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A convenient analytical form for the deuteron wave function is presented which reproduces the static
properties of the deuteron, and is in accord with numerical wave functions which 6t neutron-proton scatter-
ing data up to 300 MeV.

'

W~EUTERON wave functions in numerical form have
been obtained by several groups' from nucleon-

nucleon potentials which reproduce the phenomeno-
logical phase parameter fits to the two-nucleon scatter-
ing data up to several hundred MeV. The object of this
note is to present approximate expressions for one of
these numerical wave functions which is convenient and
accurate for most cases of interest.

The motivation for the analytic form used in this
paper comes from several sources. However, it is sufB-
cient for purposes of illustration to indicate the approach
from the work of Bertocchi et al.2 Their work shows that
for neutron-proton potentials describable as a sum of
Yukawa forms, the S and D states of the deuteron wave
function can be written in coordinate space in the form:

and in momentum space as

"o.,(z)dz
u(p) =N — -= +N

p p+» p+n
"a e(z)dz pN—zi)(p) =pN = +pN

p2+ sp ps+ n2

where

+~ p'+s'
" oe(s)ds
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+), p'+z'

o,(s) =b(s —n)+o, (s)8(s—n —X), i = s,d,

the function 8 being the unit step function. Here ) is
the minimum decay constant which appears in the
potential, n is given by the deuteron binding energy ~,
n= (mp)'I', p is the asymptotic D to 8 ratio, and N is
the wave-function normalization, given in terms of the
deuteron effective range p(—p, —p) by

N(r) =N

7o(r) =pN

o, (s)e *'ds

3 3
oe(s)e *"~ 1+—+ —

~ds;

N'= 2n/Pl np( e, -e)-]. -
The weight functions o;(s) in Eqs. (1) and (2) are

subject to the subsidiary conditions'
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' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962);
N. K. Glendenning and G. Kramer, Phys. Rev. 126, 2159 (1962);
S. Gartenhaus, ibid 100, 900 (1956); K. E. Lassila, M. H. Hull,
Jr., H. M. Ruppel, F. A. McDonald, and G. Breit, ibid. 126,
881 (1962); H. Feshbach and E. L. Lomon, Ann. Phys. (N.V.)
29, 19 (1964).' L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo Cimento 18,
770 (1960). Although these authors only considered the S-state
wave function, the formalism is easily extended to include all
angular momentum wave functions. The author would like to

a, (s)ds=o,

o,(s)s-ds=O, m= —2, O, 2.

These sum rules are required to guarantee that the
wave functions be finite at the origin and have the
correct indicial behavior.

thank Professor L. Durand, III, for calling his attention to this.
See also Ref. 3.
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In the present work we have approximated the weight
functions a.;(s) in Eq. (2) by a series of delta functions,
thus expressing the momentum space wave functions
by a series of pole terms, and the coordinate space wave
functions by a sum of exponentials or Hankel func-
tions. The wave function can then be viewed as an
extension of the familiar Hulthen wave function for
the deuteron S state. Specie.cally, if the pole positions
and their residues are denoted by ~;, C;, the S-and D-
state wave functions in coordinate space have the form

S state
C,

D state

5.733'
12.844g
17.334'
19.643m

—0.63608—6.6150
15.2162—8.9651

4.833u
10.4470.
14.506+
16.8680.
21.154'

—20.34—36.60—123.02
305.11—126.16

TABLE I. Fitted pole positions and residues of the S and D
states for the analytic deuteron wave function, Kq. (6).n =0.2338
F ~, X=0.8896 F ~/~ p=0.0269.

to illustrate the method, the resulting parameters for
the 6tted analytic function being given in Table I.
It was found that ftve poles (including the asymptotic
pole) gave a reasonable 6t for the S-state wave func-
tion, but at least six were required for a good Gt to
the D state. '

The procedure for obtaining these parameters was to
6x the asymptotic pole and residue by the binding
energy and normalization condition, and then Gt the
intermediate region at smaller and smaller values of r
by successively adding more poles to the sum in Eq. (6).
This was accomplished with a standard least-squares
computer code.

Finally, the higher order poles corresponding to
very small distances in coordinate space were deter-
mined by the sum rules, Eqs. (4) and (5).The hardcore
present in the Partovi wave function (and in most other
numerical wave functions') is smoothed over in this
procedure to give a reasonable shape to the wave func-
tion in the region 0(r&0.5 F. Results of this 6tting
procedure are sketched in Fig. 1 which compares the
Partovi wave function and the analytic wave function
using the parameters given in Table I. The often-used
Hulthen wave function is also included for comparison
but is seen to peak too low and tends to put too much
of the wave function at small values of r. For r&2.0 F,
the Gtted wave functions are indistinguishable from the
numerical wave functions, the actual diBerence for
any value of r being less than 0.6% for the S-state and

(6)
n

~(r) =p&(«&s(i«)+E &s'es'rhs('e'r))
j~l

where hs(ix) is the spherical Hankel function defined by

sslss(ist) = e '[1+3/ss+3/ss' j
As noted in Eqs. (2) and (6), the asymptotic pole is
fixed by the binding energy and normalization con-
dition. The remaining poles and their residues were
adjusted to Gt the numerical wave function in the
intermediate and short-range region and at the same
time satisfy the subsidiary conditions. Several advan-
tages are apparent with these wave functions as com-
pared with analytical expressions given by previous
authors. ' ~ The asymptotic form appears exactly; the
higher order poles are simply approximations to the
spectral weight function of dispersion theory. ' The
analytic expressions are simple, both in coordinate space
and momentum space, hence one can do almost all the
integrals encountered with these wave functions. Finally
the analytic form is quite Qexible since further re-
Gnement in the wave function is obtainable by merely
adding more poles.

The numerical wave function which is obtained from
the Hamada-Johnston potential' has recently been re-
evaluated by Partovi. ' We have used this wave function

4 H. Kottler and K. L. Kowalski, Nucl. Phys. 53, 334 (1964);
M. J. Moravcsik, ibid. 7, 113 (1958); G. Ernst and S. Flugge,
Z. Physik 162, 448 (1961); L. Hulthen and M. Sugawara, in
Hundblch der Pkysik, edited by S. Flugge (Springer-Verlag,
Berlin, 1957), Vol. 39, Sec. 33.

5 An analytical wave function quite similar in form to the
present work has been developed by M. Gourdin, M. Le Bellac,
F. M. Renard, and J. Tran Thanh Van, Nuovo Cimento 37,
524 (1965).They consider four poles for both the S and D states
and adjusted the free parameters to fit low-energy deuteron
photodisintegration data.' R.Blankenbecler and L.F.Cook, Phys. Rev. 119,1'145 (1960).

7 F. Partovi, Ann. Phys. (N.Y.) 27, 79 (1964).' In order to satisfy the subsidiary conditions Eqs. (4) and (5),
it is evident that a minimum of two poles is required for the S
state (the Hulthbn wave function is an example), and four poles
are found necessary for the D state. This minimum requirement
however leaves little Qexibility for adjusting the shape of the
wave functions. Our analysis shows therefore that at least two
more poles than the minimum are required to improve significantly
the shape of the wave function.' The smooth shape in the region 0 (r&0.5 F was obtained for
the S state by requiring that the parameters in Eq. (6) satisfy
three sutn rules instead of one. /Thus its indicial behavior was
artificially set at N(r)~r'. g

Oo
c0

+g bg rE+1+e ~)(g)pl+1+ed@
e 0 0

where
aq, ,= —(N)/Qrr) (s/2)" 'P (l s+ ,')/1'(s—+1)-

b), ,=X((g )2 rr' ' tfs'+'/pl'(1+-', s)P(-,'s+l+-', )].
The origin of the subsidiary conditions is now clear. In order that
u&(r) be finite at the origin and behave initially as r'+', the erst
sum in the above relation must vanish; hence there must be
l+1 sum rules of the type given in Kq. (5) with m= —l, —l+2,

~ ~, l. For the nucleon-nucleon case, the tensor potential couples
the S and D states leading to the occurrence of expressions like
r lnr in N(r), r lnr in m(r), so that strictly speaking, neither u(r)
nor m (r) is a pure power series in r. Thus the final sum rule for
m(r) need not hold (see Hulthen and Sugawara, Ref. 4, Secs. 28
and 33) although we retain it in the present work to improve the
fit to the numerical wave function at small r.

3In general, the radial wave function for orbital angular
momentum l is expressible as

00 00

a)(r) =X( a((s)srh)(ssr)ds=g a(,r &+" ag(s)s-'+s'ds-
0 e=0 0
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0.7% for the D state. This error is largest for r&2.5 F
and decreases very rapidly as the wave functions
approach their asymptotic values, Near the origin the
abrupt character of the hard-core wave functions is

FIG. 1. S and D states of the deuteron for the numerical wave
function obtained from the Hamada-Johnston potential and the
analytic wave function with the parameters of Table I. Wave
functions are normalized as J'0" pu'(r)+m'(r)/dr = 1. The param-
eters for the Hulthen S-state wave function are 1P=0.765 F ',
p=1.26 F, corresponding to a normalization J'0" NH'(r)dr=0. 93.

replaced by the smooth behavior of the analytic wave
functions' However there is a question of how well one

ought to Gt the core region since its form rejects our
inability to specify the wave function in this region
from experimental data. Only in very high energy
scattering could one hope to detect differences in the
two types of core behavior. The important feature of
the present analytic wave function is that it does

very well in the region where all numerical wave func-

tions agree on the basis of scattering data up to 300
MeU. Furthermore, reGnement in the fit, without loss

in simplicity of form, can easily be obtained by adding
more poles and sum rules to Eq. (6).

The parameters given in Table I give a deuteron
effective range p( —e, —e) = 1.749 F, (%=0.8896 F '"),
a quadrupole moment, Q=0.282 F', an asymptotic
D to S ratio, p=0.0269, and a percentage D state of

7%, all in agreement with the experimental data. "
The author is indebted to Professor L. Durand, III

for calling attention to this problem, and to Dr. 3.M.
Casper for supplying several numerical wave functions.

"M. J. Moravcsik, The Two Egcleon Interaction (Clarendon
Press, Oxford, England, 1963).
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An attempt is made to reduce the confusion arising from the existence of many different theories of
resonance reactions. The method is to set up a formalism which is sufhciently general so that individual
theories may be obtained by appropriate specialization. Such a formalism is obtained by suitably generalizing
that devised by Bloch for a smaller range of theories. The formalism facilitates comparison of the structure
of the various theories. Also, as we shall show in a subsequent paper, it gives a neat and systematic frame-
work for study of the line-broadening problem.

I. INTRODUCTION

HERE now exist a multitude of theories of
nuclear reactions, expressed in diferent for-

malisms and designed for various objectives. In this
situation, it is useful to have a formal framework such
that any particular theory can be derived by appro-

*Supported in part by the U. S. Air Force Ofhce of Scienti-
fic Research.

priate specialization. This facilitates comparison of
diGerent theories, and creates order out of chaos.
Such a framework was given by Sloch' several years
ago, and he showed how it could be specialized to the
theories then available. The number of theories has
since doubled, and it is again desirable to systematize
the Geld in this manner. It turns out that the method

' C. Bloch, Nucl. Phys. 4, 503 (1957).


