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Coupled-Channel Schrodinger-Equation Model for Neutron-Alpha
and Deuteron-Triton Scattering. P
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We have considered a two-body model for neutron-alpha and deuteron-triton scattering in which pairs of
states are coupled together by a real, central, Saxon potential. All couplings obey conservation of total
angular momentum and parity. The D~~& excited state of He' (or the 107-keV "resonance" in the d+T
system) is thus explained by a strong coupling. This simple model adequately explains the elastic and re-
action data except for the low-angle left-right asymmetry for the (mirror) reaction proton.

I. INTRODUCTION
' ' "

ELIUM is the most commonly used analyzer for
polarized neutrons and so it is desirable to under-

stand the scattering of neutrons by o. particles as well as
possible. The neutron-alpha system is also simple in
that (1) the large binding energy of the rr particle
provides a large energy region in which only elastic
processes can occur, (2) it is one the simplest (non-
trivial) spin systems, and (3) there are no Coulomb
e6'ects to be taken into account. Furthermore, the
neutron-alpha system has a mirror process p+n which
is quite well understood both theoretically and experi-
rnentally. Because of the simplicity of the e+ot system
(1)—(3), it is an ideal process to study in a model
calculation.

The rs+n phase shifts are usually deduced from the
p+n phase shifts, which are more accurately known.
The starting point of the model studied here is the work
of Gammel and Thaler' who found a p+n potential
that produced a smooth set of phase shifts. These phase
shifts are not in agreement with recent experimental
results' 4 of the I+n system. Hoop and Barschalis have
deduced new set of e+n phase shifts from a new set of
p+n phase shifts by Weitkamp and Haeberli. ' These
phase shifts are in excellent agreement with all of the
existing n+n elastic differential cross sections and
polarizations, d+T total reaction cross sections and the
resonance parameters of the D3~2 excited state of He'.

There is no experimental data concerning the reaction
polarizations of the deuteron or triton. A great deal
of data exists, ' " however for the inverse process
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T(d,e)He'. The total cross section for e+ot is known' '
from 14- to 30-MeV laboratory neutron energy and the
d+T total cross section (integrated 20' to 180' c.m.
angle) is known. ""The reaction differential cross sec-
tion for the process T(d,e)He' is well known, r" as well
as the elastic d+T differential cross sections. ""The
Ds~s excited state of He' was 6rst observed in d+T
system by Connor et at 'r The. d+T system, unfortu-
nately, is not so well explored as the n+n system.
Laskar" et a/. have calculated phase shifts for elastic
d+T scattering within the resonating-group formalism.
Their calculation produced a smooth set of phase shifts
which are in reasonable agreement with the experi-
mental data, and which showed that Serber exchange
described the forces better than the Biel or symmetrical
exchange.

There are many models for nuclear reactions" "but
the one which seemed to generalize the previous 5-body
nuclear scattering' ' most naturally was the coupled
Schrodinger-equation model proposed by Newton" for
inelastic scattering. The bibliographies of Refs. 19—24
contain a detailed list of references to most aspects of
reaction theory. In Newton's model, the 2D3~2 excited
state of He' will be a consequence of the opening of the
d+T reaction channel, just as Baz" suggested some
time ago.
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Tmxz I. The @+a and d+T total spin states.

A. n+u S=)
Even parity

281/2

Ds/2 2&S/2

B. d+T S=L S=ss
Even parity

4~3/22~1/2
D1/2 D3/2 D5/2 Dv/2

2D3/2 2D3/2

Odd parity
~1/2 ~3/2

Odd parity
~l/2 +3/2 +5/2

+1/2 ~3/2

Recently, the measurement of the left-right scattering
asymmetry'0 and its comparison to the spin polarizatione
have attracted interest. '~ '~ The qualitative features of
these experiments''0 can be understood wi. th non-
dynamical studies"" but Tanifuji" has shown that the
results are incompatible with ordinary direct reaction
theory with simple potentials, i.e. central, tensor, and
I s potential in uncoup/ed Schrodinger equations.

In Sec. II the formalism of the model is presented and
discussed. In Sec. III, the results and conclusions are
presented and discussed.

(TI 0 VII(J,P,r) Vis(J,P,r) (E 0

( 0 T, V„(J,P,r) V„(J,P,i) (0 8—Q)

pu(J, P,/I, r) 0
(1)

kate (J,P, /s, r) 0

'7 M. Tanifuji, Phys. Rev. Letters 15, 113 (1965).
2' P. L. Csonka, M, J. Moravcsik, and M. D. Scadron, Phys.

Rev. 143, 1324 (1966).
'9 M. Tanifuji, Nucl. Phys. . (to be published).
's I. Duck, NucL Phys; SD, 60 it966).
'1 J. G. Wills, D. Ellis, and D. B.Lichtenberg, Phys. Rev. 143,

1375 (1966).

H. MODEL AND CALCULATIONS

The model chosen for our calculations was the two-

body mod. el proposed by Newton" and Fonda and
Newton. '0 %His et ul.e' recently used a similar model
which is diferent from ours in three respects: (1) it
consists of a relativistic set of coupled Schrodinger
equations whereas our model consists of nonrelativistic
coupled Schrodinger equations; (2) Wills e/ a/. were
interested in peripheral interactions so that their entire
coupling matrix was determined from the possible one-

particle exchanges, whereas we take the coupling poten-
tials as parameters in order to fit all the reaction data;
(3) Wills e/ o/. neglected spin effects whereas we were
interested in such observables as spin polarizations and
reaction left-right asymmetry.

The "channels" in our model will be the n+a channel
and the d+T channel (listed in Table I) which are
pairwise coupled subject to conservation of total angular
momentum J a,nd parity I'. Pairs of states are coupled
in the equation

where TI is the kinetic energy operator for the n+n
channel and T2 is the kinetic energy operator for the
d+T channel. Hence,

/I' d' /s(/s+ 1))

2p, drs

where pi and ps are the n+(I and d+T reduced masses,
L~, l2 are the channel orbital angular momenta, and r is
the relative coordinate in each channel. In Eq. (1), the
two diagonal potentials" VII(J,P,r) and Vss(J,P,r) are
chosen as the Gammel-Thaler' p+u potential and a
soft potential which reproduces the observed d+T
angular distributions. The coupling potential Vis(J,P,r)
is adjusted in depth to provide the experimental reaction
cross section. The parameters in all potentials are listed
in Table II. E is the center-of-mass neutron energy in
MeV and Q=17.67 MeV for the d+T threshold. The
functions u(J,P,/I, r) and w(J,P, /s, r) are the channel
eigenfunctions for n+a and d+T, respectively. The
same relative coordinate r is used in both channels be-
cause in this model we assume that the deuteron and
triton can be "electively" treated as having no internal
structure as in Ref. 19.Thus the polarization of deuteron
and triton wave functions is a possible correction to this
model.

All of the n+n states of Table I are coupled to d+T
states according to the following scheme: 'Ds/s(n+n)
couples to 'Ss/s(d+ T), 'Si/s(n+n) couples to 'SI/s(d+T),
'Ps/s(n+e() couples to 'Ps/s(d+T), 'PI/s(n+a) couples
to 'PI/s(d+T), and 'Ds/s(n+n) couples to 'Ds, s(d+T).
All other couplings are neglected at present. An inspec-
tion of Table I indicates that this neglect of other
couplings is a serious limitation on the model. For in-
stance the 'Ds/s(n+a) state could be coupled to
'Ss/s(d+T), 'D3/Q(d+T), and 'D3/s(d+T) while con-
serving J and I'. It is of interest to see how important
the pairwise couplings are, in the spirit of a model cal-
culation. If agreement is found, it will provide an "u
pOs/erzof't" /ustlficatlon fol' t11e Ileglect of add1tlonaI
couplings. At present, our computer codes are being
adapted to include all possible couplings which conserve
J and E.

For a given value of J and P, Eq. (1) is solved
numerically to obtain the scattering solution (in the
asymptotic region) which, for an incident-channel a
scattering into a final-channel P can be written as

where k and kp are the magnitudes of center-of-mass

"In Ref. 23, R. Lipperheide has shown explicitly that hard cores
in the potentials can lead to no diKculties so long as the product
of the wave function and hard core vanishes.
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TABLE II. The elements of the potential matrix.

Vaa(r) = ~
= V.(r)+(L S)VL s(r)

V,
V.(r) =

1+[r/D 1]exp—[(r—R)/Dg
D2 Vz, .s d

VL.&(r) = ——— —V, (r)
V, dr

r,+=r, =0.183X10 "cm
R+=1.70X10 "cm
R— 1 85X1P—ag cm
D+=0.850X10 "cm
D =0.925X10 "cm

Ve+ = —45.6 MeV
V, = —40.0MeV

VL.s+ = —15.0 MeV
VL.s = —30.0 MeV

C.

V22 (r) = Vo/(1+ (Ro/ao —1) exp[(r —Ro)/ao]}
E.0=1.250X10 "cm

p 85p X10 a3
all states.

d+T state V0 depth in MeV
4S —52.0
4p —23.0
4D —50.0
2S —54.0
'P +1.P
'D —59.0

Uq2(r) = Uq/{ 1+(r/a~ Rq) exp[(r —R—~)/aq] }
Ra =1.000X10 cm

=0.850X10 "c all states.

~+~ state d+T state
2D3/2 'Sg/2

S1/2 'Sa/2

'P3/2 P3/2

Pa/2 pa/2

D5/2 'D5/2

Va depth in MeV
—74.0
—9.0

—27.0
—24.0
—6.0

wave number of the initial and final channels in the
coordinate system of Fig. 1. x, ' and x, " are the
initial and 6nal spin functions, and M(P+—n, s'm. .. sm, )
is the scattering matrix in total spin representation
except for the factor (i)' '. Explicitly,

M(p ~ a, s'm. .. sm, )

(4') 1 /2

Ps, i, i ((2l+1)'"C(Jms, l0,sm. ,)
k

&(t(J,P, /, l')p (i)' '
XC(Jms)l'mi', s'm, ')ari. ""(e,y)), (5)

where k is the magnitude of the wave number in the
incoming channel, C (J 10m,ss)amnd C (Jms, l'mi', s'm. ')
are the initial- and Anal-state Clebsch-Gordan coef5-
cients, Fi."'(8,&) is the spherical harmonic of the final

FIG. 1.The coordi-
nate system used for
the calculation. The
initial beam is in the
direction of the unit
vector k; and the
scattered wave is in
the direction of the
unit vector kf so that
cross sections are
measured in the y-s
(scattering) plane.

kf ( IN Y Z PLANE )

state, and t(J,P, /, l') p is the transition matrix element
whose relationship to the 5 matrix is

t(J,P,/, l') p
——(I/2i)[b p

—S(J,P,l,l') p.]. (6)

In general elastic-scattering differential cross section
for an unpolarized scattering experiment is given by

[do(e)/dQ] = [1/(2I+1)(2i+1)]Tr{MMt) (7)

where I andi are the target and projectile spins. Here 0.

may denote either a ia+n or d+T system. This reduces
to the usual formulas for elastic scattering found in
Refs. 18 and 33. The unpolarized reaction differential
cross sections for scattering from the o, channel into the
P channel is given by

[do (0)/dQ]p = [1/(2i+1)(2I+1)]Tr[M,~„t], (8)

where M„ is the reaction scattering matrix and I andi
are the spins of the target and projectile in channel n.
The polarization of the reaction neutron from the
initially unpolarized process T(d,m)He' is given by

P= (e)r ——Tr(M„M,.te)/Tr(M, .M,.t), (9)

where M„ is the 2&6 reaction scattering matrix and e
is the 2&(2 Pauli spin operator. In the case of scattering
with polarized targets, to get the left-right asymmetry
the scattering matrix M„must be rotated into in-
dividual particle representation using the usual Clebsch-
Gordan matrix. Let E„denote the scattering matrix
thus obtained.

A (())=TrPT„(1Qxo)X„t]/Tr[N, .Iir„t], (10)

where 1Qxo is a 6)&6 direct product of the 3&(3 unit
operator for the unpolarized deuteron and the Pauli
spin operator e for the initially polarized He' target. One
notes that the denominator of Eq. (9) is identical to the
denominator of Eq. (10) because the trace is an in-
variant quantity.

The relations between the phase shifts of Tables III
and IV and the differential cross sections for the I+a
and d+T systems are listed in Refs. 33 and 18, respec-
tively (except that complex phase shifts were used
when above the lowest threshold). The neutron polari-
zation for elastic scattering is given by Burke. "The
explicit formulas for the inelastic scattering, polariza-

83P. G. Burke, Nuclear Forces urId the Few NucleorI, Problem
(Pergamon Press, Inc. , New York, 1960), Vol. H, p. 481.



822 DE FACIO, UMERJEE, AND 6AM MEL

Tax,E III. Real parts of the neutron-alpha phase shifts and inelastic parameters. The inelastic parameter is
pi~ P—=(1—(ri~~ r ~'l—= (1 e—'rsr'&l, where Vi =e"'& P and S~ P is the complex phase shift.

E(lab, e)
(MeV)

16.00
18.00
20.00
21.00
22.00
22.15
22.20
22.45
22.60
23.60
24.00
26.00
28.00
30.00
32.00
34.00

37.00
40.00
42.00

b(S(}
(rad)

—1.465—1.514—1.556—1.567
1.566
1.566(0.0189)
1.559 (0.0485)
1.551(0.0780)
1.500(0.0883)
1.450 (0.1050)
1.411(0.0912)
1.372 (0.0820)
1.327 (0.0760)
1.281(0.0650)
1.150(0.0541)
1.010(0.0421)

0.990{0.0311)
0.892 (0.028)
0.850 (0.022)

b(P3]2)
(rad)

—1.421—1.448—1.475—1.487—1.499—1.499(0.0001)—1.499 (0,0002)—1.500 (0.0003)—1.540 (0.0005)—1.565 (0.0009)
1.552 (0.0023)
1.560 (0.0125)
1.531(0.0300}
1.455 (0.0381)
1.380 (0.0473)
1.311(0.0620)

1.21 (0.0814)
1.03 (0.0934)
0.985 (0.1261)

~(~ i.)
(rad)

1.001
1.003
1.051
1.061
1.069
1.069 (0.0001)
1.069(0.0002)
1.019(0.0003)
1.012 (0.0075)
0.909(0.0171)
0.907 (0.0196)
0.905 (0.0200)
0.903 (0.0250)
0.901(0.0301)
0.870 (0.0360)
0.782 (0.0412)

0.751(0.039)
0.700 (0.031)
0.652 (0.021)

b(appal)
(rad)

0.180
0.202
0.225
0.260
0.277
0.283 (0.002)
0.284(0.005)
0.295 (0.008)
0.299(0.082)
0.307 (0.096)
0315(0.084)
0.327 (0.075)
0.358 (0.052)
0.391(0.030)
0.416(0.021)
0.424(0.015)

0.456 (0.012)
0.473 (0.008)
0.488 {0.001)

&(De]~)
(rad)

0.131
0.145
0.160
0.168
0.179
O.9O93(0.9491)
0.1652 (0.551)—0.336 (0.060}—0.001 (0.042)
0.142 (0.030)
O.148 (O.O52)
0.154 (0.066)
0.158 (0.079)
0.161 (0.102)
0.165 (0.120)
0.173 (0.150)

0.191 (0.173)
0.211 (0.199)
0.224 (0.211)

tions, and asymmetries are given below because Huby'4 has shown that the older papers which list these
formulas contain an inconsistency in the phasing of the matrix elements. The differential cross section of the
reaction neutron is found from Eq. (8) to be

[do (8)/dQ]„„,= (1/6k')D(8),

where k is the magnitude of the initial-state center-of-mass wave number and D(8) is given by

D(8) =2
~
tp '"~'+2

~
ti r't' ~'+2(3 cos'8+1)

~
tr, rs" ~'+2 ~tp, s'" ~'(6 sin'8 cos'8+-,'(3 cos'8 —1)'+-,' sin'8)

+2
( ts, s' '

(
'{(9/4) (3 cos'8 —1)'+9 sins8 cos'8)+4 cos8[Re(tp, p't'tr, r't")7+8 cos8[Re(t p'I'ti, r't'*) 7

+4(3 cos'8 —1)[Re(ti,i' 'ti, i"")]+6(3cos'8 —1)[Re(ts,s' 'tp p' '*)]
+6 cos8(5 cos'8 —3)[Re(ts,s"'tr i' ")7+24 cos'8[Re(ts, s' 'ti, r'"')] (12)

In the above expression t&i.~ denote the quantities defined in Eq. (6). The reaction-neutron polarization from an
initially unpolarized beam can be evaluated from Eq. (9) and is given by P„,„(8) where

where
I'„,„(8)= 4(pi sin8+ ps sin8 cos8+ ps sin8 cos'8)/D(8),

pi ——Im[tp, 't'(tr, r'~'* —tr, P'")]+s Im[ts, s'"(tr, r' '*—tr, r't")],

ps
——3 Im[tp p'ts, s't'*]+3 Im[ti p'tr i@"],

ps
——(15/2) Im[ti rv'ts p"]+s Im[ti is"ts ssts"7.

(13)

(14)

(15)

(16)

Also, the left-right asymmetry A (8) from an initially polarized target is found from Eq. (10) to be

A (8)=4(ai sin8+as sin8 cos8+as sin cos'8+a4 sin'8)/D(8), (17)
where

ai ——21m[ts s"ti i'"']+Im[ts s'"tr, r"'"]+—', Im[tp, p't'(tr i""—ti, r'"")]+s Im[tp, s"tr, is "]+ps Im[ti i' 'tp s'"'] (18)

as ——2 1m[to s'"ts s'i'"]+Im[tr rs"ti r't'"]+Im[ts, s'"tp, p'""],

as= (9/4) Im[tp s'"ts s""]
a4 ———,

' Im[t "sts ss"']+-,'Im[ti isists ""*]

(19)

(20)

(21)

The computer program which solved Eq. (1) numeri-
cally was checked as follows: In addition to extensive

+ R. Huby, Proc. Phys. Soc. (I ondon) A67, 1103 (1954).

hand calculations, the zero-coupling case was used to
check the diagonal part of the program, and the oB-
diagonal K-matrix elements were found to vary as the
ratio of the channel reduced masses, as they should.
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TABLE IV. Real parts of the deuteron-triton phase shifts and inelastic parameters. The inelastic parameters p&
~ is defined as

—=(1—Irtt I')=(1—e '' '& ' ) where st =—e&'"+'St and &',+'&st is the complex phase shift in thestate', p, I, S.

A. Real parts of the D+T phase shifts.
E(lab, d) Re(4Sp)
(Mev) (rad)

Re(451)
(rad)

Re(4&2)
(rad)

Re(2a, )
(rad)

Re(2S,)
(rad)

Re(2a2)
(rad)

0.100
0.150
0.250
1.20
4.00
6.00
8.00

10.00
12.00
14.00

0.0432
0.0460
0.0610
0.257
0.0851—0.0430—0.162—0.259—0.331—0.407

0.0001
0.0001
0.0050—0.0400—0.219—0.451—0.573—0.618—0.682—0.771

0.
0.
0.0010
0.0436
0.214
0.521
0.842
1.102
1.390
1.250

0.0361
0.0522
0.201
0.451
0.184—0.075—0.300—0.376—0.452—0.580

0.
0.—0.00010—0.00025—0.00260—0.00910—0.0834—0.1813—0.211—0.243

0.
0.
0.0001
0.0036
0.0892
0.214
0.436
0.725
0.834
0.910

3. Inelastic parameters for those states
E(lab, d)
(Mev)

in which y~~ ~ does not vanish.

~p3/2~+ +25/2~+

0.100
0.150
0.250
1.20
4.00
6.00
8.00

10.00
12.00
14.00

0.0189
0.0440
0.0513
0.0792
0.0941
0.1022
0.087
0.0810
0.0755
0.0556

0.9491
0.583
0.124
0.064
0.036
0.047
0.059
0.067
0.083
0.110

0.0001
0.0002
0.0003
0.0009
0.0089
0.0158
0.0198
0.0211
0.0281
0.0310

0.0001
0.0002
0.0002
0.0004
0.0007
0.0008
0.0079
0.0141
0.0300
0.0401

0.002
0.004
0.006
0.013
0.088
0.092
0.079
0.069
0.045
0.023

TABIE V. The reaction t-elements t (J,P,I,I') for the process T(tf,a)He' calculated from the potentials of Table II.

S(lab, v)
(MeV) Re(t, , ,»2)

1.00 0.0585
(not used)

2.10 0.0310
2.90 0.041
6.00 0.173

10.00 0.016

Im(tp, p'/')

—0.0943

—0.070—0.077—0.1255—0.113

Re (t1, 1 /2) Im (t1, 1 /2) Re (t1, 13/2) Im (t1 13/2) Re (tp, 23/2)

0.00343 0.00574 —0.0002 0.0025 0.2014

Im(tp, 2 / ) Re(t2, 23/ ) Im(t2, 25/ )

0.3069 —0.096 —0.165

0.0022
0.0032
0.0271
0.0391

—0.1456 0.0288—0.132 0.032—0.0876 —0.0848—0.0819 —0.059

0.00213 —0.00018 0.0023 —0.0697 —0.00672
0.0034 —0.00018 0.0025 —0.071 —0.006
0.0227 0.00309 0.0506 0.1764 0.1515
0.0284 0.00364 0.0687 0.1759 0.0857

Another check on the computer program was made by The coupled-channel tangent matrix was then checked
using a potential matrix of equal-range square wells for against a single-channel code and satisfactory agree-
all three potentials Vrt(r), Vss(r), and Vrs(r) in Eq. (I). ment was obtained. "
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FIG. 2. Total neutron-alpha cross section at energies from 14- to
30-MeV laboratory neutron energy. )( and Q denote measured
values from Refs. 12 and 2, respectively. The solid curve is calcu-
lated with the phase shifts and inelastic parameters from
Table III.
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FIG. 3. Total deuteron reaction cross section at energies near
the 22.05-MeV 2D3/2 resonance. Experimental points are from
Refs. 2 and 17 and the solid curve is calculated with the inelastic
parameters in Table III.

3' R. G. Newton (private communication to B.D.F.).
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In the next section, the results of the "model" cal-
culations are presented and compared with experimental
data.
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The potentials of Tahle II were used, ln Eq. (1) to
obtain the phase shifts and inelastic parameters of
Tables III, IV, and V. In Figs. 2, 3—4, comparison with
the experimental values of total cross sections of n+n,
n(n, d)T, and d+T is shown and the agreement is
excellent in every case. In Figs. 5—7 the differential cross
sections in the center of mass frame are plotted for

FIG. 6. Elastic deuteron-triton cross section versus cosine of
center oi mass scattering angle. Experimental points are from
Refs. 15 and 16 and the solid lines were calculated with the phase
shifts from Table IV.

elastic n(n, e)n, elastic T(d,d)T, and reaction T(d,e)n
VAule the elastic dMerential cross sections Gt quite weO,
the reaction differential cross section is only in qualita-
tive agreement, so that the absorption matrix of
Tables III and IV is not exact. Figure 8 shows a 6t to
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Fzo. 7. Reaction neutron di8erential cross section versus cosine
of center-of-mass scattering angle. Experimental points are from
Refs. 7 and 11 and the solid curves were calculated with the
t elements of Table V.
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FIG. 10.Reaction polarization and asymmetry versus center-of-
mass scattering angle from Refs. 9 and 10. These data are from
the mirror process He'(d, p)He4 in Refs. 9 and 10. The calculated
curves are calculated with Eqs. (13), (17) using the t elements of
Table V, except that the energy is shifted by the (center-of-mass)
energy difference between the. excited states of Li' and He'.

P(8) and Fig. 9 shows the 6t to P„, (8). The 6t to
P...„(8)is good considering the qualitative nature of the
agreement of the reaction differential cross section.
Upon assuming charge symmetry and shifting the
energy axis by the He'-Li' center-of-mass energy diGer-

ence, reaction polarization and asymmetry A (8) for the
proton from the mirror process He'(d, p)He' are cal-
culated from Table V and the results presented in Fig.
10. The reaction-proton polarization agrees with the
experimental data but A (8) only agrees with the data
at angles near 90'.
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FIG. 11.The geometry of strip-
ping in the reaction T(d,e)He4 in
the center-of-mass frame. The
momenta of the deuteron and the
triton are along pg and pp, respec-
tively. The vectors r„z and reap are
the vectors along which the triton
"effectively interacts" with the
proton and the deuteron and r~
locates the proton with respect to
the center of the deuteron.

FIG. 9. Reaction neutron-spin polarization for the reaction
neutron versus cosine of center-of-mass scattering angle. The
experimental points are from Ref. 8 and the solid curves were cal-
culated with the t elements of Table P.



The lack of detailed agreement between calculated
and experimental values of A (8) does indicate that the
scattering matrix of this model is not exact. Two
possible reasons for this are, (1) the neglected couplings
in the d+T system as shown in Table I might drasti-
cally change the structure of the scattering matrix (as
previously mentioned, we are in process of correcting
this flaw), and. (2) the coupling potentials that were
used were central potentials that depended only upon
J and E', and this may be too simple to 6t the data. It is
interesting to note that the fact that A (8) was too small
at most angles seems to be a disease that this model
shares with conventional direct-reaction theories.
Tanifujisr 22 has emphasized that since the P+T system

exhibits strong spin polarization, " the neglect of the
stripping process as shown in Fig. 11 is to neglect a spin-
dependent potential. This neglect would not aGect
differential and total cross sections, but could make it
impossible to simultaneously fit the spin polarizations
and left-right asymmetry. Still, because of the complex
energy behavior of the solutions to the coupled equa-
tions, it is pmposed to first couple all the d+T states
in Table I with central coupling potentials to get the
best 6t to experimental data before resorting to hard
cores, spin-dependent stripping potentials, and nonlocal
coupling potentials.

"T.A. Tombrello, Phys. Rev. 138, B40 (1965).
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Improved Solution to the Bethe-Faddeev Equations*
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An approximate analytic solution is derived for the Bethe-Faddeev three-body equations in nuclear
matter. The solution is no more complicated than the original approximation proposed by Bethe, but it is
more accurate and avoids the discontinuities that appear in the original solution. In a certain limiting case,
the solution agrees @faith the one previously proposed by Moszkovrski on the basis of a variational treatment.

gl2 &12 &12(1/~12)gls |
I. INTRODUCTION with two similar equations for Z& and Z3. The operator

g12, the o6'-energy-shell 6 matrix for particles 1 and 2,ECENTLY, Bethe' has shown that the contribu-
tion of three-body correlations to the energy per

particle of nuclear matter is given by (4)

x&3~/A =p' g(rss)F(rss)drss.
where e1~ is the nucleon-nucleon potential. The propa-

(1) gator (1/eis) is given by

&12 vis +r
In this formula, p is the particle density, g(rss) gives the
radial dependence of the off-energy-shell CGective inter-
action or G matrix, and F(rss) is defined by

F(r28) 'Q(rls)+1(r12 rls r28)drl ~

Here, li(ris) is the on-energy-shell two-body "difference
function, " i.e., it is the difference between the unper-
turbed and the correlated wave functions for two
particles. The three-body function Z1, which is called
C —0 &" by Bethe, satisfies the "Bethe-Faddeev
equation"

+1(rl'2 rls r28) 'Q(r12)+li(r13} (1/e12)gl2+3(r12 r13 r28)
—(1/eis)gisZ2(ris, ris, rss), {3)

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' H. A. Bethe, Phys. Rev. 138, B804 (1965).

where 7 is a constant which is estimated by Bethe to
be between 3.1 F ' and 3.7 I' ', depending on the radius
of the repulsive core in the two-body potential.

These equations were derived with the aid of three
approximations, as discussed by Bethe. (1) The initial
momentum of each of the three interacting particles
has been put equal to zero. (2) Reference-spectrum
approximation: The energy spectrum for intermediate
states is puI'c kinetic cncI'gy and thc exclusion pl inclplc
is neglected for these states. (3) The dependence of els
on the momentum of particle 3 has been averaged out.

Simple and accurate methods are known for calculat-
ing the two-body functions rl(r) and g(r).' The problem,
therefore, is to solve (3) for the three-body function Zi,
and Bethe' has found a very simple approximate solu-

' H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963}.This paper, and its authors, will be referred to as
BBP.


