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The effect of the competition between Ml and E2 electromagnetic transitions on the angular distribution
of gamma rays from nuclei with high spin was studied. The angular distribution of such gamma rays was
calculated as a function of their energy. This energy dependence of the angular distribution can be used to
test the assumption that nuclei with high spin rotate as a whole.

I. INTRODUCTION

HE parity selection rules for E2 and M1 electro-
magnetic transitions are identical. Therefore for

states in which the spin difference AJ is &1 or 0, the
two emissions complete with one another. Such com-
petition in transitions between low-spin states has been
investigated extensively. ' ' The emphasis in the present
study was on the eBect of this competition on the
angular distribution of the emitted gamma rays.

High-spin states are produced in heavy-ion reactions,
in which the direction of the spin of the emitting system
is in a plane perpendicular to the direction of the heavy-
ion beam or is close to this plane. Therefore the gaxnma
rays are emitted anisotropically. However, the angular
distribution of E2 gamma rays divers from that of M1
rays. Also, the intensity of the two types of radiation
depends strongly on the energy of the emitted gamma
rays. Therefore the angular distribution of the emitted
gamma rays depends on their energy.

In the present paper the angular distribution of
gamma rays from high-spin states was calculated as a
function of their energy. The evaluation takes into
consideration the competition between E2 and M1
transitions. First, the angular distribution for a single
gamma transition was calculated. The angular dis-
tribution for a single gamma-ray transition is less
isotropic than that for a cascade, and the fact that the
spin of the compound nucleus is not exactly in the plane
perpendicular to the heavy-ion beam also reduces the
anisotropy. However, both sects do not reduce the
anisotropy significantly. v Therefore a calculation based
on a single transition is sufficient to obtain a first-order
approximation of the angular distribution.

For high-spin values the angular momentum may be
entirely associated with the rotation of the nucleus as
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a whole. "A comparison between results of the proposed
theory and experiments overs a test for this proposition.
If indeed the eBect of the pairing interaction disappears
for high-spin values, the nucleus can be treated as a
deformable liquid drop with a moment of inertia equal
to the moment of inertia of a rigid body with the same
shape. This is the view adopted in the present paper, and
all the discussion is based on this assumption. The dis-
cussion is limited to nuclei that are spherical in their
ground state, so that all deformations are due to
rotation.

According to the liquid-drop model, the equilibrium
shapes of rotating liquid-drop nuclei are closely approxi-
mated by spheroids. '~" Although these spheroids are
only approximate equilibrium shapes, they are excellent
approximations even for angular momenta much higher
than those considered here.

Spheroidal rotating nuclei have vanishing electric
dipole moments, nonvanishing magnetic dipole mo-
ments, and nonvanishing electric quadrupole moments.
Therefore the leading radiations are M1 and E2, both
of which were considered in this study; the competition
between them as exhibited by the angular distribution
was given special emphasis. Radiations of higher multi-
polarities can be neglected in comparison with these
two leading radiations.

To calculate the components of the respective multi-
pole tensors, the shapes of equilibrium calculated by
Seringer and Knox" were used. These shapes are suK-
ciently accurate for the purpose. The magnetic dipole
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moments of the Beringer and Knox shapes di6er from
the corresponding magnetic moments of the more
rigorously calculated Carlson and Pou Lu" shapes by
0.5% at most. The respective difference in the value
of the quadrupole moments is 1% at most.

According to Beringer and Knox," for nuclei with
spins smaller than a critical value the equilibrium shape
is an oblate spheroid whose axis of rotation coincides
with the axis of cylindrical symmetry. However, for
nuclei with spins higher than this critical value the
equilibrium shape is a prolate spheroid whose rotating
axis coincides with one of the minor axes. The proposed
method for evaluating angular distribution is applicable
to both types of equilibrium shapes. For completeness,
all necessary equations are included to enable calcula-
tions of the angular distributions from high-spin states
having oblate or prolate equilibrium shapes. However,
the validity of the method is demonstrated explicitly
by applying it to one particular case, that in which the
equilibrium shape is an oblate spheroid.

Since the calculation is based on the liquid-drop
model, the components of the contribution multipole
tensors were calculated classically. In other words, the
nuclear matrix elements were replaced by their classical
counterparts. However, since the transitions are in the
statistical region, the proportionality of the transition
probability to the density of final states is retained, as
required.

First, the angular distribution of gamma rays from
a high-spin state was calculated with respect to a system
of coordinates in which the z axis points along the spin
of the emitting system. The angular distribution was

then rewritten with respect to a system of coordinates
in which the z axis is in the direction of the heavy-ion
beam. This angular distribution is isotropic as long as
the direction of the spin of the emitting nucleus is
random. However, since the preferential direction of
the spin of the emitting system is perpendicular to the
direction of the heavy-ion beam, an anisotropic distribu-
tion results. Next the first angular distribution calcu-
lated was rewritten with respect to a system of coordin-
ates in which the z axis is in the direction of the heavy-
ion beam. To obtain the angular distribution with
respect to the direction of the heavy-ion beam, the
contributions from all possible spin orientations in the
direction perpendicular to the heavy-ion beam were
summed. This last value is the one that is to be com-
pared with experimental results.

Il. THEORY

First, the angular distribution in a system of coordi-
nates in which the z axis coincides with the axis of rota-
tion is calculated. The probability per unit time
P(8,&) of emitting a photon into a unit of solid angle
characterized by the angles 8 and P is" ss:

1
P(8,y) l(Z (—)'+'a (l,m)[Y '("&Xn]

4PP3 i m

+as((l,m)Y '(' '&) l'p(E, J). (1a)

The angular distribution is proportional to P(8,&).
For E2 and M1 radiation, Eq. (1a) can be rewritten

as:

1
P(8,$)o( { P a&r*(2,m)an(2, m')([Y '('»)&n]* [Y .'(' '&)&n])p(E,J')+i Q a&r*(2,m')a jr(1,m)

4$jP ~,~r, JI ms, re', J'

X ([Y,s(s i) )(n]e.Y i (i,i))p(E JI)+
m, m, ', Jr

a&)r*(1,m)a~(1,m') (Y~'(' '&* Y~'o')) p(E~J')) . (1b)

The first sum on the right-hand side of Eq. (1b)
contains the contributions due to E2 transitions, the
second sum contains the contributions due to inter-
ference between E2 and M1 radiations, and the third
sum contains the contributions due to 3fi radiations.
In the first sum the summation over m and m' extends
from —2 to +2; in the last two sums the summation
extends from —1 to +1.For a given J, the summation of
J' in the first sum extends from J—2 to J+2 and that
in the last two sums extends from J—1 to J+1.The
first and the last sums also contain contributions from
interference terms between diRerent components of
radiation of the same multipolarity. As will be seen
later, all interference terms vanish in the present case.

Here the classical emission probability per unit
time per unit solid angle is multiplied by the density
of final states, p(E,J). In Eq. (1) Y '(' '& is the vector
spherical harmonic, which is a function of 8 and i&»; k is

(2a)

where

4nik'+s (i+1)'"
a (l,m)=

(2i+1)!!E l i (2b)

Q&,„= r'Fg, „*(r)pgr, (3a)

r'F&,„*(r)div(rXj)dr. (3b)
(l+1)c
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In Eqs. (3a) and (3b) FI, *(r) is the scalar solid
spherical harmonic, p, is the nuclear charge density,
and j is the nuclear current density. Values for Ql,
and 3f», have to be calculated separately for the two
types of equihbrium shapes discussed by Beringer and
Knox. '8

For the electric quadrupole moment for oblate
equilibrium shapes, a simple integration yields

1t S~I" 2 ~
Qs.o=-l —

I
sZ«o' l(n' —1), (4a)

4k~) &sist

Qs, +I=Qs,~s=o~ (4b)

where Ze is the nuclear charge, Ro is the radius of the
undeformed nucleus, and g is the ratio of the minor to
the major axis. The dependence of q on spin has been
discussed by Beringer and Knox."

Similarly, for the electric quadrupole moment for
prolate equilibrium shapes, a simple integration yields

Mj,pg=0. (Sb)

For the density of levels appearing in Eq. (1), the
following form is used23 2~:

p(E,J)=pn(E) (25+1)exp(—J'/2(r') .

The parameter 0' is related to the nuclear moment of
inertia 8 and to the nuclear temperature T by

where 5 is the nuclear moment of inertia, which is taken
as rigid for nuclei with high spin; I equals Jk; and J
is the nuclear spin. The result of Eq. (7) is consistent
with the fact that the gyromagnetic ratio for nuclei
rotating as a whole is Z/A. ""

Similarly, the magnetic moment for prolate equi-
librium shapes is

1(3)'" IP eh Z
Ml, s ——-l —

l

—J24~»+~' 2M. a

~5»2
Qs, s=- — —'sZeRs. (rp —1),

4 & ~4/S

Qs,pl= 0,
t tS j/2

Q, =—— ~Zef4' (IP—1).
4 2~

The vector product Y '&' '& gn can be easily expressed
(Sb) in terms of Y '+I&I'I and Y '—I" I& as"

1/2
(Sc) y III,I& &&n g t+&{r,~)

21+1
The nuclear current density is related to the nuclear

charge density by

)=ps&= pz~X & )

where v is the local velocity, and ~ is the angular
velocity of rotation.

Uslllg Eq. (6) fo calTy Gilt tile lllteglatloll of Kq. (3b)
yields the magnetic moment for oblate equilibrium
shapes

3 '" 3 )I" ZeRs'l.
Ml, s = — xsgszeZP~=

(3'" ehZ
rp —J,

(4r 2Mc A

Mg, gg=0,

+1 l3/2
P—I (I,I } (11)

21+1)

The scalar products of the vector spherical harmonics
appearing in Kq. (1b) can be easily evaluated by using

Eq. (11). From the property of these scalar products
and the symmetry properties of the components of the
multipole tensors as given in Eqs. (4b), (Sb), (Sc), and

(Sb), it follows that all interference terms vanish.
Now the angular distribution E(8,@) is calculated

with respect to a system of coordinates in which the 2'

axis coincides with the axis of rotation. For oblate shapes
of equilibrium, Kqs. (1b), (2a), (2b), (4a), (4b), (7b), .

and (11) are used, and the appropriate scalar products
of the vector spherical harmonics are evaluated.

f(E,') eh ~' Z~' E '-
tI'{8,&) — —

l

—
l

(Jri)' — P (2J'+1) expl ——
l

sin'8
4h 2Mcl Ai hc &' E 2o')

1 Zsesg s(~s 1)2 Q s- JI2

Q {2J+1) exp — cos 8 sill 8 =A s1118+8 cos 8s1118, (12)
50 Ac 20'

where 8 is the polar angle with respect to the direction
of rotation. Note that the angular distribution does
not depend on the Anal energy E' but does depend on
the gamma energy E.

A similar equation is obtained for prolate shapes of
equilibrium by using Kqs. (1b), (2a), {5a), {Sb),
(Sc), (Sa), (Sb), and (11).This equation is not written
here because of its length.

Since prolate shapes of equilibrium are reached only

for very high spin values, "this discussion is limited to
oblate shapes of equilibrium. This case is sufhcient to
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IG. RESULTS

Equations (12) and (13) were used to calculate the
angular distribution for various gamma-ray energies
from Cu" with a spin of J=30. A rigid moment of
inertia was used, and the nuclear temperature was 1.5
MeV. The value of g for this case, taken from Beringer
and Knox" is 1.5.

The angular distribution was calculated for energies
of 0, 0.5, 1, 2, and 5 MeV and also for the limiting case
of infinite energy. The results are summarized below.

For E=O MeV,

P(8) ~ 1—0.5 cos'8.

For E=0.5 MeV,

P(8) ~ 1—0.41 cos'8 —0.108 cos'O.

For E=1 MeV,

P(8) ~ 1—0.174 cos'8 —0391 cos'8.

(14b)

(14c)

For E=2 MeV,

P(8) ~ 1+0.438 cos'8 —1.125 cos'6.

For E=5 MeV,

P(8) ~ 1+1.473 cos'8 —2.368 cos'8.

(14d)

demonstrate the dependence of angular distribution on
energy. Obviously for low-energy gamma rays the
angular distribution ls dominated by the first term ln
Eq. (12), or the magnetic dipole radiation; whereas for
high-energy gamma rays the angular distribution is
dominated by the second term, or the electric quad-
rupole radiation.

After the angular distribution in Eq. (12) is rewritten
with respect to a system of coordinates in which the 2'

axis points along the direction of the heavy-ion beam
and the over-all spin distribution is averaged, the
angular distribution with respect to the heavy-ion
beam is obtained. This is the value that is to be com-
pared with the experimental value.

P(8)=A (1——', cos'8)+s 8(1+2 cos'8 —3 cos'8), (13)

where 0 is the polar axis with respect to the direction
of the heavy-ion beam.

For E=10MeV,

P(8) ~ 1+1.843 cos'8 —2.812 cos'8. (14f)

rV. DrSCUSSrom

The Cu" nucleus was chosen for demonstration
purposes because for this case Beringer and Knox"
calculated q explicitly as a function of the nuclear
spin. The demonstrated eGect is even more pronounced
in heavy nuclei, which are of particular interest. In
heavy nuclei the angular distribution varies faster as
a function of energy between the limiting cases.

A comparison between the angular distribution of
gamma rays emitted by high-spin nuclei as predicted
by the present theory and an experimentally measured
angular distribution is of utmost interest. An agreement
between theory and experiment mould indicate the
validity of the assumption on which the theory is
based, namely, that for high-spin states the nucleus
can be considered as a deformed charge liquid-drop
rotating as a whole. Qn the other hand, a marked dis-
agreement between theory and experiment would
force the conclusion that even for high-spin states such
a simplihed picture is not valid.

Studies'" " of nuclear moments of inertia indicate
that for high-spin. values, for which the effect of the
pairing interaction disappears, the nuclei behave as
regular fluids with rigid-body values for the moments
of inertia. The use of the present theory overs an
additional test to prove or disprove this assumption.
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For E= MeV)

P(8) ~ 1+2 cos28 —3 costO. (14g)

Equations (14) show that the angular distribution
varies as a function of the gamma-ray energy. For
vanishing energy (the hypothetical low-limit case) the
angular distribution reaches the asymptotic value
typical of M1 transitions. Fol ln6nlte energy (the
hypothetical upper-limit case) the angular distribution
reaches the asymptotic value typical of E2 transition.
For realistic energies the angular distribution varies
between the two limits.


