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Static Theory of the Giant Quadrupole Resonance in Deforsssed Nuclei*
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The modes and frequencies of the giant quadrupole resonance of heavy deformed nuclei have been cal-
culated. The quadrupole operator is computed and the absorption cross section is derived. The quadrupole
sum rule is discussed, and the relevant oscillator strengths have been evaluated for various orientations of
the nucleus. The giant quadrupole resonances have energies between 20 and 25 MeV. The total absorption
cross section is about 20% of the giant dipole absorption cross section. Of particular interest is the occurrence
of the quadrupole mode which is sensitive to the nuclear radius in a direction of approximately 9=qm from
the symmetry axis. This may give information on the details of the nuclear shape.

I. INTRODUCTION

HE predictions of the hydrodynamic model of
the giant dipole resonance have been found to

agree with the experimental facts in very great detail. ' '
As a matter of fact, no real discrepancies between the
predictions of the model and experimental results
have as yet turned up. It thus seems important to
develop the model further in order to 6nd its limits of
validity.

In this paper we develop the theory of the giant
quadrupole resonance for deformed nuclei with a rigid.
boundary condition, the so-ca11ed "static" theory. This
step is analogous to the static theory of the splitting of
the giant dipole resonance. '' Ke shall see that the
splitting of the quadrupole resonance is of the order of
5—6 MeV compared with about half that amount for
the giant dipole resonance. The splitting of the giant
quadrupole resonance is of interest also in the following
connection. In the same way as the giant dipole res-
onance is sensitive to the nuclear axes in three orthog-
onal directions, the giant quadrupole resonance is
sensitive to the nuclear radius in five directions. Thus,
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if the model is still applicable, the giant quadrupole
resonance, together with the giant dipole resonance, can
reveal rather 6ne details of the nuclear shape.

In this paper we do not treat the rotations and
vibrations of the nucleus. The results obtained. are thus
valid only for the coordinate system fixed relative to
the nucleus, the so-called intrinsic coordinate system.
They would be valid also for the laboratory system for a
nucleus with infinite spin which could have a 6xed
direction in the laboratory. The obtained eigenenergies
have the same meaning and usefulness as those of the
equivalent step in the theory of the giant dipole res-
onance. They give the qualitative picture, and they
serve as input parameters to the complete theory which
treats the giant resonances together with the vibrations
and rotations.

The experimental situation concerning the giant
quadrupole resonance is still almost void of results; this
is so mostly because of the experimental difhculties
(the giant quadrupole resonance lies on the back of the
much larger giant dipole resonance). It is, however, of
great interest to determine whether or not the hydro-
dynamic model is still applicable for the giant quad-
rupole resonance, i.e., whether or not this resonance
actually exists with a width comparable to that of the
giant dipole resonance as assumed in a previous
communication. ' This would have to be expected if
the hydrodynamic model is still applicable at the
energy of the giant quadrupole resonance which is
about 1.6 times higher than the giant dipole resonance.
The breakdown of the hydrodynamic model should be
expected at an energy where the wavelength of the
"second sound" (the oscillation in the relative velocity
between. protons and neutrons) approaches the order of
the characteristic length of the short range two-body

~ M. Danos and W. Greiner, Phys. Rev. 138, 8876 (1965).' M. Danos, W. Greiner, and C. B.Kohr, Phys. Letters 12.344
(1964).
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Writing

p =p (0)L~+r)(r)e '" j p =po p

the motion is described by

Ari+k'ri =0 (2)

QUADRUPOLE

FIG. i. Schematic showing the motion of protons and neutrons
for the giant dipole and giant quadrupole vibrations in a spherical
nucleus.

correlations of the nuclear wave functions" which is
about i0 "cm. The "second-sound" wavelength of the
giant dipole resonance is about X=k '=2.7&&10 "cm,
while it is only about K=1.7X10 " cm for the giant
quadrupole resonance, i.e., it is already quite close to the
two-body correlation length. It must be emphasized at
this point that this breakdown is not limited to the
hydrodynamic model. For identically the same reasons,
the long-range correlation shell-model description,
nowadays called the "particle-hole" picture, becomes
inadequate at higher energies (or larger momentum
transfers in electron scattering). There the quasi-
deuteron effect becomes the predominant mechanism.
We hope by this discussion to stimulate some interest
among our experimental friends regarding this energy
region.

Briefly, the paper is organized as follows. In Sec. II
the general results of the hydrodynamic model are
given. In Sec. III three methods for obtaining the
solution to the Helmholtz equation in a deformed
nucleus are discussed. In this section we also evaluate
the quadrupole energies for a spherical nucleus. In
Sec. IV the expression of the photon quadrupole oper-
ator in terms of the collective coordinates is derived,
and in Sec. V the photon absorption cross section is
calculated and the sum rule is established. Section VI
exhibits the computation of oscillator strengths in the
intrinsic system for various cases. Finally, we have
summarized the results and discussed their physical
aspects in Sec. VII.

II. THE HYDRODYN'AMICAL MODEL

In the hydrodynamic model"" it is assumed that the
internal motion consists of a Row of protons and
neutrons in opposite directions such that the changes
in the proton and neutron densities, p~ and p, cancel in
the total nuclear density, po. The static theory in
addition considers the nuclear surface to remain fixed.
The restoring force is supplied by the syrrnnetry energy.

» J. H. D. Jensen, Angew. Chemic 76, 69 (1964).
~~ J. H. D. Jensen and H. Steinwedel, Z. Naturforsch. Sa, 413

(X950).
'3 M. Danos, Ann. Physik 6, 265 (1952).

together with the boundary condition appropriate to a
rigid surface,

Here
8 Vgi„a=8 fi, n.

k'= or'I '(1+iI'/or),

f=e(Spo/&s) p, (0),

I'= Ssfr/Z/MeA',

kr*=m/(1+&).

(3)

(6)

(7)

IIL THE SOLVTION TO THE HELMHOLTZ
EQUATION

Owing to the y vibrations of the nuclear surface, the
instantaneous shape of the nucleus is in general triaxial.
Therefore, no tabulated functions are available to
express the solutions of (2) in closed form. We shall use
two approximation methods to obtain solutions and
check the results in the limiting case of axial symmetry
against the exact solutions in an ellipsoidal nucleus
where tabulated spheroidal wave functions are avail-
able. In the erst of the two approximation methods
which we refer to as the expansion method, we treat
the wave equation in spherical coordinates. The general
solution is then expressed as a linear superposition of
spherical waves. The expansion is performed to 6rst
order in the nuclear deformation parameters. The
eigenvalues are obtained upon satisfying the boundary
conditions. For the second method we use a variational
technique to obtain the eigenvalues of the deformed
state.

A. The Exyansion Method

When the wave equation is expressed in spherical
coordinates, the general solution that is 6nite at the
origin is

r)(r)= Q p CJ.rrrjr, (kr)Irr, sr(8, 9r).
'

~4M. Danos, University of Maryland Technical Report No.
221, 1961 (unpublished).

In these expressions ~ is the symmetry energy constant,
M* is the effective nucleon mass introduced to allow
for virtual meson exchange, "'4 8 is the externally
applied electric field strength, and I' is the width of the
resonance. In Eq. (3) 8 is a unit vector normal to the
surface.

The dipole and quadrupole modes are schematically
depicted in Fig. 1.
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The origin of the coordinate system is the center of
mass of the nucleus. In this approach we calculate the
gradient of 2&(r) and equate the scalar product A V&&(r)

and the scalar product &&I f, both of which are evaluated
at the surface. In this manner we obtain the coefBcients
CI,M in terms of the electric field and the wave number k.
By finding the poles of these coeQicients as functions of
the energy, we obtain the eigenvalues.

To calculate the V&&(r) we use the gradient formula"

VjL(kr) FLM ——k(L(L+1)/(2L+1)]'"jL+1(kr) TL,L+1,M

+l L/(2L+1)7"j L l(kr) T—L,L 1,M j —(9)

where the vectorial spherical harmonics are defined by

with 41, F12, and s/s real unit vectors forming a right-
handed orthogonal Cartesian coordinate system. P is
the polarization index with P=1 corresponding to left
circularly polarized waves, and P= —j. to right cir-
cularly polarized waves.

Using the well-known expansion for a plane wave

c"'=PL iLl 42r(2L+1)]'&2j L(sr) YM(g, y), (18)

we obtain the multipole expansion of a circularly
polarized plane wave" in the coordinate system used
in Eq. (14), i.e., in the "intrinsic coordinate system, "

= @0&r Q L ZM 2L(2L+ 1)1&2~M~&L& (&2p~)

X (ALM "+i~ALM'), (19)

T»M= 2 (»LI I M+—I M)Fl M+uL~ (10)
where

ALM —jL(sr)—TLLM, (20)

The g„are the spherical basis vectors

with the orthonormality relations

The gradient of » (r) is calculated by applying Eq. (9)
to Eq. (8). The obtained expressions, together with
several other long formulas, are given in Appendix A.

We express the normal unit vector in terms of the
spherical unit vectors as

(13)

and consider the coefBcients n„as functions of the
surface deformation parameters, ap and a2, defined in
the usual manner

ALM — P/(2—L+1)]&'j L+,TL,L+, ,M

+L(L+1)/(2L+1)]'"jL 1TL,L 1,M. (21)

The x)M»&L&(npy) are the rotation matrices and &2, p,
and y are the Euler angles.

We wish to consider a plane polarized wave. We thus
must consider an appropriate superposition of left
circularly polarized and right circularly polarized waves.
For &2= P =y =0 we choose E along the x axis and s
along the z axis. Thus

8= h0(lr/V2)~ pM i (2L+1)"'
X [ALM (SMl ++M—1 )

+iALMN(nM1&L& —nM 1&L&)]. (22)

Finally, keeping only the quadrupole term we have

8=—802r(20)'& p (EM+&2&A2M~+i&M & &A2M'), (23)
ROL1+&20Y20+&22(F22+ F2—2)]. (14)

where
Expressions for the O.„are given in Appendix A.

We still need to evaluate the spherical Bessel func-
tions at the surface, Eq. (14).We do this by expanding
the spherical Bessel functions jl(kR) in a Taylor series
about R=Rp and retain only terms to first order in the
deformation parameters. We have

jl(kR) = j&,(kR0)+ jl'(kR0) (kR0)

XL&20F20+&22(F22+ F2 2)] (15)

The prime denotes differentiation with respect to the
argument z =kR. The expression for the normal gradient
obtained in this way is again given in Appendix A.

We now evaluate 6 f at the surface. Let us consider
a plane, circularly polarized wave traveling in the
direction s, with wave number s=

l sl. Then

8= hpNp y
and

u, = (I/V2) (ul+iPu2), (17)
"M. E. Rose, E/ementary Theory of Angular Momentum {John

Wiley 8z Sons, Inc., New York, 1957).

+M/ = &M1 ' ++M-1 '
~ (24)

For energies of the order of 25 MeV, we have sRp
=ER0/bc=0. 9. Hence, we may neglect j2(sr) in our
calculations since it will be at most only about 3% of
jl(sr).

Using the expression for the vectorial spherical
harmonics, and Eqs. (19), (20), and (21), we obtain

X (122
l

—u, M+@, M) F2 M+„i (02) 'I 5)—M & &jl(sr)

X (112
l

—
&2, M+&2, M) Fl M+„]( „. (25)

Let us now consider the scalar product 6 8. Since 8
contains the angular functions F1„and Fs„only, in
combining with F» the parity rule will restrict the
scalar product to terms such as F1„., F3„., and F5„.,
while in combining with F1„,we will obtain only terms
Fpp Fg„and F4„.. Since we are interested only in the
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TABLE I. Directions of the incident photon and electric Geld, and
the related quadrupole modes vrhich are excited.

0 0 0 s9

0 0 sS

0 —,'m. 0 —',st�(i+0)

0 ys (*+y+VZ~)

/pe

Spy

—,
' govz(e-s)

Excited
modes

(up =u2 =0)

(I 21 I 2-1)

(I „+v, ,)
I'2p and

&)

V„and
(I 22 I 2-2)

quadrupole oscillations, we need only the terms
involving Yi„ in Eq. (25). The scalar product with the
normal is then

21 r.= —ihppr(-')'"ji(sr)([ —n ix)0 (')(6) "'
+(20$1 (')(2)—'/' —(2+1$ 2 (')]Yi, 1

+L ~ g) (2) (2)
—1/2+a ~ (2) (2)1/2

(2+1+-1- ]Ylp+ L (2-1+2-
+(20'L)1 ")(2) " (2 15—)0 ("(6) "2]Y11). (26)

To evaluate Eq. (26) at the surface, we again perform
a Taylor expansion of ji(sR) to first order in a„about
the point sRO.

ji(sR) = ji(sR0)+ (sR0) ji'(sR0)
XLap Y20+a22 (Y22+ Y2—2)]~ (27)

The prime denotes differentiation with respect to the
argument g=sR. We give the resulting expressions in
Appendix A.

To evaluate the coeKcients Cl.~ for l.=2, we consider
the boundary condition Eq. (2). These coeKcients may
then be obtained by equating the corresponding coef5-
cients of the Fq„. This procedure will produce a set of
simultaneous equations. From these equations we
obtain to first order in ao and a2

X+6221&Y=0, (31)
where

&20'= —ao, &22+=ao, &21+=—
2 (a0~6"'a2) . (32)

Since —3jp(s)+2ji(s)=5j2'(s), we see that for the
undeformed nucleus, the eigenfrequencies occur at the
maxima and minima of j2(s). From 3jp(s)=2ji(s),
there follows

cots= (9—4s')/s(9 —s') . (33)

X= 3J2+2J1 y

Y= (5/7) (52r)-'/2L(6 jp+ ji)+s(3jp' —2ji')].
The argument of the spherical Bessel functions above
ls 8=kEp.

To begin with, we shall evaluate the Ci,~ for an
undeformed nucleus for which the diKerent modes are
degenerate. The electric field directions associated with
diverse photon polarizations and directions are listed
in Table I. We thus look for those choices of the Euler
angles n, p, and y which maximize the coeKcients as
given by (28). In comparison with the dipole resonance,
for which the oscillations are in the direction of the
electric field, the directions of the quadrupole oscilla-
tions are at an angle of ~~x with respect to the direction
of the electric field. The characteristics of the eigen-
modes for the quadrupole oscillations are summarized
in Table II.

The eigenmodes in Table II are those corresponding
to the undeformed nucleus. A finite deformation will
produce not only a change in the frequency of the
oscillation but also a change in the direction of max-
imum displacement. Specifically, from (28) we find the
results as summarized in Appendix A.

In order to calculate the eigenfrequencies and
eigenenergies, we look for the zeros of the denominators
in (A4). We have expressed these denominators in
the form

with

&20= &0/A22,

+22 (+22~fl2 —2)/Apo y

21 (+21++2—1)/(R11+R12a2) 1

Then C2~ for a,=o has the poles given in Table III.
To calculate the eigenvalues for the deformed nucleus,

we perform an expansion about the undeformed eigen-
values s„.
Let

Sn =S0++Sn ~

10(-'ir)"'A 22 X ap Y &—— —
10(22r)'/2A22= X+ap Y,

10(102r) '/2(E11+Eipap) =X——,
' (apa6'"a2) Y,

(30)

~20 02f Sin2pc —3 (62r/5)'" ji
+(j 1 3)j1') (6"'ap+—2a2 cos2n)/7],

82,+2— oi f sin2p(3 (pr/5)'/' jie+"~

+ (ji—3$ji') (ape+"~ —6'/'a2)/7], (29)
F2 ~, W 21if COS——2pL3-(pr/5)1/2j ie+'~

—(j 1 3$ji') (ape+' +6'—/'ape+")/7],
aild

Mode

~2p
+21+I 2-1
I 21 I 2-1
I 22+ I'2-2
I'22 —I'2 2

Direction of
maximum oscillation

8 y
~ ~ ~

0
0

1

Periodicity
ln q

1r
7r

1
2

2'1

TABLE II. The quadrupole modes and their corresponding
directions of the maximum displacement of the proton Quid
from equilibrium.
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ol
As.= —AuMsF(s. )/X'(s. ) (36)

6ju+ ji
s =s.—15(5ur)-'furl

I

——I. (37)
(36j4 55ju+14jp 21&

Then

X(s„)=X'(s„)As = (36j4—55ju+14jp)(1/21)As, (34)

I'(s„)=F(s„). (35)

Thus

TmLE III. Values of s=kRo for which the coefBcients Cg~ are
maximized in the undeformed nucleus.

3.342
7.290

10.614
13.846

(I+))x

Since

and

we then have

km "~RQ=S~

kQ RQ —s~ )

The technique used is described by Morse and
Feshbach. '~ For a trial solution gg, which is dependent
upon one or more parameters, the eigenvalue is given by

kuur""=kp" 1+15(5ur) "uhusr"

min
I Vul I

urgr
I rI, I

'dr (42)

6ju+ ji
XI 0.0476—

5 (36j4—55ju+14jg)~-

For trial solutions we use the wave functions for a

(38) sphere of volume equal to that of the considered
nucleus. Thus

For e= 1, s„=3.342, we find

kuM'& =kp'(1+0.284Ausr&) .
Thus (dropping the superscript 1)

(39)

'gup ju(kpr) I up

ulu+t ju(kpr) (I ul+ I u-1)

riu+u ju(kpr) (I uu+ I u-u)

(43)

kup=—kupg ——kgL1 —0.284ap j,
kuyr—=kur+ =kpI 1—0.142 (as& 6"'ruu)],

kudzu = kuu+ = k pLI+0.284m p7.

Since the energies are proportional to the wave
numbers k2MI', the above relationships also hold. true
for the energies. Thus for @=1

Eu„=—Eusr&= Eg(1+0.284L4ur&), (41)

where Ep is dependent upon A, X, and Z (see Sec. IIID).
We note that kup and kudzu of Kq. (40) are in first-order
independent of the nuclear asymmetry parameter c&.
This can be understood from Fig. 2 where the mode
(I'us+I'u u) is shown for au)0 and au(0. LA similar
situation exists for (Fuu —I"u u).j In both cases this
quadrupole mode "sees" a minor and a major axis
simultaneously. Therefore, no linear dependence of the
energy on u2 can be expected for this mode.

B. The Variational Calculation

In order to obtain the energies of the quadrupole
oscillations to second order in the deformation param-
eter aQ, we use a variational approach. The expansion
method of the previous section becomes too involved
to be practicable. The variational approach has been
used by Inopin" for the dipole case. A comparison of
his results with the exact calculations of Danos' for the
case of axial symmetry shows an agreement for the
eigenvalues within 1%%uo.

E. V. Inopin, Zh. Eksperim. i Teor. Fiz. 38, 992 (1960)
)English transl. :Soviet Phys. —JETP 21, 7l.4 (1960)j.

with kg ——3.34/Ep. To second order in rsp and to first
order in a~, this calculation yields the results

kup= kpL1 —0.284gp —0.186apu j,
kuyt=kpL1 —0.142(op~6 I au) —0.077ap j (44)

kudzu

=kg LI+0.284ap+0. 048rup'1.

One observes that to first order in uQ the expansion
method and the variational calculation yield the same
result for the energy. These results are indeed intimately

FIG. 2. Plane cut through
the nuclear ellipsoid perpen-
dicular to the main axis.
The shaded areas shovr
schematically the
(F22+ Fg ~) giant quad-
rupole mode. It is immedi-
ately apparent that this
mode "sees" both axes
(major and minor) simul-
taneously.

"2a' "a-2

» P. M. Morse and H. Feshbach, 3fethods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1933).



766 DANOS, GREINER, AND KOHR

coordinates a solution of (2) is then of the form

n=c'(o)S'(x)~(t)

0.90

Q80

Ko

where J'($) obeys the ordinary diBerential equation in $

d- dJ - m'—(P—1)——A —h'P+ 5=0. (49)
df /Eg- P—1

A and-es are separation constants and

~E20
h= ~~ho. . (50)

0 O. I 0 Q20 CQO 0.4 0 Q50 0.60 &o

FIG. 3. Graph of the resonance energies of the various quad-
rupole modes in terms of the quadropole resonance energy for
spherical nuclei Eo.

related. Consider a superposition of the trial solutions,
Eq. (43)

g=p„n„}}„. (45)

Upon calculating Eq. (42) with this trial solution and
minimizing with respect to the parameters 0. , we would
obtain a set of simultaneous equations. These equations
are precisely the same as in the expansion method.

C. The Exact Method

Expressed in spheroidal coordinates, the surface of an
elhpsoid is a surface of constant g for a certain value of
the parameter h, and the normal gradient operation is
simply the differentiation with respect to g. The
spheroidal function can be expanded in spherical Bessel
functions. In the notation of Stratton el ul." this
expansion is

~(&)=~'- (h, ~)= V"(P-1)-/'
Xg.' a (himl) j „(h&). (51)

The coeKcients a (hied) are given in Ref. 18. The
prime on the surrunation sign indicates that the expan-
sion contains only even or odd N. Then

/1 Vr/=g QP„/(h, y,x)(a/a()je /(h, ]) (52).Insofar as the nucleus may be treated as an ellipsoid
of revolution, exact solutions to the Helmholtz equation
(12) are obtainable. For small deformations the "quad-
rupole shape, " defined by (14), and the shape of an
ellipsoid of revolution are identical. However, already
at the nuclear deformations corresponding to u0=0.3,
the ellipsoidal. and the quadrupole shapes diBer some-
what. Hence, expanding the ellipsoidal shape in
spherical harmonics, i.e., continuing to higher values
of /, for such a deformation the term u4F40 would have
an amplitude u4=0.1. The consequences of this di8er-
ence will become apparent below.

The exact solution is a linear superposition of
spheroidal wave functions. These functions are solutions
of Eq. (12) separated in spheroidal coordinates. For
the prolate spheroid the transformations are given

3y Eq. (51) we have

(~/~k) j~-/(h, k)

—m(p 1)(m/o} i~no 1p —~ a (h-im~)~ (hg)

a (him()
+ (p 1)m/opia p

2(N+m)+1

XC (~+m)j„+,(ht)

—(/o+m+1) j „,(hg) j. (53)

The semimajor and semiminor axes of the ellipsoid
are given by

x= ',n(P 1)"-'(1 —x')'/' cos—q,
y 1a(P 1)«o(1 XR)«o sm

s= oa)X,

1($(oo,
—j.&x&$,

0& q &2x.
(cg) Furthermore, ao and the coordinate g are related by the

quadratic equ, ation

0.299(P—1333)ao'+1.893(P—0.667)ao—1=0. (57)
The foci of the ellipsoid (spheroid) are s=+-', n, and
x, y, s are the rectangular coordinates. In spheroidal We now consider the quadrupole term, viz. l=2 in

the expansion (52). The boundary condition yields

(&/~k)ie /(h, f)=o. (58)
'8 F. J. Corbato eI cl., Spheroid@ W'use FNNcÃowg (John Wiley

8z Sons, Inc., New York, 1956).

by a=&oP+(5/4 )'/'aors (54)

b=ZoL1—', (5/4~)«oaog. (SS)

In terms of the deformation parameter ao, the parameter
46

h is given by

h =-,'hf4DS(sm)-'/oao+ (15/Ss)ao' J/'. (56)
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These equations corresponding to m=0, 1, 2 are given
in Appendix A. By solving these equations, viz. (A8),
(A9), (A10), and using (56) and (57), one obtains the
curves (Fig. 3) relating the parameters ao and the
eigenvalues E2.

Ep ——L)p ——kkpN, (59)

D. The Resonant Energies for Spherical Nuclei

In Fig. 3 we give the resonant energies of the funda-
mental quadrupole modes in terms of the energy of the
degenerate modes of the undeformed nucleus. This
energy, Ep, is given by

'(r) =x
I po 2p.—l'/p~'+&. (67)

pp is the nucleon density. The integration is again
taken over the nuclear volume. b is a constant. Equat-
ing Eqs. (66) and (67), we have

p. If we assume harmonic quadrupole oscillations, then
the potential energy assumes the form

v(.) =P„-',c„l.„lm. (66)

The C„are constants which are to be determined.
In the hydrodynamic model the potential energy is

given by'

where u is the velocity of "second sound" in the nucleus.
Together with (6), the energy is then

E,=(hs, /R, )P(8a/M*)(XZ/A')]'i' (60)

C.=E8xp.'(0) IR.I'/po] (68)

~quadrupole
=1.6.

~dipole
(62)

Iv. THE QUADRUPOLE OPERATOR

The electric quadrupole moment operator in the
laboratory system, Q„, is obtained by transforming the
quadrupole operator in the intrinsic system Q. with
the rotation matrices

2

Q.= Z &"'"(~)Q' (63)

If we use 4'/A'=1, x=20 MeV, Ro ——1.35A"' fm,
i&=3.34, and +=0.5 for the effective mass, Eq. (7),
then

Zp= ~2SW-»3.

This value of Ep is affected by several sources of un-
certainty. First, the value of the symmetry energy
constant is uncertain by about ~10%. Second, the
diffuseness of the nuclear shape also affects the res-
onance energies. Both effects have to be known to
determine the effective mass. However, since the same
effects are present in the dipole as in the quadrupole
resonance, they will presumably have little inQuence
on the ratio

Upon calculation of the integrals with the wave
functions

'f20 j2(~2or)F20

g2'i=(1/~) j2(4'v)(F2r+F-i),
'$2+2 (1/~) j2(~2+2r)(~22~+2 —2),

(69)

we obtain the expressions for the C„, which are given in
Appendix B.

I et us now define

Q. = pn(0)r'F2~' (70)

This is the intrinsic quadrupole operator resulting only
from the nonspherical shape of the nucleus. It is nonzero
already for q=O, i.e., for a uniform proton distribution.
We find

Qo' ——Ro'p„(0)[up+(10/7)(Sx) —'I'ao'],

QI0
Q~2' ——Ro'p„(0)am.

(71)

We now introduce the annihilation and creation
operators for the quadrupole oscillations, q„and q,~,

respectively:

P„(-,'B„lr„I'+',C„Ir„l')-—=P„&co„q„rq„(72)
The operator in the intrinsic system is defined as

Q„= p„r'F2AV (64)

which, actually, is also a defining equation for the
mass parameter B. The amplitudes 7- thus are related
to the annihilation and creation operators by

r„=(A(a„/2C„)'I'Pq t+(—)&q ] (73)
The integral is taken over the nuclear volume with the
proton distribution p„given by'

2

p9&=ps(0)L'+ Z r FH (r)]

Here p~(0) is the equilibrium proton density. The F„
are normalization factors. r„characterizes the amplitude
of the quadrupole oscillation associated with the mode

and a&„=k»N. This relation insures that r„*=(—)"r-„.
A change in notation with respect to previous calcula-
tions' ' has been introduced in order to conform to the
standard phase conventions. We list the expressions for
the intrinsic quadrupole operators in Appendix B.
From these formulas, Eq. (B2), one can easily give an
estimate of the induced quadrupole moments, which are
Q„—Q„'. We find QD

—Qo'=3 b while Qo'=5 b. Thus



768- DANOS, GREI NER, AND KOHR

the induced giant resonance quadrupole moments are of Since
the same order of magnitude as the intrinsic quadrupole
moments of the nuclear shape.

r) 8 j(0)
&9= s & Q'j-

8$g
(82)

V. PHOTON ABSORPTION CROSS SECTION

The explicit expression we use for the total photon
absorption cross section is' ""

the elements of the matrix may be expressed as

(I& I
&-o= lishoe '"'(I Z Q' M' I)-o.

Ssg

(83)

Using s =pp/e= E/hc, we find for the cross section2' 1
"(E)=— l(&o&-pl'

hc hps (E"'—E)s+-,'I' (74) pe np r
~,"(E)=2~ „,l(IQI&-oI'. . . , 84

(85)Q= s Z Q'jM'j ~

Bg is the quadrupole interaction and F is the width of
the resonance.

where we have denoted the mode by the subscript p, , and
For a localized charge distribution Pjrj Placed in an

the energy level by e. We have also defined
external potential C (r), the electrostatic interaction of
the system is

8'= p(r)C (r)dV. (75)
We now calculate the integrated cross section and

the quadrupole sum rule. Following Khokhlov, " we
Expanding the potential around an origin chosen at the
center of the nucleus, we have

28, (0)
&=CC(0)—d &—sZQ;, +" .'

2$;
(76)

"-.(E)
dE=4pr'(hc) 'L—~~ih(QQ QQ&pp] (86)

g2
=—s'prs(es/hc) (M*cs) 'ZRs„',

Hereqanddarethetotalchargeandthedipolemoment, with ~ (E) p„~ ~(E) fn the l;m;t as Z ~0 the
respectively. Q;; is the quadrupole moment given by

Q;, = e (3x;x,—r 5;,)p(r)dV. (77) (E nP E)s+1@s

Upon comparison of Eq. (77) with Eq. (64), we obtain
the explicit expressions for the Q;, as listed in Appendix
B.The Q„' do not have to be included, since the matrix
element of these operators between the ground state
and a giant —E2-state vanishes.

To calculate r)h;(0)/r)x; we consider an incident
plane wave traveling in the direction s with wave
number s and frequency co with the electric Geld
polarized in the direction 6

behaves as a Dirac delta function, 2pr5(E —Esp"P),
upon integration over the energy from 0 to Do. To apply
this sum rule, we have to include a factor X/A which
has its origin in the fact that the hydrodynamic model
contains only the "second sound" part of the sum rule
in which the protons and the neutrons move in opposite
fashion. For example, the contributions of surface
vibrations where protons and neutrons move together
have to be excluded here. We now define the E2
oscillator strengths by

where l@l =1.Writing the Cartesian coordinates as

Q„fs„"' (XZ/As) Rs„——', (87)

s=syx+ sstj+ sps,

I=NrX+ Nst)+ NsS,
(79)

TABLE IV. Oscillator strengths and cross sections for the quad-
rupole modes of 68Kr"6 for the special orientations of Table l.
E2„ is obtained from the variational calculation. W„=ED/
P (Es„—E)'+r'/4g.

the gradient of 8 evaluated at the origin becomes

VS(0) =is8p[M je '~'

I Mj is a (3&(3) matrix with components

M~j=sigj/s.

(80) 0
+.1
—1
&2

sf "/(Rp'EZ/A)

0.866
0.890
0.965
0.157

E2„
(MeV)

20.3
22.1
21.3
25.2

p'~s (E)/~'.
(mb/t'Me V)

5 54X10~
5 69X10~
6 17X10~
1.00X10~

9 S. Flugge, Z. Naturforsch. 1, 121 (1946)."S. Flugge, Z. Naturforsch. 3a, 97 (1948).
"K.Y. Khokhlov, Zh. Eksperim. i Teor. Fis. 52, 124 (1957)

LEnglish transl. : Soviet Phys.—JETP 5, 88 (1957)j.
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TABLE V. Excitation energies for the quadrupole modes in heavy deformed nuclei. The values of E2 are calculated using the variational
technique, except for the last column. Comparison of the mean value of E2+1 and E2 1 with the value obtained by the ellipsoidal treat-
ment (Exact) indicates that in some cases there is a difference of as much as 1 MeV in the eigenenergies. '

Element

646d154
64Gd156

64Gd1SS

640d16P

68Er166

6 Er168
Th23P

90Th282

0.33
0.41
0.46
0.47
0.33
0.33
0.23
0.25

op/op

0.162
0.132
0.125
0.134
0.155
0.150

0
0

Ep
(MeV)

23.5
23.4
23.3
23.2
22.9
22.8
20.6
20.5

E2p
(MeV)

20.8
20.0
19.4
19.2
203
20.2
19.0
18.8

E2+2
(Mev)

25.9
26.3
26.6
26.5
25.2
25.1
22.0
22.0

(MeV)

22.6
221
21.7
21.6
22.1
22.0
19.9
19.7

(MeV)

21.8
21.3
20.7
20.6
213
21.2
19.9
19.7

Mean
E2g1

(MeV)

22.2
21.7
21.2
21.1
21.7
21.6
19.9
19.7

Exact
E2y1

(Mev)

23.0
22.8
22.7
22.6
22.4
22.3
20.3
20.1

In these calculations we have used Bo =1.25A 'Io, Boo =Zofi -0.284ao-0. 186aooj, Z2qc =+of) —p.g42(ao~(6)1/oao) —0.077apoj, and gs~o=oofy+0. 284ao+0.048aoo j.

then comparison of (84) and (86) shows that

Let us define [see Eq. (83)j

Since

pp ——2/pp4prRp',

where fp' is in 10 "cm', F and E in MeV, and o„'(E)
in mb. Let us consid. er as an example a nucleus with

fpp"'= 20~*c'(&c) '(&c/&')Eps "'1(IQ I) p I
' (88) the parameters of ppEr"'. From low-energy data

a0=0.33 and, eGectively, u2 ——0.051. If we assume
%~=0.573f and, 20=1.2A'I fm=6.6 fm, then ED=22.9

Q;;=0.492e(poRoP/ )"'X;;. (89)
MeV. The results are summarized in Table IV and are
for the cases listed, in Appendix B. The total cross
section for the energy E is given by

then

fp "P=0.26(kp ")'(ko ")-'(R,/R, )'
X l(IZ;, ;~;O',, I&.pl (XZ/~)R, „'. (90)

o'(E) =Z. o'(E).

VII. RESULTS AND DISCUSSION

(94)

In terms of the oscillator strength, the photon absorp-
tion cross section for the region of the giant quadrupole
resonance is

7l 1 8 Er
n. '(E) =— fp"—, (91)

10 M*c' hc (Ep„"—E)'+4iI'

VI. CALCULATION OF THE OSCILLATOR
STRENGTHS AND TOTAL ABSORPTION

CROSS SECTION

We begin by considering the case of a spherical
nucleus. Then k2„'——ko, co„'=~0 and E2„=ED.Equation
(90) for I=1 then becomes

In a spherical nucleus the 6ve quadrupole modes of
oscillation are degenerate. However, they are not
degenerate in a deformed, triaxial nucleus, and they
have, to a good approximation, angular distributions
prop»tional « I'2p (I'21&7 2—1) (F'22& Yp—2) ~

particular interest is the result that the eigenfrequencies
of the (I'»&I'p &)-distributions depend strongly on
the form of the deformed, nucleus, ' e.g., whether it is
an ellipsoidal shape or a quadrupole shape where
R= Rp(1+np„Fa„) (Fig. 3).Since the (I'p~+ Fp, ) modes
are peaked at 8=N7r/4, we compare the radial distances
of the ellipsoidal shape and the quadrupole shape in
this direction, assuming axial symmetry. We have
for an ellipsoid

fp„"——0.26(kpP/ha))
t (i+;;MgX,, i) gpss

'(XZ/A)Rp'. (92)
R.P =2a'b'/(a'+ b') (95)

Let n and P be the Euler angles defining the direction
of the incident photon with wave vector s in the intrinsic
coordinate system. We consider the four separate
cases as given in Table I. These cases correspond to
diEerent orientations of the nucleus with respect to the
incident photon beam. The explicit formulas are given
in Appendix B.

We now turn to deformed nuclei. The cross section for
the mode p, is

For the quadrupole shape we have

R,=Ro[1+-,' (5/4 )'~'ap]. (97)

Hence, the ratio of the change in the radial distance at
pr/4 as a function of ap is

where u and b are the semimajor and semiminor axes of
the ellipsoid, respectively. We then find

Re(=Re[1+p (5/4%r)'I'ap —(15/167r) ap'+ j. (96)

o„'(E)=3.66X10 Pfp„" —, (93)
(E 1P E)2+x/2 ~ ]/ARp —1—3(5/4r) I ap. (98)
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Kith cp= 3 we then find

(az.,/~z, ) = (sz.,/sz, ), (99)

where AE~ and EE,i are the shift of the mean resonant
energies of the modes (I'»& I'») in the cases of quad-
rupole shapes and ellipsoidal shapes, respectively.
The difference in the resonant energies for these modes
is thus significant enough to shift the position of the
maximum cross section by as much as 1 MeV. This
difference is shown explicitly for heavy nuclei in
Table V by comparison of the variational calculation
(mean) and the ellipsoidal calculation (exact). As ao

becomes large, (98) becomes inaccurate since the
direction of maximum oscillation for these modes is
then at an angle less than ~~x.

We now make a few remarks about the magnitude
of the errors involved in the calculation and the
validity of the model. As noted in Sec. IIIB, the energies
as calculated by the variational method could be
improved by considering the trial wave functions as a
sum of spherical harmonics and varying the coefFicients
to obtain the closest approximation to the exact wave
fu,nction and its corresponding eigenvalues. This
procedure was followed in certain modes, but the values
of the eigenenergies were decreased by less than 0.5%%uo.

The calculation of the resonant energy of the unde-
formed nucleus in Sec. IIID depends on the values of ~

and 3f*. The uncertainties in these values result in an
uncertainty of the resonant energy of about 20%%uo.

However, this uncertainty will have a very small effect
on the.shape of the cross section and the splitting of the
resonance for a deformed nucleus. The value of Ep for
the quadrupole resonance can be expected to appear at
1.6Ep', where Ep' is the position of the giant dipole
resonance. Therefore, from the knowledge of the latter,
we can precisely determine the position of the quad-
rupole resonance. Another significant change in the
resonant energies would be expected to result from a
consideration of a dynamic theory. We have here
neglected the coupling of the quadrupole oscillations
with surface vibrations ( 1 MeV), rotational modes

( 100 keV), and single particle motions ( 500 keV).
The inclusion of these interactions for a dynamic
treatment of the problem should constitute the next
step in the theory of the giant quadrupole resonance.

The experimental problems involved in the detection
of the giant quadrupole resonance are considerable. In
the multipole expansion of the radiation field, the
quadrupole term is about sE times as big as the dipole
term. For sE=0.7 the ratio of the cross sections would
then be about 0.50 since the cross section is proportional
to the square of the matrix element. Furthermore, the
tail of the dipole resonance in the quadrupole resonance
region is still 10%%uo to 20%%uo of its maximum value. If
direct photon absorption experiments were performed,
it would be necessary to subtract the dipole contribution
in the energy region under consideration to obtain the

quadrupole resonance. A more sensitive experimental
technique perhaps might be inelastic electron scattering
at an angle for which the dipole contribution to the
scattering has a minimum; the quadrupole contribution
would not be depressed at that angle. The drawback
here would be the di6iculty in the subtraction of the
radiation tails associated with the inelastic scattering
events leading to all nuclear levels which have lower ex-
citation energies than the desired level. In balance, none
of the possible experiments are simple in interpretation.

APPENDIX A

We list here several long formulas which were
obtained in the solution of the Helmholtz equation in
Sec. III.

In terms of spherical unit vectors, the expansion of
Vp(r), Eq. (8), is

&p (r) =pL, M „CLMk([(L+1)/(2L+1)]' 'jL+&(kr)

X (1, L+1, L
~

—P, M+@, M) F'L+y, M+„

+[L/(2L+1)]'~' jz &(kr)

X (1, I. 1, I.
~

—P, M——P, M) F'L g, M+„)& „.
(A1)

The expansion coeKcients of the normal unit vectors
in terms of the spherical unit vectors, Kq. (13), is

n+$ [1+(5'E) ao]F1%1 9(70r) '"ao&a~1
—(6/5~)'"a&F&~& ——,

' (3/35m)'"F3+g
—9(28~)

"'aoI'ohio,

no= [1—2(5+) ao]I g)+9(3/140~)' I oo

+-,o (3/7or)'"ao(I'oo+ I'o o) .

(A2)

6' V7J
~
r R QL,M CLMk[+LMI LM+14Ly2, MI ~2 M

+~z o,M&r o,M+~L+4, MI'L+. 4,M

+~L-4,MI L 4,M+lf L,M+—2I L,M+—2

++'L,M o I'L,M o] &
(A3—)—

where the coefficients WL,~ are given in Ref. 22. They
are too long to be listed here.

The excited modes and the corresponding quadrupole
expansion coeKcients, using the abbreviations CL,~+
=Cg~+C~~, are

n=0, P=O, y=0
C2p C21 C22 C22 0 )

C» if[42(m-/5——)"'jg (j g 3'—g') (ao+6' 'ao)]/—
[14(E)g—Egoao)]. (A4)

22 C. B. Kohr, thesis, University of Maryland, 1965 (unpub-
lished).

The expression for 6 Vg~, a, after expansion up to
terms linear in ap and a2, is of the form
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C2g+= C2g
——0)

Coo=if/(28A») [21(6 z/r5)'i' jz
—(jz—3{jz')6"'ao],

C22+ = if/(14A 22)[6"'(jz—3t jz') a2],
C22 = f/(14A»)[21(zr/5)'i'jz+(j& —3{jV)ao].

For the spheroidal (exact) calculation the eigenvalue
equations resulting from the boundary condition, Eq.
(58), are

m=0
Q„' a„(hl02)[nj„z(s)—(n+1)j„+2(s)]/

(2n+1) =0. (A8)

Q„' a„(hl 12){j„+z(s)+(2n+3) '[(s/h)' —1]
X[(n+1)j„(s)—(n+2) j„+2(s)]}=0. (A9)

m=2

P.' a~(hl 22){jr+2(s)+22s(2n+5) '[(s/h)' —1]
X[(n+2)j +z(s) —(n+3)j +2(s)]}=0. (A10)

APPENDIX B

Several of the longer formulas obtained in the
calculation of the quadrupole operator and the absorp-
tion cross section are given here.

The constants C„ in Eq. (66) are given by

Cp =C
l
Fp l'[1+0.406ap+0. 206up'],

C+z=C IF+zip[1+0.203(a0~6'"az)+0.073uoz], (Bi)
Cgz ——C

l
Fpz l

'[1—0.406ap+0. 028ap'],

n=-o, zr, P=O, y=0
C20=C2g =C22+=C22 =0

Czl = zf[42 (zr/5)"' jz+ (jz—3{jz') (g0 6 a2)]/
[14(Ezz+F.zzaz)].

n=O, P=202r, p=0

Czo = if/(28A 22) [21(62r/5)'i' jz
—(jz—3{jz') (6'%0+2az)],

C22+ = —zf/(14A 22) [21(zr/5)'i' ~ 2

+ (j 2 3{—jV) (ao 6"—'az)] (A. 6)

with
C=0.174sp„z(0)Ro'/pp.

The expressions for the intrinsic quadrupole operators
are

Qo= Qo'+0.310(ppR0'/s)'"{kzo —'(»0)'"
X[1+0.355ap+0.963ap'](qpt+qp)

1 42k22 (»2) a2(q2 +q—2)}|
Qyz =0.310(ppRp /2K) {k22 (»2)

X[1+0.177 (ap —6)'Izaz)+0. 329aoz](qzt —
q z)

Wk '(» )"'[1+0.177(up+6"'a ) (&2)
+0.329ap'](q, t—qz) },

Qy2=Qy2 +0.310(poRo /2s)' {k22 (»2)
X[1—0.355ap+0. 156ao'][(q2'+q-2)
~(q 2t+q2)7 —1.42k20 (»0)'"ao(qo'+qo) }.

The Q,; as de6ned by Eq. (77) are 0.492e(poRo'/&)'"
X1V,, [see Eq. (89)], where

1V&z = —k20-'(»0)'iz[1+0. 355ao+2.45az+0. 963aoz]

X (qot+qo)+k» (3»2) [1—0 355go

+0 816az+0 156ao'](qz +q-z),
&22= kzo '(»0)'"[1+0.355ao —2.45a2+0.963ao']

X (qo'+qo) —k» '(3»2)'I'[1 —0.355ao
—0.816az+0.156ao'] (qzt+q 2),

N22 = 2kzo '(»0)'iz[1+0.355ao+0,963apz]

X (qo +qo) 2k22, (2»2) a2(q2 +q—2) p (+3)
E22=Xzz=zk22 (3»2) [1 0.355ap+0. 156ao ]

X(q 2'+qz),
Ezz=A zz —zkz (3» ) I [1+0.177(up+6 iza2)

+0.329ao'] (q—zz+ qz),
X22 X22 zkzz (3»&) [1+0.177(ao—6 az)

+0.329ao'](q2t —
q 2) .

We now list the oscillator strengths for special
orientations of the nuclei. These orientations are those
of Table I and correspond to those for which each mode
has its maximum excitation. The values given are for

Er&66

n=O, P=O

S=SS
0 0 0

3f= 0 0 0

.1 0 0.

fo, 'o 0 78(1qZ/A')Ro'

f "=0 zzA —1

n=ozr, P=O

S=SZ
0 0 0

M= 0 0 0

.0 j. 0.

for"——0.78 (XZ/A ')R02

fz„"=0, Zz/1
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n=o, P= p'z

S
s =—(9+z)

V2

u= —(S-z)
V2

1 0 —1

M=~ 0 0

.1 0 —1.

fpp" ,'——(0—78.) (NZ/A')Rp'

fps" ——
~ (0.78) (NZ/A')Rpz

fp„" 0,——pWO, 2

n=rs. , P= pz
1 1

s = -,'s(9+g+&2z)

u=-', (9+)—v2z)

1 —V2

—v2

.v2 v2 —2 .

fpp" ——-'(0 78)(NZ/A')Rp'

fp p"———,'(0.78) (NZ/A')Rp'

fp„"=0 pWO, —2.
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Convenient Analytic Forxa. for the Deuteron Wave Function*

IAN J. McGzz
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A convenient analytical form for the deuteron wave function is presented which reproduces the static
properties of the deuteron, and is in accord with numerical wave functions which 6t neutron-proton scatter-
ing data up to 300 MeV.

'

W~EUTERON wave functions in numerical form have
been obtained by several groups' from nucleon-

nucleon potentials which reproduce the phenomeno-
logical phase parameter fits to the two-nucleon scatter-
ing data up to several hundred MeV. The object of this
note is to present approximate expressions for one of
these numerical wave functions which is convenient and
accurate for most cases of interest.

The motivation for the analytic form used in this
paper comes from several sources. However, it is sufB-
cient for purposes of illustration to indicate the approach
from the work of Bertocchi et al.2 Their work shows that
for neutron-proton potentials describable as a sum of
Yukawa forms, the S and D states of the deuteron wave
function can be written in coordinate space in the form:

and in momentum space as

"o.,(z)dz
u(p) =N — -= +N

p p+» p+n
"a e(z)dz pN—zi)(p) =pN = +pN

p2+ sp ps+ n2

where

+~ p'+s'
" oe(s)ds

(2)
+), p'+z'

o,(s) =b(s —n)+o, (s)8(s—n —X), i = s,d,

the function 8 being the unit step function. Here ) is
the minimum decay constant which appears in the
potential, n is given by the deuteron binding energy ~,
n= (mp)'I', p is the asymptotic D to 8 ratio, and N is
the wave-function normalization, given in terms of the
deuteron effective range p(—p, —p) by

N(r) =N

7o(r) =pN

o, (s)e *'ds

3 3
oe(s)e *"~ 1+—+ —

~ds;

N'= 2n/Pl np( e, -e)-]. -
The weight functions o;(s) in Eqs. (1) and (2) are

subject to the subsidiary conditions'

*Work supported in part by the University of Wisconsin
Research Committee with funds granted by the Wisconsin
Alumni Research Foundation and in part by the U. S. Atomic
Energy Commission under Contract No. AT(11-1)-881, No.
COO-881-69.

' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962);
N. K. Glendenning and G. Kramer, Phys. Rev. 126, 2159 (1962);
S. Gartenhaus, ibid 100, 900 (1956); K. E. Lassila, M. H. Hull,
Jr., H. M. Ruppel, F. A. McDonald, and G. Breit, ibid. 126,
881 (1962); H. Feshbach and E. L. Lomon, Ann. Phys. (N.V.)
29, 19 (1964).' L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo Cimento 18,
770 (1960). Although these authors only considered the S-state
wave function, the formalism is easily extended to include all
angular momentum wave functions. The author would like to

a, (s)ds=o,

o,(s)s-ds=O, m= —2, O, 2.

These sum rules are required to guarantee that the
wave functions be finite at the origin and have the
correct indicial behavior.
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