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The general problem of the structure of the low-lying motional states of impurity species in crystals is
approached by applying a group-theoretical reduction scheme to a basis set consisting of nearly isolated
“pocket” states in a rigid lattice. The reduction is carried out for a number of possible symmetries. The
concept of “barrier-lowering” perturbation is used within the framework of first-order perturbation theory
to treat the ordering and splitting of motional states. The method is applied to Li*, OH~, and CN~ as im-
purity species in KCl, with particular emphasis on the analysis of dielectric measurements. It is concluded, in
particular, that motion of OH™ involves both rotational and translational modes.

I. INTRODUCTION

HE subject of impurity motion in ionic or molecu-

lar lattices has attracted considerable attention;
techniques for the theoretical analysis of the motion of,
e. g., large monatomic impurities in ionic lattices! are
well established. Recently, interest has been increasing
in spectroscopic, thermodynamic, and dielectric proper-
ties associated with polyafomic impurities in lattices.
Examples of such systems include OH—,2~* CN—,%% and
NO;~7 as substitutional impurities in alkali-halide
crystals, and HCI and other diatomic molecules in inert
gas crystals.®® In order to deal with such systems, it is
clearly necessary to consider types of impurity motion
not present in monatomic species. One such type of
motion corresponds to internal modes of vibration of the
impurity species which are in general relatively little
perturbed by immersion in the lattice. A second
type, however, which we shall, for simplicity, call
“rotational,” will be very much altered in the lattice.
These modes correspond roughly to the rotational modes
of the impurity species in vacuum, and, in general, can-
not be clearly separated from motion involving dis-
placement of the center of mass of an impurity when
situated in the nonspherically symmetric environment
of a lattice site. The object of this paper is to discuss the
theoretical foundation for the description of such ro-
tational motion in light of the available data on im-
purity species in alkali halides. Our discussion, however,
is limited to certain special cases of the general problem.
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In particular, we concentrate on the analysis of the
low-lying motional states of species subject to potential
barriers large enough to impose an essentially librational
character on these states. We note that the opposite case
of small barriers and motion which is best described as
weakly perturbed free rotation, is well described by the
theory of Devonshire!® and subsequent extensions of
it.7® To implement our discussion, we put forward
below a unified and general scheme for the calssification
of motional states of complex impurity species in rigid
lattices, and indicate how the relevant energy splittings
between low-lying motional states of the type described
above may be computed using a simple and convenient
perturbation procedure. This classification has rele-
vance to both the thermodynamic and dielectric
properties of such systems at low temperatures as well
as to such nonequilibrium properties as dielectric re-
laxation; as we have recently indicated,’* a proper
assignment of low-lying motional states may be of cru-
cial importance for the qualitative interpretation of
such properties.

In addition to the systems mentioned above, we also
apply our considerations to the case of the monatomic
substituent Li* in KCl. This species appears to possess
a set of ‘“off-center” potential minima around its
lattice site and can, therefore, in principle exhibit
motional properties somewhat akin to those in the
polyatomic cases.1?13

In Sec. II, below, we define our model and approach,
and obtain a classification of the low-lying levels of
impurity species in various lattice symmetries by appli-
cation of group-theoretical arguments to a basis set of
“localized pocket” states. The computational method
based on the notion of barrier-lowering perturbations is
described in Sec. ITI. In Sec. IV, we indicate the results
of this analysis when applied to the physical cases of
current interest and discuss the interpretation of mo-
tional state ordering in terms of “translational” and

10 A, F. Devonshire, Proc. Roy. Soc. (London) A153, 601 (1936).
U M. E. Baur and W. R. Salzman, Phys. Rev. Letters, 16,
701 (1966).
(1126% Lombardo and R. O. Pohl, Phys. Rev. Letters 15, 291
965).
13 G, J. Dienes ¢t al., Phys. Rev. Letters 16, 25 (1966); J. A. D.
Matthew, Solid State Commun. 3, 365 (1965).
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“rotational” motion. Section V contains a summary of
the results obtained here and a brief discussion of a
number of questions not touched on extensively in the
body of the work.

II. CLASSIFICATION OF MOTIONAL STATES

In this section, we set forth a classification scheme
based on group-theoretical arguments for the low-lying
motional states of impurity species of the type de-
scribed in the Introduction. In order to motivate the
point of view which we adopt here and throughout the
paper, a survey of the current state of the field is in
order.

The original theoretical work by Devonshire on the
problem of the rotational motion of trapped polyatomic
impurities!® was based on the choice of free rotor wave
functions as a zero-order basis set. The predictions of
this theory have been compared extensively with recent
spectroscopic data on CN~ in KC1¢ and on HCl and
related diatomic molecules in inert gas lattices.?:%14 In
both these cases, reasonable agreement with Devonshire
theory has been obtained; it should, however, be noted
that the character of motion of the impurity species
differs strongly between them. It seems now well es-
tablished that HCI in inert gas matrices is best con-
sidered as a weakly perturbed rotor, whereas CN~ in
KCl is best described as executing torsional oscillations
insofar as its low-lying states are concerned. The
applicability of the Devonshire model to CN~in KCl is
not entirely surprising in view of the dimensions of this
species. Addition of covalent bond radii yields a value
for the long-axis length of the CN~ ion nearly equal to
the mean diameter, about 3.2 A, of the cavity in which
the ion resides in KCl. In addition, the center of mass
of CN— very nearly coincides with the midpoint of the
C-N axis, so that the center of rotation is essentially
the center of mass. It is therefore reasonable to suppose
that motion of the CN— ion in KClI will be angular in
character.

The description employed so far for motional states of
such species as Li* or OH~ in KCl has been rather dif-
ferent from that set out in the Devonshire theory. In
these cases, motion of the center of mass must certainly
be considered in analyzing the motional states, and the
treatment of such motion lies outside the framework of
the Devonshire model. In particular, the motion of the
Lit impurity ion in a substitutional site in KCl has been
discussed in terms of tunneling between potential
minima located along the crystalline [100] directions,®
and this point of view is supported by a recent calcu-
lation of the positions of the minima in the electrostatic
potential due to a rigid lattice of octahedral symmetry
surrounding such an ion.!® In most of the work to date
on the dielectric and thermodynamic properties of OH~
in KCl, the model employed has been that of a sixfold

14 M. T. Bowers and W. H. Flygare, J. Chem. Phys. 44, 1389
(1966).

SUBSTITUTIONAL SPECIES IN LATTICES

711

degenerate ground state, corresponding to the existence
of six minima in the cavity potential, with the OH~
oriented along the [100] axes of the crystal.®* The
degeneracy is, in this picture, lifted by application of
either an external strain or electric field. A classical
model of this type omits the important feature of zero-
field splitting. No sixfold degeneracy can rigorously be
present in the motional states of an impurity at a lattice
site of Oj symmetry, as obtains in unstrained KC1.15 We
may summarize the physical picture underlying the
sixfold degenerate model by saying that it corresponds
to a situation in which potential barriers between the
potential minima in the cavity are sufficiently high to
make the time required for spreading of a wave packet,
initially localized near such a minimum, long compared
with experimental time scales. Since characteristic
motional times in OH—KCI are short, as evidenced
by the existence of an electrocaloric effect,* the barriers
to OH~ motion must be finite and the sixfold degeneracy
is lifted.

The localized wave packet model, summarized in the
preceding paragraph, does, however, provide a useful
point of departure for a quantum-mechanical discussion
of low-lying motional states which seems well adapted to
the situation in such species as Lit and OH~ in KCL
One may adopt the sixfold degenerate manifold of states
obtained for an octahedral cavity with infinite potential
barriers as a zero-order basis set in place of the ro-
tational wave functions employed in the Devonshire
approach, and approach the problem of the ordering
and splitting of correctly symmetrized linear combi-
nations of them in terms of perturbation theory. From
this point of view, which we follow in the rest of this
work, it is the lowering of the potential barriers between
potential minima, in the cavity which permits tunneling
and is responsible for the existence of nonvanishing zero-
field splittings.!® It is clear that this approach is well
suited only to cases in which the barriers between
minima are high enough so that the lowest motional
state within a potential well lies at an energy well below
the top of the lowest barrier. This lowest motional state
is then well represented as having harmonic-oscillator
character. In the case of a species like CN— in KCl], the
motion is better referred to as a harmonic torsional oscil-
lation, or libration. In a system like HCI in argon,4
such a picture is not at all applicable, and the basis set
chosen in the Devonshire approach is preferable. Hence,
‘we shall not attempt to apply the methods presented
below to this case.

To proceed, we now give a more precise prescription
of the zero-order basis set. We remark that we adopt

15 See, for example, H. Eyring, J. Walter, and G. Kimball,
%ﬁantu{v(t) Chemistry (John Wiley & Sons, Inc., New York, 1964),

ap. 10. .

16 Tt should be noted that the tunneling splitting under dis-
cussion is equivalent in character to the splitting of the ammonia
inversion doublet; see, for example, C. H. Townes and A. L.
Schawlow, Microwave Spectroscopy (McGraw-Hill Book Company,
Inc., New York, 1955), Chap. 12.
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throughout a rigid lattice model for the host crystal,
since the question of phonon interactions is of no con-
cern here. We shall also leave open the precise symmetry
of the crystal at this point, but merely suppose it to be
high enough so that several equivalent potential
minima (4, 6, or 8) exist for an impurity at a lattice
site. We assume that the potential near each minimum
can be regarded as that of a three-dimensional harmonic
oscillator, and that the impurity species has at least
one state lying well below the top of each potential well.
Such a localized state will be called a pocket state, and
will always be represented here by a wave function of
harmonic-oscillator type. In particular, if we consider
a case like Lit in KCl, the lowest pocket state wave
function will be taken as N exp(—pr?/2), where N is
the normalization constant, 7 is the distance of the Li*
ion from the minimum (zo¢ from the center of the
cavity), and B= (mK/#%)?, with m the mass of the
ion and K the force constant. In principle, one could
treat the harmonic-oscillator well as antisotropic. For
the case of a species like CN~ in KCl, the lowest pocket
state wave function would be of form N exp(—vQ?%/2),
where now Q is an anguler displacement of the axis of
the molecule from its equilibrium orientation, and
v= (Ik/#2)Y/? with I the moment of inertia of the mole-
cule and % the force constant for libration (with units of
energy).

In accordance with the remarks above, the set of
pocket states will not be rigorously orthogonal but will
overlap in view of the finite height of the potential
barriers surrounding the minima. In consequence of this
interaction of the pocket states, their degeneracy will
be lifted. The set of correctly symmetrized states
derived from the original set of pocket ground states,
and split by the interaction, will be called the ground or
lowest manifold. In principle, we can also discuss the
first excited, and higher, manifolds, by applying our
prescriptions to a zero-order set in which one excited
pocket state is introduced, but these higher manifolds
will not concern us in this paper. In the next section, we
discuss the application of perturbation theory to the
calculation of splittings within the lowest manifold; in
the remainder of this section, we demonstrate the
process of symmetrization of the pocket states for
various impurity site symmetries.!”

We carry through the symmetrization in detail for
the case of a site with O symmetry and six potential
minima displaced from the cavity center along the
(100) axes. The six pocket states are denoted Yiz, Yy,
V4., where the significance of the subscripts is self-
evident. These states form a basis for a reducible
representation of O, whose character under each
operation of the group is readily calculated. In this

17 Basis sets corresponding, in essence, to the pocket state basis
used here have recently been introduced independently in dis-
cussions of paraelectric resonance in OH™—KCI by G. Feher, L.
Shepherd, and B. Shore, Phys. Rev. Letters 16, 500 (1966), and
L. Vredevoe (to be published).
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way it is found that the representation decomposes ac-
cording to 41,4714+ E,. In terms of symmetry proper-
ties, but of course not of detailed form, states belonging
to these latter representations are analogous to s,
(P2,y.2), and (d.z,z2—y2) states for a purely spherical
cavity. Now we introduce the linear combinations

Yop=0y (2)—1/2(‘/’+x+‘l’——:c) ’
You= ‘7'—(2)_112(\0+z—¢—2) ’

with similar definitions for ¢,, etc. In constructing
these functions, we have inserted the factor ay.
=(1=£5)"1/2, where S is the overlap integral

S= <'/’+z ‘ 'P——z>= <¢+y l ‘p~1¢>= <‘//+z | ‘l’—2> ’ (2)

insuring that the new g and # functions are orthonormal.
Now, You, ¥yu, ¥2u transform like coordinates «x, vy, z
under operations of Op, while ¥z, ¥yg, Y., transform
like x?, 9% 22. Comparing with the transformation
properties of the coordinates and their squares under Oy,
we find at once that the properly symmetrized ortho-
normal states ® are

@(A) = (3)_1/2b1('/’za+\1’1m+¢za) )

)

B(E)ao—y2= (2)"V 2220~ Vu0) » (3a)
B(E)sa= (6)"2203(20 20— V¥20—¥u0);
B(T)s=Vzu,
(T)y="wu, (3b)
®(T):=V:u.

In Egs. (3a), we have introduced the normalization

factors
bi=(1+4Ta, 212,

bo=(1—4Ta,?)~12, @
by=(1—4Ta, 212,
with
T= <¢+Z|¢+y>= (¢+Z|¢—y>= cen, (5)

The extension of this procedure to other possible
symmetry groups need not be given in detail, and we
content ourselves with presenting the results. In the
case of O, symmetry with eight minima along the (111)
axes, we introduce the pocket states Y111, Y11, Y111, Y111,
etc. Decomposition of the reducible representation
formed by these eight states yields 41574 T2+ T1ut A 20.
We then find easily
®(415)= 2) 'es@orut¥aut¥antyun ,
B(T10) o= (2)esWurti— Yutnn+HYun+vann) ,
B(T1u)y= Q)2+ ¥urn—vunt+duur) ,
®(T1).= 2) leoWuan otttV — o) ,
CI?(TZQ)zy= (2)_163(¢0111+'l/a111—'/’yTII—KbalTl) ’
B(T2g)ae= (2)"csWorurt¥on—¥pu—your) ,
B(T2p)y= (2 'cs(orutdoru—v¥an—yun) ,

B(424) = ) Yesuin—Yuin—vuni—Yuas)

(©)
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where
Vo= (2) 20y @rtyrm),
Y= (2)~Y%a_(Yr1u—vim1) , (M
Your= (2)72a; @ui+vm) , ete.

In these equations, the @, factor is defined in analogy
with that for the six minima case, and the factors ¢ are
analogous to the factors b for the latter case.

In the case of O symmetry, tegragonally distorted
in the z direction, and with six minima in the potential,
the relevant group is Dg.'® The ground manifold de-
composes according to 241,+Biy+Eu+A4s., and the
correspondance with the Oy case is given by

414(0)=A41,(Dur)

(Eg)a42(0n)=B1,(Dar)
(Eq)22(0n)=A14(Dun) ®)

(Tlu) «+ (Tlu)u(oh) = Eu(D 4h) )

(T'14):(0n)=A2u(D) .
The decomposition of the states in Dy symmetry in
terms of pocket states can then be taken over from

Egs. (3).

Finally, it may be relevant for application to, e.g.,
an interstitial impurity, to consider a species in a cavity
with tetrahedral fourfold minima. The four pocket

states form a reducible representation which decomposes
according to 41+ T4, and, labeling the pockets 1-4, we

find
B(41)= (2)7 a1 HYot¥s ) ,
B(T1)1= (2) 'do(Wrt+Ya—y¥s—n), ©)
B(T1)e=(2) M da@1—Yat¥s—),
B(T1)s=(2) 'dor—Yo—¥s+v4) ,
where
di(14-38)"12,  dy=(1—S)"V2,
and

S=Wils) 4,j=1-4, ixj.

It is clearly possible to obtain appropriate prescrip-
tions along these lines for other symmetry groups, if
required for physical applications.

III. BARRIER-LOWERING PERTURBATION
THEORY

With procedures for the classification of symmetrized
states in terms of a basis of pocket states in hand, it
remains to formulate a method for the calculation of
the ordering and splitting of states within the ground
manifold in terms of perturbation theory. As indicated in
Sec. 11, the essential physical feature in this problem is
that the barriers between minima in the cavity po-
tential are of finite height. Were it not for this, all
pocket states, and their symmetrized linear combi-
nations, would be rigorously degenerate in energy. The

18 The group is Cy, if the distorting field is included.
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problem of incorporating this feature into a perturbation
calculation is somewhat delicate. One might expect that
the energy calculation could be formulated in a way
strictly analogous to the molecular-orbital calculation of
bonding and antibonding energies in, e.g., the Hy*
molecular ion.” Indeed, we shall reduce the general
problem to one involving perturbations acting between
single pairs of pocket states, so that one can cast the
discussion in terms of a simple double minimum
problem, that is, essentially the problem of the inversion
doublet of ammonia.!® To this extent, a parallel with
the molecular problem exists, since, in that case, po-
tential minima are present at the positions of the two
nuclei. In the latter case, the splitting between bonding
and antibonding levels is given by the so-called reso-
nance integral (Y1| H|¥»), where H is the Hamiltonian
and ¥, and ¢, are atomic wave functions centered on
nucleus 1 and nucleus 2, respectively. In the molecular
case, this integral is negative and in consequence the
lower (bonding) combination of ¢ and ¥, is symmeiric.
In the case of overlapping harmonic-oscillator well
potentials, however, the potential is everywhere posi-
tive, and the resonance integral is therefore also positive
if the two wave functions are taken to be harmonic-
oscillator ground-state functions. It follows that the
lowest state is an antisymmetric combination of the
latter functions. This contradicts the known situation in
ammonia, for example, in which the lower state is the
symmetric combination. Most simply stated, the dif-
ficulty is that a linear combination of two Coulomb
potentials on different centers adds up to give a new
potential which is not of Coulomb form, but a linear
combination of two harmonic potentials with identical
values of curvature parameter merely gives a new har-
monic potential with lower curvature. Thus, the eigen-
states which one computes by applying the molecular-
orbital viewpoint to a potential which is the superpo-
sition of two harmonic-oscillator wells must be approxi-
mations to the exact eigenstates of merely a third,
broader, well. By inspection, one sees that the sym-
metric combination of two harmonic-oscillator ground-
state functions on different centers possesses three
extrema and therefore must be an approximation to the
second excited state of the combined potential. On
the other hand, the antisymmetric combination has
two extrema and is in approximation to the first excited
state, hence lies lowest in-energy. The situation is
helped only quantitatively if the harmonic potentials
are cut off at their point of contact; in any case, the
ordering of states remains as indicated above. This
result, of course, would not be incorrect if the potential
barrier were correctly represented by a sum of harmonic-
oscillator potentials, a situation indicated in Fig. 1 as
the “unperturbed” case. In any real barrier problem,
however, such a representation is probably unrealistic.

19 See, for example, C. A. Coulson, Valence (Oxford University
Press, New York, 1961), 2nd ed.
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UNPERTURBED WITH BARRIER-LOWERING

PERTURBATION

Fic. 1. Tllustration of barrier-lowering perturbation.

In the case of ammonia, for example, one may easily
fit parabolic forms to the double minima of the potential
curve and find that the point of contact of the parabolas
is at a potential of about 4000 cm™! or twice the actual
barrier height. Since the splitting of ground manifold
states is very dependent on this height, application of
the overlapping oscillator potential picture without
modification to the case of ammonia would give a
splitting which is too small by about 103 as well as an
incorrect level ordering.

In light of these observations, we choose to con-
sider the fundamental quantity responsible for the
ordering of levels in a barrier problem, and for the
magnitude of the splittings between them, to be the
energy of lowering of the barrier below what it would be on
the simple overlapping harmonic-oscillator-well model. We
emphasize that we introduce this quantity simply as a
device to permit a proper representation of the form of
the potential within a theory founded on the use of
harmonic-oscillator basis states. If the central barrier is
lowered by a perturbation — U, it can easily be seen
that the ordering of states in, e.g., ammonia, imposed by
this perturbation is correct. In the remainder of this
article we adhere to this point of view, and calculate
ordering and splitting of states within the ground mani-
fold by applying first-order perturbation theory to
pocket states of harmonic-oscillator character, with the
barrier-lowering energy as perturbation. We neglect the
small splitting which would be present in the absence of
the barrier-lowering perturbation.

We leave explicit application of the method sketched
above to the following section, and continue this sec-
tion with a discussion of the form to be taken for the
perturbation —U,. In order to reproduce the exact
form of the potential barrier between two minima, this
quantity would have to be taken as a rather complicated
function of the variable (either 7 or ©) in terms of which
displacement from a potential minimum is measured.
However, it is sufficient for our purposes to take the
perturbation as merely a negative constant for the whole
range of the displacement variable. It must be remem-
bered that the perturbation correction to the energies of
the symmetrized basis set enters in the form of integrals

<¢+zl U owl_z), etc.

These integrals are conveniently extended over all space
in order to simplify integration over Gaussian factors,
but contain significant contributions only from the

M. E. BAUR AND W. R.

SALZMAN 151
region where the overlap of ¥, and ¥_, is considerable,
that is, near the barrier maximum. To be entirely
consistent, we should also take into account diagonal
matrix elements of — U; the result of such a calculation
would of course be only an equal downward shift of all
levels in the ground manifold with no splitting. There-
fore, we ignore the diagonal elements of the perturba-
tion. In light of the above remarks, we have by this
technique in effect achieved the goal of inserting a per-
turbation only near the barrier maximum, which will
produce splittings within the ground manifold. More
elaborate specifications of the barrier perturbation can
be introduced, should the experimental situation war-
rant such refinement in future. With the model and form
of the perturbation so defined, we have in essence a two-
parameter theory involving — U, and the curvature at
the potential minima. The width of the barrier is a
function of the curvature parameter and the distance
d between potential minima, whereas the height of the
barrier involves mainly — U. The form of the perturbed
potential within our approximation of a constant — U,
is sketched in Fig. 1. One further point needs to be
noted. In general, we must expect the barrier pertur-
bation to differ depending on whether the overlapping
pocket states are neighboring, like Y.z, ¥4y in Op sym-
metry, or opposed, like ¥, ¥, in Op. Thus, in a case
involving six minima in O symmetry, there will be
two barrier-lowering parameters; with eight minima in
Os, there will be three, with six minima in Dy, there will
be four, and with four minima in T4, there will be one.
Accordingly, to conclude this section, we set out the
general formulas for splittings induced by the barrier-
lowering perturbation in each of these cases.

For the case of Os with sixfold minima along the
(100) axes, we represent the perturbation formally
by terms —M and — E. — M lowers the potential at the
cavity center and, therefore, provides an enhanced
coupling between opposed states .., and ¥_,, ¥, and
Y_y, and ¥, and ¢_.. — E lowers the potential along the
cavity [1117] axes and provides an enhanced coupling
between neighboring states, ¥, and ¥, etc. In specific
cases in the next section, we give numerical estimates for
these perturbations. Let the matrix element of M
between two opposed states be m and that of E between
two neighbor states be e. Taking the diagonal elements
of —M and —E with the properly symmetrized states
for Os symmetry given in Egs. (3) and dropping all
matrix elements diagonal in the pocket state basis as
discussed above, we find immediately for the shifts in
energy W under the perturbation:

W(d1)=—m—4e,

W(E,)=2e—m,

W(Tw)=+m.
The sum W (41,)+2W (E;)+3W (T1,) is 0, as must be

the case. The nondegenerate state 4, thus always lies
lowest in energy, and the ordering of E, and T}, states

(10)
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depends on the details of the potential. There are
two characteristic splitting parameters, A=W (E,)
—W(d1)=6e, and As=W(T1.)—W (d1,)=2m-}4e.
It must be remembered that large values of ¢ or m
mean small barriers.

A few comments on these results are relevant. If the
central barrier is small compared to the barriers be-
tween neighbors (m>>e), then the states 4;, and E,
remain essentially degenerate, and the lowest manifold
consists of two triplets. This is the case of “tunneling”
across the cavity center, which it seems appropriate to
call the translational case. The opposite limit, which
probably applies in the case of CN~ in KCl, we shall
call the rotational case. Here, there is essentially no
possibility for reorientation of the impurity species
through the cavity center (which would imply an in-
version of the species), and reorientation must proceed
via neighboring minima. It follows that m<e, so that
the Ty, levels lie between 41, and E,, and A; equals
(3)As. This latter result should correspond to the
asymptotic limit of the Devonshire theory in the limit of
large barriers, but unfortunately accurate numerical
estimates of the large barrier limit of the Devonshire
result are not available.? It should be emphasized that
our model only applies if the potential minima are deep
enough to possess at least one bound state below all
barrier crests, and cannot be expected to reproduce the
low barrier splittings given to reasonable numerical
accuracy in Devonshire’s work. We note that the treat-
ment given here, furnishes a natural criterion for
rotational or translational motion of the impurity species,
in the sense introduced above. If T4y, is above E,, the
motion is of the latter character; if it is below E,, the
motion is of the former character. Because it is possible
for T1, and E, to cross, intermediate cases also are
possible; and, as discussed in Sec. IV below, OH~ seems
to be one of these.

For T4 symmetry, with minima at the corners of a
tetrahedron, there is a single barrier perturbation —E
with matrix element —e between each pair of pocket
states; and the shifts in energy are:

W(A1)=—3e,

W(T)=+m. (4

The single splitting parameter equals 4e. In the case of
a one-dimensional double minimum problem (ammonia)
with barrier perturbation —M and matrix element
—m, we have:
W(+) =—m,
W('—) =+m,

where (4) and (—) are the symmetric and antisym-

(12)

20 In his original numerical calculations (Ref. 10), Devonshire
predicted an actual crossing of levels, with E, lower than T, for
extremely high values of the barrier potential. On our analysis,
this cannot be correct, and reflects numerical inaccuracies in the
calculation. It is clear that a more refined calculation of the
Devonshire type would be of great value in clarifying this point.
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metric combinations of pocket states. The single split-
ting parameter equals 2m.

In the case of Dy, symmetry (octahedral lattice with
a sixfold minimum in the presence of a homogeneous
electric or strain field), we have barrier perturbations
—M between opposed pockets along a twofold axis,
— M’ between opposed pockets along the fourfold axis,
—E between neighboring particles in a plane perpen-
dicular to the fourfold axis, and — E’ between neighbor-
ing particles in a plane containing the fourfold axis. The
energies of the states are then

W (A1) =—32m~+m'+4e+8¢'),
W(A1,)=—%t2m~+4m'—4e—16¢) ,

W (B1,)=—m+2e, 13)
W(E,)=m,
W(Azu) =m'.

In the case of nearly pure rotation, 7 and m’ are zero,
and the spectrum of states falls into a 1-3-1-1 arrange-
ment. In the case of no rotation, ¢ and ¢’ are zero; and
the spectrum remains 1-1-1-2-1.

Finally, in the case of O;, symmetry with an eightfold
potential minimum, we have perturbations —M along
the main cube diagonal, — E along cube edges, and —C
along face diagonals. The energies are

W(4,)=—m—3e—3c,
W(Ty,)=—m—+etc,
W(T1,)=m—e+c,

W (A 2.)=m-+3e—3c.

(14)

The six splitting parameters are easily read off this list
and we do not list them here. The case of rotational
motion is obtained if 7 and ¢ are zero, yielding a
1-3-3-1 pattern of levels with equal intervals 2¢ between
them. The parameter c is always likely to be small since
very large potential barriers are to be expected at the
face centers.

IV. APPLICATIONS
A. Ammonia Inversion

The ammonia system is the most evident one on
which to test the model described in the preceding sec-
tions. From the inversion potential given in the liter-
ature,?* we have fitted the potential minima to two
identical harmonic-oscillator curves with K=1.0X10°
dynes/cm. The intercept of these curves is at 3820 cm™—.
The actual barrier height is 2070 cm~! so that the barrier
lowering perturbation is —M =—1750 cm™!. The re-
duced mass for NHj; is obtained in the usual fashion,
and the separation between the minima is taken as
0.76 A. Inserting these numbers into first-order per-
turbation theory, we obtain a splitting of 0.5 cm™!

21 Reference 16, p. 301.
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TasLE I. Computed values of barrier-lowering perturbation and
splitting parameter for range of K values, case of Lit.

K (10~ dyne/cm) M(cm™) 2m(cm™1)
1.7 200 1.0
1.8 240 1.0
19 240 1.0
1.9 280 0.9
2.0 320 0.8
2.1 360 0.8
2.2 400 0.8

between the inversion levels, with the ordering cor-
rectly predicted. The experimental value is 0.8 cm™.
Hence the application of our prescription in its most
unrefined form gives a value for the splitting here which
is semiquantitatively correct.

B. Lit in KCl

In this case, we labor under the handicap of having no
very precise idea of the form of the potential function.
However, it seems well established!® that there are
potential minima on the (100) axes at a distance of
0.38 A from the cavity center with a central barrier
equal to 400 cm—. This immediately enables us to set
bounds on the value to be taken for K, the force con-
stant for the harmonic well. If K> 2.6X10° dyn/cm,
the energy of the ground state in the well is greater than
the central-barrier height. Also, if K<1.1X10* dyn/
cm?, the potential at the intercept of the harmonic
potential curves is less than the known central-barrier
height.!3 By analogy to the case of ammonia, we expect
the potential at the intercept of the two harmonic
potential curves to be between 1.5 and 2 times greater
than the actual barrier height. Thus, K should be such
as to make the potential at contact 600-800 cm™, giving
K between 1.7X10* dyn/cm and 2.2X10* dyn/cm.
With K in this range, we find the results set out in
Table I for the magnitude of the barrier-lowering per-
turbation M and the splitting parameter 2 as functions
of K. In order to complete the determination of the
ground manifold spectrum, it is necessary to assign also
the parameter e, reflecting the barrier-lowering pertur-
bation between neighboring minima, and here the re-
sults of Ref. 13 give no help. However, it is possible to
make an order of magnitude estimate of the barrier
between neighboring minima on the basis of an electro-
static calculation using a point charge model for the
fields arising from CI~ ions surrounding the cavity. We
find in this way that this barrier is on the order of 10*
cm~!, and that the parameter e is therefore negligibly
small. It follows that the levels 41, and E, remain very
nearly degenerate, with the levels T1, at an energy
Ay equal to 2m or about 1.0 cm™! above them. This inter-
pretation is in accord with the original suggestion!?
that the motion of Lit in KCl is best regarded as a
translational tunneling. Experimentally, a phonon
resonance at 1.2 cm—1has been observed in this system, 2
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and it seems reasonable to attribute it to transitions
occurring between the (41,4, E,) set and the T}y, set of
impurity motional states. It should be noted that the
value of K of about 2)X10* dyne/cm obtained for Li*+
in KCl indicates that Li* ion moves in a rather broad,
shallow well with respect to radial displacement from
the cavity center. The well is certainly much steeper
with respect to angular displacement from the mini-
mum, so that the actual contours of constant potential
energy are ellipsoidal in shape.

With the above assignment of K, we find the pocket
ground state to have an energy of 108 cm—L. The energy
of the first excited pocket state is 324 cm™, sufficiently
close to the central barrier maximum to make appli-
cation of our perturbation method to the first excited
manifold for Li*+ in KCl of dubious value. Nevertheless,
it is interesting to note that at least some of the states
of this manifold will lie at energies below the top of the
central barrier.

Some experimental information is available on the
dielectric properties of Lit—KCl1'?; from measurements
of the electrocaloric effect, it has been inferred that the
effective dipole moment, pes, of the Lit impurity in its
cavity is 2.54 D. It is of some interest therefore
to discuss the significance of pets in terms of the analysis
given here. Consider an electric field E in the 3 direction
applied to a Lit ion in KCl. None of the properly sym-
metrized motional states for the impurity possess a
nonvanishing diagonal dipole moment matrix element;
but in the presence of the field, off-diagonal coupling of
the states occurs. This produces both an alteration in the
pattern of impurity energy levels and a polarization of
the ion cavity system.?? The states (T14)z,y and Eg2_,»
remain unshifted under the field perturbation, but
(T1):y E.* and Ay, mix. The matrix elements coupling
them are
mE=(2(41;) ly-E|®(Tw).),

woE= <‘I>(Ea)z2 I!,' -E l CI)(TW)» .

Accordingly, with the assumption that A, is zero, the
new energy levels of the system are given by the roots of

(15)

0—X 0 +wmE
0 0—N +uE|=0, (16)
FmE FpE  A—\
where A;=A. Solving, we obtain
A=0,
N=A/2[A%/4+ E2(u 2+ pe?) V2. an

Thus, four levels remain at the same energy as in
the absence of a field; one is shifted to higher energy
and one to lower. The result is a 1-2-2-1 pattern of
levels with splittings [A2/44 E2(us2+pus2) 12— A/2, A,
and [A%/4+ E*(u1®+ p2?) 12— A/2, respectively. In the
limit of high fields, when E?(ui2+u.2)>>A2%/4, the level

2We ignore actual electrostatic distortion of the cavity,
although this must certainly be present to some extent.
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arrangement is essentially the 1-4-1 predicted on the
basis of the classical model in which the Lit ion is
taken as localized in one of six pockets, with the de-
generacy of two of the pockets removed by the field. In
this limit, which applies in the experiments reported in
Ref. 12, the splitting between the shifted levels and
central quartet becomes E(ui2+u2%)'2. It is instructive
to write out the matrix elements u; and us in terms of
integrals over the pocket state basis functions. We
have:

p1= (3) V201 2y | ucos| ¢.u)
+ Wyl ncosb|You)+ Pzg neost | ¥u) ],
=(3)7Y%1( | ucosh| ¥zu)
~a,a_bi(12) 72 [ (Y4 | pcosh|¢..)
— . ‘ pcos|y—.)], (18)

where we have used Eqgs. (1) and (3). In writing (18)
in its approximate form, we have neglected contri-
butions to the dipole moment matrix element from over-
lap terms of the form

izl peost|¥ss),  ete.,

and have retained only terms diagonal in the pocket
state basis set. This is reasonable since the barrier
between neighboring pocket states (¥4 and ¥, etc.)
is large and the amplitude of the pocket functions will
be small near the barrier maximum, leading to very
small values for the overlap terms. Now we introduce
the assumption that cosf is +1 for a particle localized
in the 43 pocket and —1 for a particle localized in the
—z pocket,?® and let p, be the geometrical dipole
moment for a configuration in which the particle is
placed exactly at the minimum of a potential well.
Using Eq. (18), we then have

mi2aia _bi(3)%u,. (19a)

Carrying out the same procedure for us, we obtain
po=a.a-b3(3)V/2u,= (bs/b1)(2)"/%us. (19b)

From our discussion above of the ground manifold
splittings in the high-field limit, it is evident that the
effective dipole moment measured in high-field experi-
ments!? is

Meff= (ﬂ12+”22)1/2- (20)

Therefore, using Eqgs. (19), we obtain at once

:Ufafig”g I}

where we have neglected deviations from unity of the
normalization factors. Thus, the high-field case corre-
sponds to the classical limit with respect to both the
form of the level spectrum and the magnitude of the
measured dipole moment. The geometrical dipole mo-

28 We use the physical definition of dipole moment, in which
the direction of the dipole is taken from negative charge to positive
charge.
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ment, available from the results of Ref. 13, is 2.00
D, in reasonable agreement with the high-field
effective dipole moment of Ref. 12.

As has been pointed out,'! the level pattern of the
ground-state manifold of an ion in a cavity with O
symmetry and a sixfold minimum may permit an
interesting departure from conventional dielectric be-
havior at low-field strengths. If the condition

pa/p1>2(As/ A — 1)1 @1
is satisfied, the dielectric constant will exhibit a maxi-
mum as a function of temperature, even in the absence
of interactions between impurity ions. This condition is
certainly not satisfied in Li* in KCl according to the
above analysis, but it would nevertheless be of interest
to measure the low-field, low-temperature dielectric
constant of this system, in order to check the value
Of Al.

Note added in proof. Recent sound-velocity measure-
ments on Lit in KCl show conclusively that the poten-
tial minima for the Li* ion are on the [111] axes
[N. E. Byer and H. S. Sack, Phys. Rev. Letters 17, 72
(1966)]. Presumably the minima on the [100] axes
originally proposed in Ref. 12 and discussed quantita-
tively in Ref. 13 are also present, but are shallower than
the [111 ] minima ; itis likely that they are in fact saddle
points in the cavity potential. The appropriate level
scheme for Li* in KCl is therefore that given in Eq. (14)
above for the case of an eightfold minimum. Since the
face diagonal of the cube whose corners are situated at
the [1117] minima passes through the [100] axis, on
which the potential is known to be lower than at the
cavity center, it is clear that the barrier-lowering term
—M (main cube diagonal) must be smaller than the
term —C (face diagonal). Hence the parameter m is
smaller than ¢. Further, the distance along a cube edge
between two neighboring minima is smaller than that
along a face diagonal, and the edge potential barrier
height would be expected to be lower than the face-
diagonal potential barrier height, since overlap with
neighboring Cl~ ions is smaller along an edge. It follows
that —C and ¢ are small compared to —E and e.
On the basis of these remarks, it seems a reasonable
approximation to set 7 and ¢ equal to zero. The level
sequence in the gound manifold of Lit in KCI then be-
comes A1g, T'1uy T'2g, A2 in order of increasing energy,
with an energy splitting 2¢ between each adjacent pairin
this sequence. The dipole-moment operator has sym-
metry-allowed matrix elements between the pairs
(A14,T14), (T1u,T2g), and (T24,42,). The phonon reso-
nance energy, 1.2 cm™, is presumably equal to 2e,
rather than 2m as inferred in the body of this article.
The analysis given above for barrier parameters for
Li* in KCl could evidently be modified to apply to the
eightfold minimum case, if a calculation on the order of
Ref. 13 were available for the [111] positions. It is of
interest to note that, on the revised picture, tunneling
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of the Lit ion through the cavity center is of minor
importance; the ion can perhaps best be regarded as
orbiting around the cavity center.

C. CN—in KCl

The considerable body of spectroscopic data on this
species® indicates that the lowest manifold consists of
A1y, Ty E, as expected for O, symmetry with a sixfold
minimum. The ratio As/Ay, is found to be 1.7, in reason-
able agreement with the result predicted here for a
pure rotational case. Since a thorough application of
the Devonshire theory to this species has been carried
out,® with particular attention being given to the
question of the barrier height, we omit a detailed
treatment using our approach.

D. OH in KC1

The motion of OH~ in KCl is more complex. By
analogy with CN— in KCl, a ground manifold composed
of A1,+T1+E, would be anticipated, but the im-
purity is sufficiently small (radius about 1.5 &) so that
center-of-mass displacement within the cavity appears
possible. Indeed, one must expect a cavity potential
with a large number of minima as a function of center-
of-mass position and angular orientation of the im-
purity. It has been suggested?* that an important factor
in this connection is the formation of hydrogen bonds
between O and second-nearest neighbor Cl~ ions with
the O atom off center in the cavity. However, it is well
established that hydrogen bond formation demands a
linear arrangement of O, H, and Cl;* and linearity in
the present case would require that the O atom be at
the cavity center. This model would then predict an
eightfold minimum in the potential since there are
eight second-nearest neighbor CI~ ions. There is some
experimental evidence bearing on this point. As we have
seen above in the discussion of Lit in KCl, application
of a large electric field to a dipolar impurity species in a
crystal will bring the motional spectrum into the same
form as would be predicted on the classical localized
state model. High-field experiments on OH~ in KCl
have been carried out; the optical,® dielectric,* and
thermodynamic? properties of the system in large fields
conform well to predictions made on the basis of the
classical model with six equivalent minima along the
[1007] axes. This is strong evidence for the contention
that the fundamental qualitative feature of the cavity
potential is a sixfold minimum. Superposed upon this
fundamental structure there will probably be smaller
ripples in the potential with a large set of shallow
minima and maxima; but it is improbable that the
zero-point energy of the impurity in one of the main
sixfold wells is so small that these minor variations are

24 R. O. Pohl (private communication).
25 G. C. Pimentel and A. L. McClellan, The Hydrogen Bond
(W. H. Freeman and Company, San Francisco, 1960).
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of critical importance for the motional spectrum. On
this picture, absolute minima in the potential energy
are achieved when the OH~ jon is aligned along a
[100] axis, and it is further reasonable to surmise that
the O atom will be somewhat off center to minimize the
interaction of H with neighboring K+ ions.

On the basis of these remarks, we interpret the pocket
states for a case involving both center-of-mass motion
and rotation of the impurity species about its own axis of
inertia as follows: Specification of the position of an
impurity within a pocket (e.g., choice of the argument of
a pocket state wave function) means a specification of
the position of the center of mass of the species. For
each position of the center of mass (except perhaps when
it is on a symmetry axis of the cavity) there will be a
unique angular orientation of minimum energy of the
impurity. Both the center of mass and the angular
orientation of the impurity can, therefore, to an approxi-
mation, be regarded as specified by the single argument
of the wave function. We further assume that as the
impurity moves from one absolute minimum to another
the only angular orientations which need to be con-
sidered are those which correspond to potential minima
for the given position of the center of mass. In other
words, we assume a saddle-point model for impurity
motion, in which barrier penetration occurs via the
position of minimum energy on the barrier and the
angular orientation of the species is determined by the
position of the center of mass. In the case of OH™ in
KCl], the pocket states correspond to configurations in
which the position of the center of mass of OH™ is off
center and close to a [100] axis, and the orientation of
the O-H bond is close to that of the axis.

If now the center of mass is moved far from the [1007]
axis, the angular orientation of lowest energy may alter
radically. If the center of mass is off center on the [1107]
axis, for example, it seems unlikely that the orientation
of the O-H bond is along this axis. Such an orientation
would bring O close to a second-nearest neighbor CI~.
The precise specification of the orientation of minimum
energy for general position of the center of mass lies
outside the scope of this work, and we merely remark
that the problem of fundamental importance for the
calculation of splittings in the ground manifold of OH—
in KCl, assuming the model described above, is that of
the location and energy of the saddle points in the bar-
riers between the sixfold absolute minima.

Some indirect evidence on the character of the motion
of this species is available from low-field, low-tempera-
ture dielectric data.? A maximum in the dielectric
constant of OH~in KCl as a function of temperature has
been found, and this feature may have its source in the
nature of the splittings in the ground manifold of
motional states.!’ Applying this notion, we have esti-
mated values for Ay, As, p1, and us for OH— in KCl in
previous work!* based on the data of Ref. 2; these
quantities have the same significance here as in the case
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of Lit in KCl. In our discussion of the latter above, we
found that us/u;=(2)'/?, within the approximation of
neglect of overlap terms. However, analysis of the
experimental data for OH~ in KCl indicated that this
ratio was about 4 in that case.!! Furthermore, the ratio
As/A; for OH~ in KCl was found to be about 1.2 in
Ref. 11, indicating that the motion of OH~ in KCl is of
mainly rotational character, with some contribution
from center of mass displacement. Therefore, the
barrier-lowering perturbation — E in our terminology is
significant and we must expect the overlap of neighbor
pocket state basis functions to be more important than
in Lit in KCl. Retaining the overlap terms modifies
Egs. (19); introducing the notation pio, peo for dipole
moment matrix elements obtained from the approxi-
mate form of Egs. (19), we find

1= 1o+ a40-_b1(12)7V2(8(Y 0| 1 cOSOTY2))
pa= poo—04.0-b3(24)"V2(8(Y 15| u cOSO| Y1) -

The observed increase in the us/u; ratio over the no-
overlap value of (2)!/2 must, therefore, mean that the
matrix element (..|u cosf|y—.) is negative or that, in
the region near the barrier maximum, the orientation
of the net dipole moment has reversed relative to that
obtaining at a potential minimum. Since the total di-
pole moment is the sum of a dipole moment from O to
the cavity center and one from O to H, there are two
distinct mechanisms by which this reorientation may be
effected in principle. Either the OH may perform a
“planetary’”’ motion, with center of mass turning around
the cavity center at a constant distance from it while
the ion simultaneously rotates around its own principal
axis, or the center of mass may be displaced past the
cavity center. In the first case, the dipole from O to H
is reversed while that from O to the cavity center
merely rotates through a small angle; in the second case,
the dipole from O to the cavity center is reversed while
that from O to H rotates by a small amount. The actual
motion is likely to be a combination of these two modes
which means that it is to be regarded as a mixture of
rotation governed by a barrier-lowering perturbation
—E and center-of-mass translation governed by a
barrier-lowering perturbation —M. A rough numerical
analysis can be given using Egs. (4), taking a,? to be of
order unity, and T to be of order 0.1 to obtain the
estimates b;=(1.4)"Y2, b3=(0.8)""/2. Then, since
aa-=21, we have

(2)Y/2(b1/bs)pat 1= paotu10= (14 (2)*)p10,

or using the experimentally determined values of pi
and Mo

(22a)
(22b)

w10=0.96 Debye,

23
poo=1.36 Debye. 23)
From this, we easily find
(Ys2| u cosO|¥4.)=—0.40 Debye. (29)
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The geometrical dipole g, can be estimated using the
relation previously derived for Li*; this will, however,
be a lower limit, since the considerable orientational
freedom of OH~ in a pocket, will result in an average
over the pocket somewhat less than the actual dipole
moment for OH™ in its position of minimum energy.
Accordingly,

[.L,,? (31/2/61)[11: 2.0 Debye.

Since the actual dipole moment of the OH~ ion is
about 1.5 Debye?, the remaining contribution to u,
must arise from displacement of the ion from the cavity
cenij{r. It follows that this displacement is at least
0.1 A.

V. SUMMARY

We have presented a classification based on group-
theoretical arguments for the lowest manifold of mo-
tional states of substitutional impurity species in
crystal lattices with particular attention being given
to ionic impurities in the KCl lattice. We have chosen
as a basis set for this classification, nearly isolated
“pocket states” which form a reducible representation
for the symmetry groups of interest. This seems to be a
natural and reasonable approach for systems in which
barriers impeding impurity motion in a cavity are larger
than the zero-point energy of any single pocket, i.e.,
in the high-barrier limit which appears to obtain in the
cases considered. We have shown how a simple, reason-
ably accurate, perturbation scheme can be applied to
calculate splittings between the states of the lowest
manifold if sufficient information concerning the form
of the potential in the cavity is available. The critical
element in this discussion was the concept of “barrier-
lowering perturbation,” which seems new to this work
and may have a wider application than has been
attempted here. In the case of Lit-KCl, it is possible
to carry the analysis reasonably far; and the predicted
features of the motional spectrum are in agreement with
presently available experimental data. It would be of
value to obtain low-temperature, low-field dielectric
constant data for this system in order to obtain further
information on lowest manifold splittings and dipole
moment matrix elements. Of particular interest is the
question of the ratio ue/p;, predicted to be (2)'/2 on
the assumption of neglect of overlap between neighbor-
ing pockets.

The case of OH™ is more complicated, but we have
been able to establish certain qualitative features
governing the motion of the ion. In particular, the
motion in this case appears to combine both rotation
and translation, as indicated by departure of the dipole
moment matrix element ratio from the value (2)/2

We have not attempted to consider the effects ex-
pected upon isotopic substitution, but this can easily be
done within the framework of the barrier-lowering
perturbation method. In general, increase in mass or
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Fic. 2. Shift of motional states with barrier height.

moment of inertia will decrease the lowest manifold
splittings.

We have restricted our discussions here entirely to the
case of a rigid lattice, neglecting the perturbations
caused by lattice motion on the manifold of impurity
motional states. This precludes any discussion of
phonon-induced transitions between motional states,
but the classification of the latter given here should
serve as a point of departure for consideration of the
former. We have also neglected the possibility of static
distortion of the neighborhood of the impurity due toits
presence; this is intimately connected with the general
question of phonon interactions. Although we have not
considered distortion of the lattice in a strong electric
field, lowering the lattice symmetry from O, say, to
Dy, it can easily be verified that all of our principal
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qualitative conclusions remain unchanged even if small
effects of this sort are taken into account.

From a qualitative standpoint, it is of interest to
relate the low-lying motional manifolds of impurity ions
in cavities with a many-valley potential to the situation
when no internal barriers at all are present. We show
this schematically in Fig. 2, which indicates how the
lowest states of (1) a rigid dumbbell rotor, and (2) a
particle in a box shift when barriers between neighbor-
ing, and opposed pockets, respectively, are introduced.
For infinite barriers, reduction to a degenerate sixfold
level occurs, and intermediate barriers give level pat-
terns as discussed above. Not shown on this figure is the
pattern for a mixed rotational-translational case. The
spacings in the level patterns have been chosen to
correspond to a situation in which the moment of
inertia I of the rotor is given by mR?, where m is the
mass of the particle in a box, and R is the radius of the
(spherical) box; the ground states of rotor and box have
been chosen to have the same energy. In this work, we
have chosen the set of infinite-barrier states, in essence,
as the fundamental basis set on which to construct an
analysis. In the case of very small barriers, our approach
is quantitatively inadequate, but it should be noted that
qualitative features of the level pattern remain the
same.
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