nuclear interactions. An explicit,
general expression for F can be obtained in %KB
appl oxlmatlon:

Fb,r) = I1-h'(2 /~') V(r)j-'", (4.»)
where V(r) is the local approximation to the nonlocal
potential.

The local scattering functions in (4.14) will now be re-
placed by the nonlocal wave functions. Using Eq. (4.56)
and the WEB approximation of F(y,r), the transition
amplitude becomes

To„={/+1)'IP(S„,(o~)%'s(8,e,g)F~(r~) X&-&(r~),

D-~.,('....)~.{~,'eF.{") ("»'. {4.»)
The functions Fo(ro) and Fq(rq) are given by (4.57)
(the arguments y„and yo have been omitted).

The potential V(r) in (4.57) is deformed, hence F(r)
is deformed. The modification factor F(r) follows the
nuclear contour. To 6rst order in the deformation, the
modiGcation 18

These two parts can be cast in terms of the generalized
single-particle transition amplitude, Eq. (4.49).

It is seen that the addition of nonlocality has little
CGcct. on the formulation of the stripping amplitude,
(4.51). The changes are very slight. The form factor to
be used in the generalized single-particle transition
amplitude, (4.49), is &g(r), rather than Fg(r). Further-
more, the diBerential operators d/dRo and d/dRq
operate not only on the local optical-model wave func-
tions, but also on the form factor F~(r). However,
numerical calculations show that the derivative terms
of 8'~(r) give rise to negligible contributions to the transi-
tion amplitude.

P ~EM {2I+1) LIP]zz3z- (4.65)

The differential cross section is then cast in terms of
Pows~ . In order to maintain the formal appearance
of the distorted-wave expressions, a generalized Pgz~
is dered as4

P zM (2L+1)—IIPD zzz+P-(C& ) z

XQ )„i~'(5/4pr)'I'(I. m-,'0—m, I JQ)u) (0)
X(L,m20

I
hn)(1020

I I-0)
X(Rod/~Re+Rod/zERd)«'~ j (4 66)

Then, Eq. (4.51) becomes

Too= g(~zl/~&)Z&zzzoa(p&~ p&o I 1&o)

X (IqMz J3fz I IpMp)(Iz~Ez JQ I I~p)
XZz~~(I~gl -I J~z)Czz(D)Pz'~ (4@)

Assuming a random distribution of polarizations in the
entrance channel, and assuming that the detector does
not distinguish amongst states of different polarization
in the exit channel, the diBerential cross section is found
to be

do/dQ= g' Qz(Iz&EgJQ I IgKp)'

Xgz I Czz(fl) j'oz,z(P), (4 6g)

4.6. Differential Cross Section

The diGerential cross section will now be written. In
the distorted-wave formulation, it is customary to de-
6ne the quantity

where
BTz= 8T„+8Tg, (4.62)

ops(P)= ,'m„m (2 -fp') '(ko/ka)gjrIPz I'. (469)
gT„=(I|I+1)»P(S„„(o,)e,(S,e, ~)

XR,pF,(r„)/dR, jYp'(r, ')xp' '(r,),
D-P,.(.-...)+.(~,()F.(")x"+'(")), (463)

8To——(X+1)'I'{S„,(o.„)+s(8,e, &)F,(r„)xp&-&(r„),

D.,S„„(~„,~,)e~(e,q)R,&u,(r,)//eR, j
XY"(«')xp&'(«)) (4.64).

The quantity Lg(h+E&JQI Iprp)Czz(Q)]' is a spectro-
scopic coefficient, where g(Iz+EzJQI IpKp) is a measure
of the overlap of the rotational wave functions, and the
Czz(Q) are the coefficients of the I.J spin-orbit func-
tions in which the captured neutron orbital is expanded,
Eq. (4.25). The quantity ozq(P) is a generalized. ,

cformat1on-dependent, single-particle cross sect1on
When P becomes zero, oz,g(P) becomes the usual single-
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particle cross section of distorted-wave theory. ""
As in the distorted-wave theory, single-particle cross
sections that have diGerent L or J simply add inco-
herently in the expression for the differential cross sec-
tion. In other words, there is no interference between
amplitudes that have different L or J. This means that
if we are dealing with a stripping reaction that has
strong direct contributions, we can expect that the non-
normal-parity indirect contributions will have little
effect, since such contributions add incoherently to the
direct contributions.

5. APPLICATION TO STMPPING
ON Mg'4 AND U"'

Equations (4.69) and (4.68) were coded for the Uni-
versity of Pittsburgh IBM 7090 computer. Input to the
program consisted of distorted-wave transition ampli-
tudes that were calculated by the code JUI.zE. '4 There
are two indirect contributions to ps~~, that arise from
differentiation of the distorted waves in the deuteron
and proton channels. Provision was made in the code to
evaluate separately the single-particle cross sections
that account for each of the direct and indirect contribu-
tions. This was done in order to analyze the relative
importance of each of the contributions to the stripping
reaction.

Once the single-particle cross sections of Eq. (4.69)
have been computed, the squares of the neutron spin-
orbit coefficients, LCz, &(Q))s, can be obtained by 6tting
Eq. (4.68) to the stripping data. This is especially
simple for the reactions on Mg" and U'", because the
quantum numbers L and J are known. Since these are
even-even nuclei, Eq. (4.68) becomes

do/dQ = 2LCrs(D) (so r,s(P) . (5.1)

The angular momentum tranfer J must equal the spin
I2 of the product nucleus and L=J+-,' is 6xed by the
parity of the product nucleus. Of course, the so-called
"single-particle cross section" ar, s(P) does have some
implicit dependence on Ctt(Q)/Cr, s(Q), the ratio of the
indirect coefficients to the direct coeScient. The pro-
cedure adopted in this work was to use the Nilsson"
values for the Ctt(D) in the computation of the single-
particle cross sections. Of course an iterative procedure
could be used instead, in that the values for Cr, s(Q)
obtained from experiment by Eq. (5.1) could be em-

ployed in calculating a new set of single-particle cross
sections. However, an iterative procedure was used for
only one case in the calculations to be discussed. .

The transition amplitude calculated by the code
yvnz is too small, because it uses the zero-range nor-
malization for the deuteron wave function. The correct

'sW. Tobocman, Theory of Direct Nnclear Reactions (Oxford
University Press, Oxford, 1961)."R.H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Technical Report No. ORNL-3240, 1962
(unpublished).

'e R. M. Drisko (unpublished).

asymptotic amplitude of the wave function, as obtained
from effective-range theory, '4 increases the single-
particle cross section by a factor of 1.7. However, Gnite-
range calculations" indicate some reduction of the cross
section. For the present work we adopt the usual work-
ing compromise, and use a factor 1.5.

Thus, Eq. (5.1) becomes

o/dD —3F'z &(Q)jso LJ(JULIE)(P) (5 2)

where do/dQ is the differential cross section for strip-
ping on an even-even nucleus, yielding a product nucleus
of spin J and parity (—1)~.

5.1. Stripping to the Mg" Ground-State Band

The Nilsson orbit LXr4h. )Qsr=(202]ss+ is assigned
to the odd neutron of the Mg" nucleus in its ground
state. For this orbit the coeKcient u& is unity if
i=no=2; otherwise a~ is zero. Therefore, the direct
transition can excite only the I2=-,' ground-state level of
the E=ss band. However, to ffrst order in P the in-
direct transitions will excite the I2———,', —,', and-,' levels of
the IC= 2 band. The indirect transition amplitude is ex-
pected to be small and consequently its sects will be
most pronounced when it is acting in coherence with the
direct transition amplitude.

First, the transition to the ground state will be studied.
Several questions are asked. (a) By how much is the dif-
ferential cross section changed due to the addition of the
indirect transition terms) (b) In what way does non-
locality of the optical-model potential eBect these
results? (c) What are the effects of changing the param-
eters of the deuteron optical potential? (d) What is the
relative importance of the indirect contributions from
excitations in the deuteron and proton channels
separately?

It was assumed in the numerical calculations that the
laboratory energy of the incident deuteron is 15 MeV.
The optical potentials used have the standard Woods-
Saxon well shape:

V(r) = —Vp(1+ expx)
—'

i(W W—'d/dx—') (1+expx') ' (5.3).
The parameter x is de6ned by

Similarly,
x= (r—r p'A)t/s.a

x'= (r rp'A &ls)/a'. — (5.4)

The optical parameters used in this calculation are dis-
played in Table I. The parameters of the shallow deu-
teron well are those of Melkanoff, " the parameters of
the deep deuteron well are recommended by Bassel, '~

and the parameters of the proton well are those of

'~
¹ Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler,

Phys. Rev. 133, 33 (1964).
"M. A. MelkanoG, P. Sanda, and ¹ Cindro, Phys. Letters

2, 98 (1962)."R. M. Drisko (private communication).
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TABLE I. Optical-model parameters for magnesium.

Vg
v&'

V„

V, (MeV)

50.0
101.3
45.0

«o(F)

1.50
1.00
1.25

~(F)

0.59
0.90
0.65

W (MeV)

16
0
0

W'(MeV)

0
115.6
40.0

«o'(F)

1.500
1.443
1.250

~'(F)

0.59
0.50
0.47

«,(F)

1.50
1.30
1.25

Johnson. "The binding energy of the captured neutron
is determined from experiment to be 8„=7.325 MeV.
(The code yvLrE'4 utilizes the binding energy. It cal-
culates the neutron radial functions with a Saxon well,
and adjusts the well depth in order to reproduce the
binding energy. ) The radius of the neutron well was
chosen as 1.25 2'I' F and the diffusivity parameter
was chosen as a=0.65 F.

The parameters of Table I are not quite correct for
the calculations. They were chosen to 6t the observed
elastic-scattering data. In other words, with the param-
eters of Table I, X,&+&(r) of (3.32) 6ts the elastic-
scattering data by itself. However, higher order terms
of the expansion (3.32) contribute to the elastic scat-
tering, and this more complete theory therefore would
only be expected to fit the elastic scattering if modihed
parameters were used. On the other hand, the effects
of the indirect contributions to the stripping cross sec-
tion should not depend strongly on the precise choice of

M (dp) M

LOCAL WAVE FUNCTIONS

Ed = l5 MeV (lab)
Q = 5.IOMeV

L * 2

I-
K

05—
I

LLj

p=0

Ol—

I I I t I I I I

20 40 60 80 IOO I 20 I40 I60 I80
c.m. SCATTERING ANGLE ( DEGREES)

Fxo. 1. Single-particle cross section for the ground-state level
of Mg", for P =0, and P =0.3. Nonlocal effects are not included.
The calculations were'performed with the shallow deuteron well
of Table I.

"Bibijana Cujec, Phys. Rev. 136, 81305 (1964).

the optical-model parameters, and the parameters of
Table I should be suKcient for preliminary insight.

Let us turn now to the irst question asked at the
beginning of this section: By how much is the differen-
tial cross section altered by the addition of the indirect-
transition terms' Using Vq and V~ of Table I, the dif-
ferential cross section was calculated for p= 0 and p= 0.3.
The results are displayed in Fig. 1. The two angular
distributions are very similar, especially at the forward
angles, where the cross sections reach their peak. The
slope of the sharp drop beyond 25' is about the same for
both curves. However, past 40', the P=O distribution
shows a more prominent attenuation than does the
p=0.3 distribution. In other words, the indirect ampli-
tudes have somewhat Qattened the differential cross
section. This eGect is expected to be quite general. The
direct transition amplitude receives important contribu-
tions both from partial waves that remain outside the
nucleus and from partial waves that penetrate the
nuclear surface. This is because the captured neutron
resides in the least-bound single-particle orbit, hence
its radial wave function extends beyond the nuclear
surface. However, the indirect transition amplitudes
receive contributions only from those partial waves that
penetrate the nuclear surface, because the perturbation
that generates the indirect amplitudes is localized at the
surface. Since the direct amplitude receives important
contributions from higher partial waves, it experiences
more phase averaging at back angles' amongst the dif-
ferential partial waves. Hence there is a greater attenua-
tion of the direct amplitude at back angles than of the
indirect amplitude. An equivalent point of view is that
angular position and angular momentum are dynamical
conjugates. Because the indirect transitions are some-
what more localized in angular momentum space, they
must have a broader distribution in angular-position
space. In addition to these changes in shape, the p=0.3
cross section is larger than the p=O cross section at all
angles. The indirect transitions increase the cross sec-
tion at the peak by a factor of about 1.3.

Let us address ourselves to the second question: In
what way does nonlocality of the optical potentials
effect these results' Again V~ and V~ of Table I are

used, but now the neutron radial wave function is re-

placed by an equivalent nonlocal form factor, Kq.
(4.61). The ranges of the nonlocality in the deuteron

and proton channels are those found by Percy; i.e.,
yq

——0.54 F and y„=0.85 F.'~ Unfortunately, the
deuteron nonlocal range was determined for deuteron
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FIG. 2. Single-particle cross section for the ground-state level of
Mg'5, for p =0, and P=0.3. Nonlocal eGects are included. The cal-
culations were performed with the shallow deuteron well of
Table I.

well depths of about 100 MeV, whereas the depth of
Vz is only 50 MeV. It is likely that a larger range is re-
quired for the shallow well, but no attempts were made
in this direction. It should also be noted that the po-
tential that should be used in Eq. (4.57) is the full, com-
plex optical potentiaL However, only the real part of
the optical potential was used in this work. Figure 2
displays the single-particle cross sections with and
without deformation. The deformed cross section was
calculated by including all indirect transitions; i.e.,
derivative terms of the scattered waves and of the
equivalent nonlocal form factor were taken account of.
Omitting the derivative terms of the equivalent non-
local form factor produced a negligible change in the
P=0.3 cross section. However, the differences between
the angular distributions in Figs. 1 and 2 indicate
that the damping of the distorted waves inside the
nucleus does have a moderate eRect on the angular
distributions of both the P=0 and the P=0.3 differential
cross sections. There is a slight decrease in the cross
sections at the peak and a much larger attenuation at
back angles. This seems reasonable, in that the non-
locality suppresses the low partial waves more than it
suppresses the high partial waves. However, the general
shapes of the curves in Figs. 1 and 2 are about the same
and the effect of including the indirect transition ampli-
tudes is unaltered. Because the nonlocality of the optical
potentials has signi6cant eRects on the stripping cross
section, subsequent calculations will all be done, as a

matter of course, with the equivalent nonlocal form
factors.

Let us turn now to the third question: What are the
effects of changing the parameters of the deuteron
optical potentials Replacing the shallow deuteron well

of Table I with the deep deuteron well, the single-
particle cross section was again calculated for P= 0 and
P=0.3. Although Vz' is deeper than Vz, they both are
in the same Voro' valley. The results are shown in Fig. 3.
Again, the two angular distributions are very similar
and the indirect transition amplitudes have somewhat
flat tened the angular distribution. And again, the P=0.3
cross section is larger than the P=O cross section at all
angles. The peak cross section is increased by a factor
of 1.4. However, there are very striking differences
between the differential cross section calculated with the
shallow deuteron well and that calculated with the deep
well. The peak cross section of the former case is almost
60% higher than that of the latter case. Furthermore,
the angular distribution obtained with the deep well
shows more marked oscillations and drops much more
sharply from the forward peak. It is evident that the
uncertainties in the magnitude and angular distribution
of the single-particle cross section, due to the ambigui-
ties in the deuteron optical-model parameters, are
larger than the corrections due to the indirect transition
amplitudes.

Let us turn to the question of the relative importance
of the indirect transitions via excitations in each of the

M 24( ) M
25

DEEP DEUTERON WELL
Ed= l5 MeV (Iab)
Q = 5.IOMeV

L*2

I-
O
N 0.5

I- OI

CL

~IQO5

C9
K
CO

QOI

I I I I I I t

20 40 60, 80 IOO l20 l40 I60 I80
c.m, SCATTERING ANGL, E ( DEGREES )

FIG. 3. Single-particle cross section for the ground-state level
of Mg", for P =0 and P =0.3. The calculations were performed
with the deep deuteron weO of Table I.
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Nilsson orbit L202j-', + is completely an L=2, I=-',
state.

The next higher state in the ground-state band has
spin ~~ and has been identiied with the 1.61-MeV state.
lf the L202]q+ orbit again is adopted for the neutron
wave function, then angular momentum selection rules
forbid reaching this state by a direct stripping transi-
tion. However, it can be reached by an indirect transi-
tion. The differential cross section to this state was cal-
culated, using the shallow deuteron well, and found to
be about a factor of 4 smaller than the data of
Hamburger and Blair. Figure 5 shows the predicted
stripping cross section for the ~~ state, along with the
data of Hamburger and Blair. In view of the approxi-
mate nature of the present calculation, it is not clear
whether Fig. 5 should be regarded as showing agreement
or disagreement between theory and experiment.

The predicted differential cross section for the ~

state of the ground-state band is exactly 3.5 times that
predicted for the spin--,' state. However, the ~9 state of
the ground-state band has not been identiied in Mg",
although it has been identified in the mirror nucleus, Al".

i I i I I t. i

20 40 60 80 IOO I20 140 l60 l80
c,m. SCATTERING ANGI E (DEGREES)

FIG. 4. Comparison of the p=0 and p=0.3 single-particle cross
sections with the observed angular distribution of the transition to
the ground state of Mg". The calculations were performed with
the deep deuteron well of Table I.

deuteron and proton channels. In order to answer this
question, the differential cross section was evaluated,
allowing for indirect contributions from excitations in
each of the deuteron and proton channels separately.
At all angles the indirect transitions via the deuteron
channel dominate those via the proton channel. When
the shallow deuteron well was used, the deuteron in-
direct stripping amplitude was approximately three
times the proton amplitude. When the deep deuteron
well was used, this ratio increased to about eight or
nine.

The theoretical angular distributions were compared
with the data of Cujec" and of Hamburger and Blair. s

The theoretical curves were calculated with the deep
deuteron well. Figure 4 compares the P=O and P=0.3
predictions with the data. The theoretical curves are
normalized in order to 6t the data at the shoulder at
25'. Both curves give only fair 6ts to the data and the
P=0.3 prediction gives only a slight improvement to
the fit. However, the square of the coeKcient of the
L=2, J=—,

' component of the neutron wave function,
determined by Eq. (5.2) and the fits of Fig. 4, is

(Cm, i~2)'=0.84 for P=O and (C2,~~2)'=0.67 for P=0.3.
In other words, the square of the amplitude of the L=2,
J= ~5 component of the neutron wave function is over-
estimated by about 25'Po by the P=O prediction. The
Nilsson value for this coefficient is unity; i.e., the

' E.W. Hamburger and A. G. Blair, Phys. Rev. 119,777 (19M).
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FIG. 5. Comparison of the predicted and observed, differential
cross sections for the I=—,

' level in the ground-state band of Mg's.
The calculations were performed with the shallow deuteron well
of Table I.

5.2. Stripping to the Mg" X= -,'Band

The 0.58-, 0.98-, and 1.96-MeV states all are members
of the

I
211$2i+band, with spins i2, ~~, and 25, respectively.

This particular Nilsson orbital has amplitudes for L=O
and 2 and for J=-,', 2, and —,'. Therefore, all three of the
above states can be reached by the direct stripping
process.

Because experimental cross sections are available for
stripping to all three of the above states, we decided to
search for the neutron wave function coeKcients, CJ.g,
which would best fit the data. Equation (5.2) was
used to calculate the (Cr,q)' from the 6ts of the single-

particle cross sections to the experimental cross sec-
tions. An iterative procedure was used in the search. The
values of the C&z calculated by Nilsson for P=0.17 were



15I

TABLE III. Self-
' re -consistent r...K.;, fo th (211 )+band.

D EUT E RON STRI PP I NG

I I I I I

ON D EFORME0

I I I I

NUCLEI 869

IQ ~
s
es

Xl 5-
R
O
I-

\

lh
(II

O
EA

CL
Q
~ Q5-
0
I-

I
Lij

g Ql—

Mg (d, p) Mg

Eda 15 MeV

Q a 4.52 MeV

L =0
J a I/2

Iea0
———P =0.3

I t

I

0 I40 I60

ing e-particle eros

ere performed with hi t e dec
su se-

i p deuteron well of

0
2
2

0
0
1

0.54
0.15—0.64

by the indirect t ' ' . Th
'

yransitions. Th'
terms of Eq. (4.50 an

'
s o ths o the expansion of

representation

Uo=

re
'

n, given by

0 Ljr' +LWLsf~IQ M ~—

g e orbital an

P l

q. 4.27). The values of

are given in
a ize , iterate

q 50) it is
a o ythe1. =2 — t

to th L=O
is is just the s

~
J= g crossss sec-

ues o the al,
pitu e. Use

j ~

e angul di t i

oJd
T

ependence b
u ntral. However

optical
g

ependence whenen is non-

eff

TABLE II. Calculatede values of thehe coefBcients (CI,J)'

used as trial values ines in computing the sin le-

l
t""' Th teration

T bl
f th ~C

, using both P=O
(

g upling mod 1"
P=O d for P=0.3,ot for R=

e were

n are displayed
'

cross sectio n is ardly at all ected

50-

IQ

so

Xl 5 ~

K
O
I-0
Lsj
CA

tA

O
Qy0 0.5—

LLI

LLI

Ls

oQ, I-

0.05

24 25

0
2
2
&(CI.J)'

0.54
0.47
0.36
1.37

p=0.3
0.58
0.67
0.16
1.41

Renormalized
P=o P-'0.3
0.40 0.41
0.34 0.48
0.26 0.11
1.00 1.00

¹ilsson
model

0.20
0.53
0.27
1.00

10 20 30
c.m. $QATTf RING AN

70

Fxo. 7. Comparisonp on of theP=O and
e observed an ar distribution o tIi

e 1 +band of Mg"



P. J. IANO AND N. AUSTERN

TABLE IV. Calculated and experimental values
of the decoupling parameter, e.

p=0.3
0.68 —0.28

Renormalized
P=O p=03
0.50 —0.22

Nilsson
model

—0.05

Exp.
—0.2

zero. Most noticeable is the fact that, when P is nonzero,
the J= ~3 distribution Qattens considerably past 70'. In
general, the deformation seems to alter the ~3 and 25

distributions in somewhat opposite directions. This can
be seen to follow from the form of the J dependence of
the indirect transitions, as displayed in Eq. (4.50). The
entire J dependence is contained in the coefBcients
(LmraQ —m~IQ). This Clebsch-Gordan coeKcient has
opposite signs for J=L&~ if m=0 —2, but has the same
sign for I=L&raif m=Q+~~. Thus, the I dependence
of the single-particle cross sections will be marked if the
coefEcients a~ are large for m=0 ——,', but will be weak
if the coeflicients u~„are large for m= Q+a. In the case
at hand the coefficients u~ are so balanced as to give a
partial washing out of the effect. However, for many
Nilsson orbitals, the coefEcients a~ are unbalanced.

Figure 9 compares the L= 2, I= ~a predictions for P=0
and p=0.3 with the experimental results of L'ujec. 38

The 6t is good, but the differences between the P=O
and the P =0.3 predictions probably are too small to be
signihcant. Figure 10 compares the L=2, J=-,' pre-
dictions for P= 0 and P= 03 with the data of Hamburger
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Fre. 9. Comparison between the Cujec data (see Ref. 38), and
the P=O and P=0.3 single-particle cross sections for the transi-
tion to the I=) level of the L211$-',+band of Mg".

where the CJ are the coeScients in the expansion of the
intrinsic wavefunction in eigenfunctions of the total
intrinsic angular momentum. In the .extreme single-
particle model of deformed nuclei, all orbitals of Mg'5
are paired except the [2117-,'+orbital. Therefore, the
coefficients ~Cz~ ' in Eq. (5.4) are just the coefficients
(Cr.&)' of the L2117-',+orbital. Equation (5.4) was used
to calculate the decoupling parameter by substituting
(Crq)' for

~
CJ

~

'. The values of (Crq)' were taken from
Table II. The results are given in Table IV. The ex-
perimental value of 8 favors the P=0.3 results over the
P =0 results. However, the excellent agreement between
the P=0.3 value of the decoupling parameter and the

and Blair" and of Cujec."Neither prediction gives a
good it to the data insomuch as the predicted slope
beyond 25' is too steep.

A parameter that is sensitive to the values of the
(Cr,q)' is the decoupling parameter, 8. Due to rotation-
particle coupling, the energy spectrum of a E=-,'band
deviates from a pure rotational spectrum. The energy
spectrum is

E(I)=E +(iI'/2g) LI(I+1)+(—1)r+&(I+ a) 0'7, (5.3)

where 8 is the moment of inertia of the nucleus, I is the
nuclear spin, and 6, is the decoupling parameter.
Observations of the energy levels of Mg" indicate that
Q, is about —0.2. However, the decoupling parameter is
given by
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TABLE V. Optical-model parameters for uranium.

V0(MeV)

106.0
65.3

.,(F)

1.12
1.25

0.91
0.65

S (MeV) W'(MeV)

0 52.8
0 46.0

«,'(F)

1.38
1.25

o'(F)

0.75
0.76

r, (F)

1.30
1.25

J
5/2
7/2
9/2

11/2
13/2

CLJ

—0.237—0.002—0.804—0.488
0.245

Z.(l ev)

0
40
92

155
230

experimental value should be regarded as fortuitous in
view of the poor fit of the L=2, 1=~5 single-particle
cross section to the data. It is interesting that the values
of the (Cr~)' that we find from experiment, using P =0.3,
strongly resemble the values calculated by Bishop'
for the purpose of fitting the value of 0',.

5.3. Stripping on U"'
It seemed desirable to do a calculation for a heavy

target. Accurate stripping data for heavy nuclei are
scarce. Macefield and Middleton" recently published
data for deuteron stripping on U'" and compared the
data to distorted-wave predictions. Because their
accurate data had been made available, it was decided
to treat deuteron stripping on U'".

Measurements of the intrinsic quadrupole moments of
nuclei in the actinide region indicate a deformation of
about4' 0.25. The ground state of Pu'4' has been identi-
6ed with the [622jss+orbital for the odd neutron. 4'4'

Since Pu"' differs from U'" only by two proton orbitals,
the odd neutron in U"' ought to also occupy the
[622]ss+orbital in the U"' ground state. This assign-
ment is consistent with the beta decay4' of U'".

The experiment reported by Macefield and Middleton
was performed with a deuteron energy of 12 MeV. The
binding energy of the captured neutron in the U'"
ground state is 4.8 MeV, and this was the value used for
the binding energy of the neutron orbital in the code
JUr, rz. '4 The optical-model parameters used were those
recommended by Bassel'~ and they are listed in Table
V. Table VI shows Nilsson amplitudes C~g for the
[6227—,'+orbital, for a deformation of P =0.25. This table
also shows computed energies of excitation for the
various corresponding levels of the ground-state band of
U2". These energies were computed by assuming that
the spin-~7 state appears at 40 keV, the same energy at
which it was located4' in Pu'4'.

TABLE VI. Neutron orbital coefficients CLJ
assumed for the L622)-', +band.
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I-
O
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Ch.

O

~0.5
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taI
R
taf
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Mg (dp) Mg

.Ed = l5MeV tlab)
Q a 4.52MeV
L a2

5(~

P aQ
e e ~ P Q

Hamburger a Blair

Cujec

0.05

The single-particle cross sections were calculated for
the L=2 and L=4 transitions, both for p=O and
P=0.25. The L=2 single-particle cross sections are
shown in Fig. 11. The p=0.25 angular distribution is
considerably flattened with respect to the P=O dis-
tribution. Figure 12 shows the corresponding fits to the
data of Macefield and Middleton. Unfortunately, the
P=O 6t is better than the P=0.25 fit.

Figure 13 shows the 1-=4, J=-,' fits to the data of
Macefield and Middleton for both P=O and P=0.25.
The P=0.25 prediction differs very little from the P=0
prediction. Both curves fit the data beyond 55' but
overestimate the cross section below 55'.

Because its direct component is tiny, the L=4,
J= sr cross section for P =0.25 is almost entirely indirect.
The predicted differential cross section is shown in Fig.
14. The cross section is small and this is consistent with
the fact that the transition was not observed.

Again, Eq. (5.2) was used in order to extract (Cz,z)s
from the data. Since only transitions to the ground state
and the 92-keV excited state (J=as) were observed,

~ G. R. Bishop, Nucl. Phys. 14, 376 (1959).
4'B. E. F. Mace6eld and R. Middleton, Nucl. Phys. 59, 561

(1964).
4'Ben R. Mottelson and Sven Gosta Nilsson, Kgl. Danske

Videnskab. Selskab, Mat. Fys. Skrifter 1, No. 8 (1959).~ R. C. Helon, Phys. Rev. 104, 1466 (1956).
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FIG. 10. Comparison between the Cnjec data (see Ref. 38),
the Hamburger and Blair data (see Ref. 39), and the P=O andp=0.3 single-particle cross sections for the transition to the I=$level of the L211js+band of Mg ". .
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vector-coupling coeKcients, whereas the inQuence of the
dynamics of the scattered particles is contained wholly
within the factor (Rsd/dRs+RP/dR„)tg~. We are
interested in the relative size of the indirect to the
direct transition amplitude, therefore, let us concen-
trate our attention on the dynamical ratio

~
(Rsd/dRs

+Rsd/dRs)t f~~/ter, ~~~. It is then this ratio that is a
measure of the effects of the deformation on the scat-
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FIG. i i. Single-particle cross sections for the ground
state of U'" for p =0 and p =0.25.

(Crz) s can be calculated for only L= 2, J= ss and L=4,
J= ~9. The results are shown in Table VII.

The P=0.25 results are little different from the P=O
results. This is a reQection of the fact that the cor-
responding single-particle cross sections for P=O and
P=0.25 are similar in magnitude. The reason for this is
that the individual indirect amplitudes, although of

significant magnitude, interfere destructively. For in-
stance, the orbital angular momentum transfer is I.= 2
for the transition to the U'" ground state. However,
the indirect transitions can proceed by a neutron orbital
angular momentum transfer of /=2 or /=4. It just so
happens that the /= 2 and /=4 indirect transitions have
very nearly opposite phases.

5.4. Comparison of U"' with Mg"

In comparing the magnesium and uranium cases it is
desirable to distinguish the speci6cally size-dependent
effects of the deformation from those differences which
arise from the fact that the neutron orbitals are dif-
ferent. The angle-dependent part of the stripping
amplitude is

LPP~= tP~+P Pr.~(LmsQ m(JQ)—
Xi~'(5/4s ) '~'(a~~/Cl g) (Lm20 ( lm)(l020 ) LO)

X (Rsd/dRa+Rsd/dR„)tj~. (4.66)

The amplitude tl,~~ is just the undeformed amplitude.
The inQuence of the dynamics of the neutron orbital is
contained in the amplitude u~ and in the associated
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FIG, 12. Comparison of the p=0 and p=0.25 single-particle
cross sections rvith the observed angular distribution of the
transition to the ground state of V~39.

TAnx, m VIL' Calculated values of the coeKcients (Csq)'.

J
5/2
9/2

0.049
0.89

p=0.25

0.058
2.02

tered waves in the deuteron and proton channels;
therefore, it is just this ratio that contains the specjt6cally
size-dependent effects that are caused by including the
indirect transitions in the calculation of the stripping
cross section.

On the average, this dynamical ratio is about the
same for both the magnesium and the uranium targets.
This fact may be at least qualitatively understood in
terms of the penetration of the distorted waves into the
nuclear interior. In the uranium case, the Coulomb
barrier is considerably higher than it is for the mag-
nesium case; thus there is relatively more reflection of
the scattered projectiles from the region outside of the
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nucleus. On the other hand, the projectiles that scatter
on the magnesium target experience relatively more
transmission into the nuclear interior. Now, that por-
tion of the scattering wave function that penetrates into
the nuclear interior is highly sensitive to the nuclear
radius, whereas that portion that is reQected from the
Coulomb barrier is relatively insensitive to the nuclear
radius T.herefore, it is to be expected that (d/dR)tg~~
will be smaller in the uranium case than in the mag-
nesium case. However, the increase in the nuclear
radius seems to be just about sufBcient to offset this
decrease, and the net effect is that the dynamical ratio
is unchanged. However, we must bear in mind that the
laboratory energy of the deuteron projectile was 15
MeV for the magnesium case and only 12 MeV for the
uranium case. The lower energy of the incident deuteron
for the uranium case undoubtedly contributed to the
lack of penetration of the scattered waves. Therefore,
we should expect larger contributions from the indirect
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FIG. 13. Comparison of the p=0 and p =0.25 single-particle
cross sections to the observed angular distribution of the transi-
tion to the I=g level of the ground-state band of U"'.
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nuclei that are due to inelastic coupling in both deuteron
and proton channels. The coupling of the elastic channels
with the inelastic channels has been treated only to erst
order. The calculation can be viewed as a sum of three
diagrams. In Fig. 15 the three amplitudes are displayed
in their order of importance. In those cases where it is
not inhibited by selection rules, the direct amplitude
makes the major contributions to the differential cross
section.

The most prominent effect of the indirect amplitudes
is the Qattening of the angular distributions at large
angles. This is especially interesting in view of the
distorted-wave analysis of the magnesium data of
Middleton and Hinds44 by Buck and Hodgson. 4' In that
case the measured distributions are consistently Qatter
than the calculated distributions.

The contributions of the indirect transitions are re-
markably independent of the atomic number of the
target. This seems to result from a balancing of two
competing inQuences. The magnitude of the inelastic
perturbation is proportional to the radius of the target.
This alone would cause the indirect amplitudes to in-
crease with A. On the other hand, there is more reQection
from the Coulomb Geld of a heavy nucleus, thereby re-
ducing the overlap of the inelastic perturbation with the
zero-order wave function.

transitions as the energy of the deuteron beam increases.
Probably as the energy would rise still further, the strip-
ping amplitude would begin to depend less upon the
form of the nuclear attraction, and the contributions of
the indirect transitions would again decrease.

6. DISCUSSION

A formulation has been developed for handling the
corrections to the direct stripping process in deformed

I s I l I I I I
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C.m. SCATTERING ANGLE (DEGREES)

Fxo. 14. Predicted (Merential cross section for the I=)
level of the ground-state band of U"', for p=0.25.

44 R. Middleton and S. Hinds, Nucl. Phys. 34, 404 (1962)."B.Buck and P. E. Hodgson, Nucl. Phys. 29, 496 (1962).
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Pro. 15. The three terms in the transition amplitude of the re-
action A(d, p)B that are computed in this work. The solid lines
represent the particles and the dashed lines represent the inelastic-
scattering interactions.

It was suggested by de-Shalit4' that the interaction
that generates the indirect amplitude need not have a
dVe(r)/dR form, where Ve(r) is the optical potential.
Instead, this interaction may reside beyond the range of
the optical potential. This could change the complexion
of the penetrability arguments given in the last para-
graph. An interaction that lies outside of the nuclear
surface may produce larger effects in heavy nuclei than
in light nuclei. There is evidence for a small systematic
eGect of this kind in the inelastic scattering of deuterons
and protons. Increasing the range of the interaction that
is responsible for inelastic scattering might also moder-
ate the flattening of the angular distribution by the
indirect contribution.

The indirect contributions, to the single-particle cross
section, from the deuteron channel were compared with
those from the proton channel for the transition to the
Mg2' ground state. The contributions from the deuteron
channel dominated the indirect amplitudes, and this
eBect was especiaHy pronounced with the deep deuteron
optical potential. Using the methods of Austern and
Blair "the transition amplitude for inelastic scattering
can easily be computed up to ftrst order in P. The in-
elastic amplitudes in the deuteron and proton channels
were computed for the magnesium target, using for the
optical potential parameters the proton well and the

46 A. de-Shalit, in Proceedings of the 1965 Brookhaven Sum-
mer Study Group, edited by J. %'eneser and E. Warburton,
(unpublished).

deep deuteron well of Table I. On the average, the
inelastic transition amplitude in the proton channel is
almost Qve times that in the deuteron channel. These re-
sults indicate that the features of the inelastic wave
function that determine the two-step stripping ampli-
tude are diferent from those features that determine the
inelastic-scattering amplitude.

The indirect amplitudes impose a J dependence on
the angular distribution. The J dependence in the mag-
nesium calculation, Pig. 8, is especiaHy strong at back
angles. This is reasonable, since the direct amplitude is
small at these angles. It seems unlikely that this J
dependence could show the smooth dependence on mass
number that was found in recent work by Lee and
SchiGer. 4'

In view of the approximate nature of the calculation,
it should be regarded primarily as an orientation to the
e8ects caused by coupling the projectile motion to the
rotational motion of the target nucleus. Large ambigui-
ties in the parameters of the deuteron optical potential
lead to sizeable uncertainties in the zero-order transi-
tion amplitude. And, since the indirect transition via the
deuteron channel dominates the 6rst-order amplitude,
there are also large uncertainties in the 6rst-order
transition amplitude. Calculations have been performed
that test the sensitivity of the single-particle cross sec-
tions to the deuteron optical-model parameters. They
indicate that the numerical computations, presented in
Sec. 5, are rather sensitive to reasonable changes in the
deuteron optical-model parameters. However, the gross
features of the eGects of the indirect transitions are
reasonably independent of the deuteron optical-model
parameters.
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