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Pockels ESect in Zinc-Blende-Structure Ionic Crystals*
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When a static electric Geld is applied to a crystal there are changes in its optical properties. The Pockels
eBect is a change in the optical dielectric tensor which is proportional to the applied Geld strength. By
generalizing Huang s theory of the linear dielectric properties of an ionic crystal, we have obtained a non-

.linear equation for the polarization of a zinc-blende-type ionic crystal. This equation has been used to obtain
an expression for the electro-optic coefBcient. The calculated values of the electro-optic coefficient for ZnS
and CuCl agree satisfactorily with the experimentally determined values.

II. THE HUANG MODEL

Huang' has shown that the macroscopic equation of
motion and the macroscopic polarization equation for
the long-wavelength optical vibrations of a diatomic
ionic lattice with tetrahedral symmetry have the
following general form:

=511W+512E ~

where

and

P 521W+f 22E )

~12 ~21 y

w= (M/p)'12(u+ —u ).

(2)

(4)

In Eqs. (1) and (2) E and P are the local macroscopic
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I. INTRODUCTION

HE electro-optic effect may be regarded as a
change in the optical dielectric tensor of a crystal

upon the application of a static electric 6eld. When this
change is linear in the applied field strength it is called
the linear electro-optic or Pockels effect. Ionic crystals
of the zinc-blende structure are perhaps the simplest
crystals which exhibit the Pockels effect. The linear
dielectric properties of these crystals are described by
Huang's' well-known macroscopic equations [Eqs. (1)
and (2)$. In the following section we will discuss
Huang's equations and their relation to his microscopic
model of an ionic lattice. In Sec. III we derive a non-
linear polarization equation for a zinc-blende-type
crystal using techniques similar to Huang's. This
equation is then used to obtain an expression for the
electro-orbit coefficient. Actually, several expressions
are obtained on the basis of several slightly different
models. Our theoretical results are compared with
experiment in Sec. IV.

electric field and the local macroscopic polarization
within the crystal. In Eq. (4) M is the reduced mass of
the two kinds of ions in the crystal, e is the volume per
ion pair, and u+ (u ) is the displacement of the posi-
tively (negatively) charged sublattice from its equi-
librium position. Huang' has also carried out a simul-
taneous solution of Eqs. (1) and (2) and Maxwell's
equations. This solution shows that the coefEcients of
Eqs. (1) and (2) are related to the infrared dispersion
frequency &up, the low-frequency (1p«Mp) dielectric
constant ep, and the high-frequency (M))o&p) dielectric
constant e„ in the following way:

b11=—Mp,

612—621—[(ep e~)/42r] I p1p ~

b22
——(e„—1)/42r.

(5)

(6)

(7)

A basic limitation on Eqs. (1) and (2) is that they are
only valid for frequencies well below the lowest elec-
tronic transition frequency in the crystal. Thus the
dielectric constant is e„only for frequencies in the
range ppp(«p((E, /h where E, is the energy gap.

Equations (1)—(7) are macroscopic equations, and
their validity is not dependent on the validity of any

specific microscopic model. However, Huang' has also
derived Eqs. (1) and (2) on the basis of a specific
microscopic model for an ionic lattice. This derivation
yields expressions for the coefficients of Eqs. (1) and

(2) in terms of the parameters of the model, and thus
implies certain relations between the macroscopic
quantities ~p cp and e„and the model parameters. We
will follow a quite similar procedure in Sec. III of this

paper, but the specific macroscopic quantity of interest
here is the electro-optic coeKcient. In order to establish
our notation and to set the context for Sec. III we will

now review Huang's derivation of the polarization
equatio'n [Eq. (2)) from his'microscopic model. The
model used is an array of interacting atomic ions. Each
ion may be displaced and polarized by the others, but
they all retain their individuality. We are only con-
cerned with those optical vibrations whose wavelength
is much larger than the lattice constant so, from a
microscopic point of view, we may regard all the

' K. Huang, Proc. Roy. Soc. (London) A208, 352 (1951).
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positive ions as having the same displacement and
dipole moment and similarly for the negative ions. For
convenience we will choose a coordinate system whose
origin lies at the lattice site of a positive ion and discuss
the polarization of the positive sublattice in terms of this
particular ion. A similar procedure may then be carried
out for the negative sublattice.

The dipole moment of the positive ion at the origin,
p+, will consist of a part gu+ due to displacement of its
charge q, and a part p, i+ due to electronic polarization.
The electronic polarization arises as a response to the
electric field acting on the ion, the so-called e6ective
field. This field may be conveniently separated into a
long-range part and a short-range part. The net long-
range field acting on any ion in the crystal is
E+ (4ir/3) P.' The short-range part of the effective field
arises from ions in the immediate vicinity of the origin,
and it is to be expected that this field will not be uniform
over the volume of the ion at the origin. Huang uses a
uniform-field approximation in which the actual short-
range field is replaced by its value at the origin. It is
shown in Sec. III that the same results may be obtained
by evaluating the eGective field at any point within a
small neighborhood of the origin. With this approxi-
mation we can now write the dipole moment of a
positive ion as

p+—qu++p i+

p i+—Qt+E ((+

E,rr+= E+ (4m/3)P+E„+,

F +—Q Ei(0)

(9)

(10)

1 ~ 4~~
P=—q(u+ —u )+(n++n—

)~ E+—P
~

. (12)
)

' M. Born and K. Huang, Dyrlcmicul Theory of Crystur Lattices
(Oxford University Press, London, 1954).

4 The individual terms in E„+ do not decrease rapidly with
increasing distance from the origin, in fact P~~s E~(0)

~
diverges.

However, it is not really a misnomer to call E.,+ short range
because the nonvanishing quadrupole part of the sum does con-
verge absolutely. Equation (17) shows that the nonvanishing
part of E„+ converges more rapidly that J'drr p at large
distances.

where n+ is the polarizability of a positive ion, E,ff+
is the effective field acting on a positive ion, E„ is the
short-range part of E,it+, and Ei(0) is the field of the
lth ion evaluated at the origin.

We wish to evaluate the total polarization,
P=(p++p )/e, only through terms linear in w and
E Las in Eq. (2)]. Thus we may evaluate E„+ by a
multipole expansion of Ei (0) in which only the monopole
and dipole terms are retained. In this approximation
E„+ vanishes identically in a lattice of tetrahedral
symmetry. '4 E„ is defined in a completely analogous
way, and it also vanishes. Thus the total polarization
becomes,

Comparing Eqs. (2) and (12) one obtains

q 4 n++u-~-'
bet=

(3A)'" 3 e i
fn++rr f' 4r rr++n )

3

(13)

(14)

Combining Eqs. (7) and (14) one obtains the Clausius-
Mossotti relation

3 (e~—1)
n++rr-= —

/

4ir ke„+22
(15)

Combining Eqs. (6), (13), and (15) one obtains the
Szigeti' relation

Ri RiRiRi)
E..+=lZQi: »

Ris Air
(17)

where I is the unit dyadic, Ri is the lattice vector of
the /th ion, and Qi is the quadrupole tensor of the 1th
ion (Q+ or Q ).

Qt —— d'r pi(r) (r—Ri) (r—Ri),

where p, (r) is the charge density of the 1th ion. The
double dot product of two dyads is defined to be

ab:ctl=(a d)(b c). (19)

In order to carry out the sum in (17)we will introduce
a specific coordinate system. The zinc-blende lattice
consists of two interpenetrating fcc lattices. The origin
is chosen to lie at a positive ion site; three more positive
ions in the unit cube of the positive fcc sublattice lie at
(a,0,0), (O,a,0), and (0,0,a) where a is the lattice

' B.Szigeti, 'Zrans. Faraday Soc. 45, 155 (1949).

III. THE ELECTRO-OPTIC COEFFICIENT

In this section we will derive nonlinear polarization
equations using straightforward extensions of Huang's
techniques, and then use these equations to obtain
expressions for the electro-optic coefficient. It is well
known that Eqs. (15) and (16) are not satisfied experi-
mentally if q, n+, and n are interpreted as the free
ionic charge and free ionic polarizabilities. All questions
concerning the origin of these discrepancies will be
sidestepped here by using a phenomenological model
in which Eqs. (15) and (16) are taken to be the defining
equations of n++n and q. In order to obtain a non-
linear polarization equation we will retain quadrupole
terms in the multipole expansion of Ei(0). This gives



POCKELS EFFECT IN IONIC CRYSTALS 723

Tmx, E I. Calculated values of ug. The sum in (23) has been carried out through tenth
nearest negative neighbors with the result

Rg

1/4
1/4
1/4
1/4
3/4
1/4
1/4
3/4
1/4
1/4
1/4
1/4
3/4
3/4
1/4
1/4
5/4

Rn

1/4 1/4
1/4 —3/4
3/4 3/4
1/4 5/4
3/4 —3/4
3/4 —5/4
5/4 —3/4
3/4 5/4
1/4 -7/4
5/4 5/4
3/4 7/4
7/4 3/4
5/4 —5/4
3/4 —7/4
5/4 7/4—
7/4 —5/4
5/4 5/4

0.43
0.83
1.09
1.30
1.30
1.48
1.48
1.64
1.79
1.79
1.92
1.92
1.92
2.05
2.17
2.17
2.17

328.4482—31.3155
13.8713
2.2527—4.0549—2.7250—2.7250
3.9773—0.3405
1.2161
0.6134
0.6134—2.1907—1.1792—0.4414—0.4414
0.1051

A =306. (25)

Q+= d'» uo(r)[u++ (r—u+)][«++(r—u+)]

d'r po(r)[u+u++u+(r —u+)+(r —u+)u+

+(r—u') (r—«')]

The calculated values of ug are given in Table I. No
estimate of the truncation error has been made, but
it is probably not appreciable.

In order to obtain a macroscopic polarization equa-
tion we must be able to write E„+and E„ in terms of
w and E. For definiteness let us again consider the
positive ion at the origin and evaluate this ion's

quadrupole tensor. From (18) we have

constant. The negative fcc sublattice is displaced from
the positive one by an amount (a/4, a/4, a/4). For our

purposes we may specify the symmetry properties of
the zinc-blende lattice as follows': If there is an ion at
lattice site (Rq,R2,R3) there will be identical ions at
(R| R2 R3), (—R|, R2, —Rp), (—R&, —R2, Ra) and
at eight more sites obtained from these four by cyclic
permutation of the indices. We denote such a set of
ions by (R. If (R&,R2,R3) is invariant under some of the
operations of the tetrahedral point group there will be
less than twelve ions in (R, e.g., there are only four
nearest neighbors. We let e(R be the number of ions in (R.

Using these definitions we can easily carry out the
sum in Eq. (17). The term involving I has the same
geometrical structure as the monopole field and there-
fore vanishes. Summing the other term over a particular
set (R one obtains

RRR eg=—RgR2R3$,
R in@ g7 g~

(20)

where g is a third-rank dyadic given by

(3=zgz+zsg+yi's+ gH+azg+sgz (21)

where

E„+=—', (A/a') Q—:g, (22)

In the positive fcc sublattice there will be, for every
set S., a set —6t generated from (—R~, —R2, —R8).
The contributions of (R and —(R to (17) will cancel, so
only negative ions contribute to E„+. Summing (20)
over sets {R of negative ions we hnally obtain

=qu+u++u+pel++pel+u++Qadi+ & (26)

where Q,&+ is the electronic quadrupole tensor. Simi-

larly,
Q = —qu u +u pa +y.i u +Q.i (27)

In order to include the electronic quadrupoles it is
necessary to introduce new phenomenological parame-
ters into our equations. This will be done presently,
but for the time being the electronic quadrupoles will

be neglected. The electronic dipoles in (26) and (27)
need only be evaluated to first order in w and E,

4s ~ r 4~
y,g+=n+l E+—P l=n+l 1+—22 lE+ n+bmrw, —(28)

3 / E 3 ) 3

4
pa-=n-I 1+—b» IE+—n-&»w.

3 j 3
(29)

M+u++M u =0. (30)

Collecting these results, Eqs. (22) and (24) may be
written as

E"+=-
a4

( qMv 4mb»n (Mv)'")
+ lww

(2(M )' 3M- )
n (Ms) r 4n'b22)

l
1.+ lwE:y, (31)

3 )

Finally, u+ and u may be expressed in terms of w by
using Eq. (4) and imposing the condition that the
center of mass of the crystal is at rest,

+8
A = 15a4 g —R~RsR~ ——g ag

(R 2V s

E„—=-,'(A/a4)Q+ g. (24)

and P@ means a sum over sets of negative ions only.
Similarly,

E ———
a4

( qMp 4spz&n+(Mp)»2)
ww

(2(M+)' 3M+

n+(Mw)" ( krbmp)
+ I

1+ lwE: y (32)
M+ E 3
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The polarization may novr be expressed as

1 t 4xP=- g(u+ —u )+(n++4r-)I E+—P
3

4r+E ++.4x
—E;

+
=bsrw+b»E+-i 1——

ek 3

X (n+E„++a-E„-)

=b»w+b»E+ (p)ww+ywE): g,

A(/r i'/P 1
I = I

—~p(« —e.)'"
2 kM// 4(pr)Us

/x+ up n //rp

xj +
&(u-/E7) (~+/E7)

8(pr)"' ri+rp-

+ (e-+2) (34)
9 a'

2A I/a '" ot+/x

v=
I = (e-+2)'

9 kM ap

)I/2

wp ———Ep ———
i

Ep.
rep 4' )

(3&)

The electric displacement associated with 'g and 5 is

$=$+4prg=e„(Ep) 5, (38)

We have used Eqs. (6), ('1), (15), (16), and e=a'/4 to
write r/ and y in the forms given by Eqs. (34) and (35).

In order to Obtain an expression for the electro-optic
coefficient from Eq. (33) we put E=Ep+6, where Ep
is large and sta, 'tic and 5 is small and oscillatory. 5 is
assumed to have a frequency in the range 4p p((a&((Ep/A
so it gives rise to no ion motion and vre may put v =pro,

where wp is large and static. Finally, we put P=Pe+/,
where Pp is large and static and 'g is small and oscil-
latory. Substituting these expressions for E, w, and P
into Eq. (33) and linearizing in @ and '$ we obtain

=b»$+yw pS: II. (36)

%e vrill neglect departures from linearity in the static
dielectric behavior of the crystal and put

e„(Ep) is the high-frequency dielectric tensor in the
presence of an applied static Geld. The inverse dielectric
tensor (through terms linear in Ep) is given by

key («—e„)r/'
e —'(Ep) =e -'I—

I I
ii

egP4pp i 4pr
(41)

The above expression for r4~ does not include the
contribution of the electronic quadrupoles. In order to
evaluate this contribution vre vriH employ the shell
model of Dick and Overhauser. ~ In this model each ion
consists of a rigid core vrhich moves vrith the nucleus
and a rigid spherical shell which may be displaced vrith
respect to the core. The shell represents the electrons
vrhich participate in electronic polarization; the dis-
placement of the shell vtith respect to core gives rise
to this polarization. Let the charge and the radius of
the shell of a positive (negative) ion be —41,

+ (—41, )
and R+:(E ), respectively. If the center of the shell of
a positive ion is displaced an amount d from the nucleus
one has in this model

g,+(E+)'
Q, |+=— I—g,+dd=—

3

il +(g+) P t+P t+
I— . (45)

Similarly
q. (& )' pa pa

Qa =— (46)

These expressions are now to be included in Q+ and.

Q when evaluating E„and E„+.The terms involving
Z+ and Z do not contribute because g:I=O; the
electronic dipoles need only be evaluated to Grst order
as in Eqs. (28) and (29). The resulting polarization
equation ls

P=brtw+ bspE+ ( (r/+r/t) ww+ (y+yt) wE

+bEE):0 (4&)

The electro-optic coefEcient for the zinc-blende lattice
is deGned in the follovring vray'

e„-'(Ep)= p„—rI—rpr5. (42)

Comparing Eqs. (41) and (42) and using Eq. (35) for
y vre obtain

4(pr)1/2 ( /r )r s (ep e )r/2(E +2)s rr+rr
r4t= ~l = I (43)

Eg) O~~~ 66

8=II Eo= &p,.
QO

+O, s +O,y

&O, ~

EO,, 0,

4prp («e44)
e„(Ep)= p„l+

i I
8

ppp E 4pr
(39)

(40)

4 In the literature (see, for example, Ref. 8) the defming equa-
tion of r44 is conventionally taken to be e„'(Ep)=p„l+r44fi but
the crystallographic coordinate system in pvhich the equation is
vrritten is not completely speci6ed. H vre make the coordinate
tmnsformation k'= —g, P'= —9, s'= -/i then

o~Ep. (ys+f/f/)+Ep, „(xf/+ex)+Ep, .(xP+f/x)
= -Ep, p (ptYF+s'%') -Ep, , (g's'+4'P') —Ep, , QYN'+gP') = —fp'

and Eq. (42) may be written in the conventional way.
4 B.Dick and A. Overhauser, Phys. Rev. 112, 90 (1958).
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where TAsLE II. Quantities used in the calculations of +41.

32tr@' (.a 0;+n
st i—— A

I

—
ceo�(eo

—e„)'"(e„+2)'
81 'EM g6

(n /a-s n+/a'i,

32or tr a )'t' n+n (n /a' n+/a'&
(e„+2)'

81 EM) a' ES S+i (49)

o
60

qs

q
+

CuC1

37.79X10 ~ g
5.406 L

3.56X10"sec '
10

3.57
2.974 Xg

8.7e
18e

ZnS

32.06X10 '4
g

5.409 2
5.71X10"sec '

8.3
5.07
4.9 ~3
8.7e

18e

8(nr)'" a )'" 1 (e„+2)' n+n

81 M] cop (ep —e„)'" a'

trn /as n+/as)
xI — I, (so)

& S- S+ i

Eqs. (43) and (52) agree reasonably well with the
existing experimental data. In view. of this the intro-
duction of new phenomenological parameters at this
point seems to be an unnecessary elaboration of our
model. We give below the result of a calculation in
which

S+=q,+/q, S =q, /q.
r+=u+ r =u . (56)

16or (so+2)(e„+2)(n /a' -n+/a')-
r41 r41' 2+ —

I

——
I

. (57)
(ep —e„) & S S+4~ (v+-7 i) (eo e.it"—

r4i= —, I I +2b
cop 5 4tr

IV. COMPARISON WITH EXPERIMENT

pre ma derive an e ression for the electro-o
' This serves to indicate the sensitivity of the expression

coefficient from (47) in the same way that (43) was for rti to the choice of r+ and r . The result is

obtained from (33).The result is

16tr (op+2)(e„+2) n /a' n+/as)
=rot' 1+ — — —I, (52)

9 (eo—e) S S+ ~-

E„+=P (E,(O)+r+ VE, (0)+-',r+r+: VVE, (O)). (53)
l y-'0

Performing a multipole expansion of Et(0) one obtains

E„+=—(A/a4) (-,'Q —r+p ——',qr+r+): g (54)

and similarly,

E.;=(A/a') (o Q+—r-p++sqr-r ):y. (55)

Notice that the short-range part of the effective field
still vanishes to 6rst order in w and E as mentioned in
Sec. II. r+ and r- cannot be chosen uniquely on the
basis of the model we have used thus far; a meaningful
choice vrould certainly involve new phenomenological
parameters. In the following section it will be seen that

where r4~' is the value of the electro-optic coefFicient
given by Eq. (43).

As a final consideration we will investigate the eff'ect

of evaluating the effective Geld acting on an ion at some
point other than its lattice site. The effective field
acting on the 3th ion will be evaluated at Rt+rt where
r~=r for all positive ions and r~ ——r for all negative
ions. In order to facilitate an expansion of the polari-
zation in powers of w and E we will take r+ and r to
be of first order in these quantities. To second order in
w and E we have

In this section we will compare our theoretical results
with experimentally determined values of the electro-
optic coefFicients of ZnS ™and CuC1. ~ We have
calculated theoretical values of r4~ for these materials
using Eqs. (43), (52), and (57). The quantities used in
the calculations are listed in Table II. The lattice
constants were taken from WyckofP '

Np fp and 6„
were taken from Born and Huang. ' Tessman, Kahn,
and Shockley't (TKS) have determined the polariza-
bilities of ions in crystals from experimental data. They
give polarizabilities for the halide ions both at the
sodium D line () =5893 A) and in the limit of long
wavelength () = oo). The ) = oo limit corresponds to
our requirement that to«Eo/h. For n(Cl ) we have
used the TKS polarizability for Cl in an alkali chloride
at ) = oo. TKS give no value for n(S ) at )i= ~, but
S has the same electronic configuration as Cl and
the polarizabilities of Cl at ) =5893 A and X= op

differ by less than 1%. We have assumed that n(S )
and n(Cl ) are similar in this respect, and in Table II
we list the TKS polarizability of S in ZnS at
X=5893 A. n(Cu+) and n(Zn++) were calculated from

' S. Namba, J. Opt. Soc. Am. Sl, 76 (1961).
9 H. Poulet, J. Phys. Radium 16, 237 {1955).
ro C. Schramm, Ann. Physik 25, 309 (1936).
» F. Sterzer, D. Blattner, and S. Miniter, J. Opt. Soc. Am. 54,

62 (1964).
n C. West, J. Opt. Soc. Am. 43, 335 (1953).
'o R. Wyckotf, Crystal Strttctgres (Interscience Publishers, Inc. ,¹wYork, 1963), 2nd ed. , Vol. 1.
'4 J. Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890

(1953).
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Eq. (57) gives

r4i(ZnS) =4.18X10 "cm/V,

r4&(CuC1) = 18.2X10-io cm/V.

(62)

(63)

, -&0 "~ &A'&

FIG. 1.NaVelength dePendenCe Of r41 in ZnS.

Eq. (15).Dick and Overhauser' estimate that q, =8.7e
for ions with a 3s'p' electronic configuration, such as
Cl Rnd S . %C have taken q,+=18@ because both
Cu+ and Zn++ have a 3s'p'dM configuration. This may
well be an overestimate (e.g., it may be. that only the
d electrons participate in polarization), but it is unlikely
to be an underestimate. The results of the calculations
are as follows: Eq. (43) gives

r4i(ZnS) =1.89X10 "cm/V, (58)

r4i(CuC1) =8.65X10 "cm/V (59)

The values of r4i(ZnS) measured by Namba, s

tted in Fig. j. Rnd. thos
of Namba Rnd Schl amm arc cxtrRpolRtcd to
r4» is linear in X ~ as would be expected since the
polarizabilities are linear in X ' in regions of normal
optical dispersion. Namba's values extrapolate to
2 8X10 " cm/V and Schramm's to 2 6X10 " cm/V
Sterzer, Blattner, and Miniter" and %est" have
measured. the half-wave retardation voltage for the
longitudinal electro-optic effect in CuCl using visible
light; both obtained 6.2 kV which corresponds to
r4i(CuCl)=6X10 io cm/V. The author is not aware
of any measurements of r4i(CuC1) as a function of
wavelength.

The agreement between Eq. (60) and the experi-
mental value of r4i(ZnS) at X= ~ is quite satisfactory.
Some of the discrepancy between the theoretical and
experimental values of r4i(ZnS) can certainly be
attributed to the fact that ZnS is not a strictly ionic
crystal. The experimental data on CuCl is not suKcienf.
to assess the relative accuracy of Eqs. (59) and (61),
but both are probably better than (63). Equations
(58)-(61) indicate that the electronic quadrupoles are
'not primarily r'esponsible for the magnitude of r4», but
that they do give a non-negligible contribution. Equa-
tions (62) and (63) indicate that r4i is rather sensitive
to thc choice of r+ and r . In view of this it ls indeed
fortuitous that good results are obtained with
.r+=r =0.-
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