
The lack of detailed agreement between calculated
and experimental values of A (8) does indicate that the
scattering matrix of this model is not exact. Two
possible reasons for this are, (1) the neglected couplings
in the d+T system as shown in Table I might drasti-
cally change the structure of the scattering matrix (as
previously mentioned, we are in process of correcting
this flaw), and. (2) the coupling potentials that were
used were central potentials that depended only upon
J and E', and this may be too simple to 6t the data. It is
interesting to note that the fact that A (8) was too small
at most angles seems to be a disease that this model
shares with conventional direct-reaction theories.
Tanifujisr 22 has emphasized that since the P+T system

exhibits strong spin polarization, " the neglect of the
stripping process as shown in Fig. 11 is to neglect a spin-
dependent potential. This neglect would not aGect
differential and total cross sections, but could make it
impossible to simultaneously fit the spin polarizations
and left-right asymmetry. Still, because of the complex
energy behavior of the solutions to the coupled equa-
tions, it is pmposed to first couple all the d+T states
in Table I with central coupling potentials to get the
best 6t to experimental data before resorting to hard
cores, spin-dependent stripping potentials, and nonlocal
coupling potentials.

"T.A. Tombrello, Phys. Rev. 138, B40 (1965).
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An approximate analytic solution is derived for the Bethe-Faddeev three-body equations in nuclear
matter. The solution is no more complicated than the original approximation proposed by Bethe, but it is
more accurate and avoids the discontinuities that appear in the original solution. In a certain limiting case,
the solution agrees @faith the one previously proposed by Moszkovrski on the basis of a variational treatment.

gl2 &12 &12(1/~12)gls |
I. INTRODUCTION with two similar equations for Z& and Z3. The operator

g12, the o6'-energy-shell 6 matrix for particles 1 and 2,ECENTLY, Bethe' has shown that the contribu-
tion of three-body correlations to the energy per

particle of nuclear matter is given by (4)

x&3~/A =p' g(rss)F(rss)drss.
where e1~ is the nucleon-nucleon potential. The propa-

(1) gator (1/eis) is given by

&12 vis +r
In this formula, p is the particle density, g(rss) gives the
radial dependence of the off-energy-shell CGective inter-
action or G matrix, and F(rss) is defined by

F(r28) 'Q(rls)+1(r12 rls r28)drl ~

Here, li(ris) is the on-energy-shell two-body "difference
function, " i.e., it is the difference between the unper-
turbed and the correlated wave functions for two
particles. The three-body function Z1, which is called
C —0 &" by Bethe, satisfies the "Bethe-Faddeev
equation"

+1(rl'2 rls r28) 'Q(r12)+li(r13} (1/e12)gl2+3(r12 r13 r28)
—(1/eis)gisZ2(ris, ris, rss), {3)

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' H. A. Bethe, Phys. Rev. 138, B804 (1965).

where 7 is a constant which is estimated by Bethe to
be between 3.1 F ' and 3.7 I' ', depending on the radius
of the repulsive core in the two-body potential.

These equations were derived with the aid of three
approximations, as discussed by Bethe. (1) The initial
momentum of each of the three interacting particles
has been put equal to zero. (2) Reference-spectrum
approximation: The energy spectrum for intermediate
states is puI'c kinetic cncI'gy and thc exclusion pl inclplc
is neglected for these states. (3) The dependence of els
on the momentum of particle 3 has been averaged out.

Simple and accurate methods are known for calculat-
ing the two-body functions rl(r) and g(r).' The problem,
therefore, is to solve (3) for the three-body function Zi,
and Bethe' has found a very simple approximate solu-

' H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963}.This paper, and its authors, will be referred to as
BBP.
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tion. The purpose of this note is to derive an approxi-
mate solution which is more accurate, but no more com-
plicated, then the one in Bethe's paper. The new solu-
tion for Z~ also has the advantage of being a continuous
function, while Bethe's original solution has
discontinuities.

FIG. 1. Illustration of
basic approximation for
the operator (1/eI~)gIg,
as explained in the text.

i 12)13 t 12/23 $»f 28+ 2i 12$18i 23

(10)

where uI;; and i;; have been written for fI(r;,) and
t'(r;;). This solution, which is the one obtained by

II. APPROXIMATE EQUATIONS FOR Zl

The basic idea of the present treatment is the same as
that of Ref. 1, namely, to And a simple approximation
for the effect of the operator (1/elu)glu on a three-body
wave function. We consider first the two-body problem,
restricting our attention to central two-body potentials
which contain a hard core. Following Sec. 5 of BBP, we
have

(1/elu)glu exp(iko rlu) =pL iL(2L+1) (korlu) '

XxL(f12' L(ko'r12) (6)

where xL=korlu jL(korlu) inside the core and xL ~ 0 as
r» —& ~. According to Sec. 8 of BBP, if there is no
attractive potential outside the core, it is a good approxi-
mation to write

XL(r12) kocj L(koc) exp[ r(r12 c)] f12&c (7)

where c is the core radius. Putting these results for X~
into Eq. (6) gives

1/e»)g» exp(iko r»)
=i.(r») exp(iko r»), r„(c,
=i'(r, u) exp(ik, Flue), r,u&c, (8)

where r» is a unit vector in the direction of r» and

f(rlu) =1, r»(c
= (%12) exp[—y(rlu —c)j, r»&c (9)

Equation (8) is our basic approximation for (1/e»)g»,
it is exact for r»(c. Since the solution for XI, is dom-
inated by the repulsive core and the large off-energy-
shell value of y (as shown in Ref. 2), the presence of
an attractive force outside the hard core can be taken
into account by an appropriate change in the form of
t (r») fol flu&C.

The approximation made by Bethe' was to replace
the right-hand side of Eq. (8) by t'(r») exp(uko r»)
for all r». This is exact inside the core but less accurate
than (8) outside the core. According to Bethe's approxi-
mation, applying (1/e»)g» to any three-body function
is the same as multiplying that function by t'(rlu). Thus
the coupled integral equations (3) are reduced to linear
algebraic equations for Z~, Z2, Z3, and the solution is

'912(1 i 1 )+8'9l (1 8)12) '923($12+i 13 21 12' 18)
Z]—

C

Bethe, ' will be referred to as the "old solution. " The
old solution is exact when all three interparticle dis-
tances are less than c. In this case all uI's and i's are
equal to unity, and the exact result is Zl ——(1+uI)/
(1+2')='-..

To see what the improved approximation (8) implies
for the effect of (1/e»)g» on a three-body function, we
note that a typical Fourier component of this function
can be written

exp[i(k, rl+ko ru+k. .ru) j
=exp(ik, ru+iK, O R») exp(ik, o rlu) (11)

where K,o and k, u are total and relative momenta for
particles 1 and 2, Rlu and rlu are their center-of-mass
and relative positions. Applying (1/elu)g» to this
Fourier component gives, according to (8),

exp(iku ru+iK 8 Rlu)i'(r»)

Xexp(ik. o rlu), r,u(c,
Xexp(ik 8 ~ rluc) rlu& c. (12)

So if r»(c, we simply multiply the original Fourier
component by f (rlu), in agreement with Bethe's
method. But if rlu& c, we obtain f'(r») times the original
Fourier component evaluated at a new point in con-
6guration space. At this new point, r~ and R~2 are un-
changed, but the magnitude of r» has been reduced. to c.

It is clear from these remarks that, for a three-body
function F(rlu, rlu, ruu), Eq. (8) implies

(1/e12)g12F(r12 r13 ruu) i (r12)&(r12 r13 r23) r12(c '
(13)

f (rlu)P(c flu f23 ) r12&'c
where

flu —[2 (flu +f28 ) 3 (r12 C )
+ (c/2rlu) (r13 ruu')]'", (14a)

ruu'= [2 (rlu'+f28') —
3 (r»' —c')

+ (c/2rlu) (r23 r» )$'". (14b)

The case r»&c is illustrated in Fig. 1. We start with
the particles at the vertices of the large triangle and
then apply (1/e»)g» to the function F. The result is
t (r») times the value taken by F when particles 1 and
2 have moved to new positions 1' and 2', which are
a distance c apart. Particle 3 and the center of mass of
1 and 2 have been kept 6xed. The distance from 1' to
3 is called rlu' and is given by (14a), and similarly for
r23 ~
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TABLE I. Comparison of the exact numerical solution of Eq.
(15), the analytic approximate solution (19), and the old solution
(10)—evaluated for different values of r12, r13, and r28.

where we have put ri18
——li28 ——li and f13=128——i' since

r~3 and r23 are less than c. Solving and then letting
li-+ 1 and t ~ 1, we obtain, for r») c, r18&c, r28&c,

Analytic
approx-

r/c Exact imation Old r/c

Analytic
approx-

Exact imation . Old

Z =Z.=(~+~. '.—i- )/(1+1)
2(1+v»—3t'») ~ (17a)

1.0
1.1
1.2
1.4
1.6
1.8
2.0

ZI(rjg=r, r13=c,
0.667 0.667
0.657 0.657
0.646 0.646
0.619 0.619
0.588 0.588
0.551 0.551
0.514 0.514

r23=c)

0.625
0.620
0.613
0.600
0.578
0.550
0.514

ZI(r12=c r13=c r23=r)
0.667 0.667 0.750
0.686 0.686 0.761
0.709 0.709 0.773
0.76i 0.761 0.804
0.824 0.824 0.844
0.897 0.897 0.900
0.972 0.972 0.972

1.0
1.1
1.2
1.4
1.6
1.8
2.0

1.0
1.1
1.2
1.4
1.6
1.8
2.0

ZI (r12 r r13 r r23 c)
0.667 0.667 0.500
0.638 0.643 0.478
0.599 0.608 0.453
0.495 0.507 0.401
0.361 0.369 0.312
0.207 0.209 0.200
0.056 0.056 0.056

Z& (ra8 =r, ri8 =r, r38 ——rl

0.667 0.667 0.667
0.660 0.665 0.651
0.641 0.654 0.628
0.552 0.576 0.550
0.400 0.418 0.409
0.214 0.217 0.217
0.056 0.056 0.056

D.D
0.5
1.0
1.18
1.36
1.72
2.08

ZI(r12=r, r13——c, r23=r)

0.667 0.667 0.750
0.681 0.679 0.761
0.700 0.696 0.773
0.753 0.747 0.804
0.819 0.815 0.844
0.896 0.896 0.900
0.972 0.972 0.972

Z~(r~2=1.4c r~8=r
r23 =1.4c)

0.755 0.747 0.804
0.754 0.747 0.804
0.753 0.747 0.804
0.650 0.667 0.655
0.569 0.592 0.566
0.443 0.459 0.443
0.358 0.362 0.347

Using the approximation (13) allows us to write
Eqs. (3) in the form

Zl(r12 r18 r28) f12+'918 'i 12Z3 i 18Z2 (15)

where Z3 ——Z, (r12,rl„r23) for r12(c and Z3(c,r13', r2, ') for
r12)c, Z2 ——Z2(rll, rll, r23) for r13(c and Z2(r12",c,r23')
for r»& c, and r»" and r»" are defined in analogy with
r»' and r»'. Similar equations hold for Z2 and Z3.
Equations (15) are our approximation to Eqs. (3).
They have also been derived, in a similar way, by M. W.
Kirson. 3 We will show that to a good approximation
these equations can be solved analytically.

IIL SOLUTION OF THE EQUATIONS FOR S
When all three interparticle distances are less than c,

Eqs. (15) are exact and are identical to Bethe's equa-
tions. The solution in this region is known to be
Zl=Z2=Z3= 3.

Next consider the case rj2&c, r~3(c, r23(c. It is
easy to see that r18'(c and r23'&c. Hence Z3(c,r13',r23'),
which multiplies i » in Eqs. (15), is equal to —, and these
equations take the form

Zl li12+'g 3i 12 t Z2 y

Z2=3il2+'g 3f12 i Zl y

Z8= 21'—i Z2 —i Zl,
' M. W. Kirson (private communication).

2Le f(li12 3f12)j/(1+i ) ~ 1 lil2+ 3112 (17b)

When two or more of (rll, r13,r23) are larger than c,
we are forced to solve the equations numerically.
Formula (15) gives Zl(r12, rll, r23) in terms of Z's at
diGerent points in space, and these Z's in turn depend
on Z's at still diferent points. Thus one is led to a
chain of equations; and this chain terminates when all
the Z's on the right-hand side of (15) can be evaluated
from the analytic solutions, which are valid when two
or more of (r12,r18,r23) are less than c. Except for certain
special cases, the chain of equations will terminate after
a Qnite number of steps because, as can be seen from
Fig. 1, in successive steps the particles tend to get
closer together.

An example of a case in which the chain of equations
does not terminate occurs when the three particles
initially lie on a single straight line. Even after a large
number of steps, the right-hand side of (15) will con-
tain Z's that are to be evaluated at points arbitrarily
close to, but still outside, the region of applicability of
the analytic solutions.

We can obtain an analytic approximation to the
solution of (15),and thus avoid numerical computations,
in the following way. We approximate Eqs. (15) by
the simpler equations

Zl (r12,rl„r„)= li12+rl 18—i 12Z,—i'„Z„(18)
where Z3=Z3(rll, rll, r23) for r12(c and Z8(c,r13,r28) for
r») c, and Z2 ——Z2(r, l,r18,r28) for r13(c and Z2(r12, c,r23)
for r~3&c—and analogous equations hold for Z2 and
Z3. The solution can be obtained analytically and is
given by

Zl(r12 r18,r23) 612(1 i 18'+21 13t 28)

+3]13(1 $12+2/12/28) '923($12+i 13 f 12118)

+i 12)18+2 (f12+f13)i 28 3112/18)28 ~ (19)

That this is the correct solution can be seen by substi-
tuting it, and the two similar formulas for Z2 and Z3,
into Eq. (18) and using the fact that ri(r)=i (r)=1
whenever r&c. Equation (19) is our main result. We
will 6rst show it to be a good approximation to the
solution, of (15) and then compare it with the old
solution (10).

Expression (19) reduces to simpler forms when at
least one of r~2, r~3, r23 is less than c because some of the
li;; and i;; can be put equal to unity. If two or more of
the variables are less than c, then (19) agrees with
the analytic solution of (15).

To see whether the analytic approximation (19) is
an accurate solution of (15) in other regions of con-



Inside the core, rf =t'= 1, while ri vanishes for r) 2.2c and

f vanishes for r) 1.9c.
Some of the results are shown in Table I. The

analytic approximation usually differs by less than 2%
from the numerical solution, although the diGerence
sometimes gets as large as 4% when all three inter-
particle distances are greater than c. The old solution
is usuaHy much less accurate, especially at small
dlstanccs.

The old solution also suffers from discontinuities.
Fol' example~ lt glvcs ZI (c~c~rss) = (1—riess)/(1 —t ss) fol'

r23&c, and the limit of this as r23 approaches c from
above is ss in case 3, while we know that ZI(c,c,c)= ss.

Our analytic approximation, on the other hand, is
clearly a continuous function as long as ri and f are
continuous.

Our approxiD1atc solution fol Zy ls rclatcd to
Moszkowski's treatment of the three-body problem. 4

If one constructs the total three-body wave function 4
according to Moszkowski's equation,

2(1—e)=ZryZs+Zs,

the result, in the special case rj=f', is 4'=(1—rfrs)

X (1—rats) (1—ries). This is precisely the formula sug-
gested by Moszkowski on the basis of a variational
treatment.

Tsnz, z II. Values of E(rs,) in units of 4s8'. The exact values
were obtained by numerical solution of Eq. (15), the analytic
approximation is from Eq. (19).

0.25
0.50
0.75
1.0
1.2
1.4
1.6
1.8
2.0

Exact
solution

0.552
0.541
0.525
0.509
0.543
0.583
0.629
0.675
0.717

Analytic
approximation

0.558
0.547
0.530
0.509
0.543
0.584
0.630
0.678
O. f19

4 S. A. Moszkovrski, Phys. Rev. 140, 3283 (1965).

figuration space, the chain of equations arising from
(15) llas been solved numc11cally Rnd tllls cxRct solll-
tion has been compared. with Eq. (19).All the numerical
work has been carried out for case 8 of Bethe's paper, '
i.e., we take rf and f' to be

rl (r) = ([2.2—r/c)/1. 2)', 1&r/c & 2.2, (20a)

t'(r) = ([1.9—r/c)/0. 9)', 1& r/c & 1.9. (20b)

0.70

0.80

0.'50 '

0
I

I.O
f25/C

I

2.0

FIo. 2. The function f'(rr3) plotted against r /sca. The solid curve
is obtained by using the analytic approximation (19) for ZI.
The dashed curve results vrhen ZI is calculated from the "old
solution" (10).

The three-body energy comes out somewhat more
repulsive with our solution than vrith the old one.
To illustrate this, the function F(rss), which occurs in
expression (1) for the energy, has been calculated and
the results are plotted in Fig. 2. The dashed line was
obtained by using the old solution for Z1, the solid
line results from our formula (19). Inside the core,
where g(rss) is repulsive, the solid curve lies about 15%
higher than the dashed curve. The resulting change in
three-body energy, however, will be less than 1 MCV

pcr particle. 8cthe s conclus1on that thc thl cc-body
energy is small of course remains unaltered. .

One more indication that expression (19) is an
adequate solution of (15) is provided by the values of
F(rss) shown in Table II. The exact numerical solution
of (15) was used to obtain the first column; the second
column was calculated by use of the analytic approxi-
mation (19). The excellent agreement shows that the
small errors in the analytic approximation for Z~ have
been largely averaged out by the integration that occurs
in calculating F(rss) by use of Eq. (2).
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IV. CONCLUSION

The analytic approximation (19) is just as simple as
the old formula (10), and it has the advantages of
being more accurate and avoiding discontinuities. Also,
Kirson' has found it to be superior to the old solution
as a starting point for more detailed calculations in
@which the effects of exclusion and nonzero hole mo-
menta are taken into account.


