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Rearrangement Collisions. II. Electron Excitation of He(2'P)f
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A systematic study is made of various 6rst-order approximations to the T matrix for a rearrangement col-
lision. Detailed calculations are performed for the process of excitation of the 238 level of helium by electron
impact. Comparison is dravrn between the various theoretical cross sections obtained and the experimental
data. The polarization of the emitted radiation is also studied.

x (0)= 'e'sic o(ro&rs) (2)

is the initial free wave and where Po is the spatial part
of the ground-state wave function of hehum. The
quantities n(rt) (P(N)) are the usual spin-up (down)
functions of the eth electron.

I. INTRODUCTION

HE excitation of triplet states of helium by
electron impact are among the simplest re-

arrangement collisions where theoretical calculations
from first principles might be compared to experiments.
In a previous paper, ' we investigated the dynamical
problem, e.g., the ambiguities associated with the
various possible T matrix formulations of rearrange-
ment processes. Ke performed explicit calculations in
the case of electron excitation of the 2'5 level of helium
and found that, as far as that reaction was concerned,
the projection-operator formalism for the T matrix was
a signihcant improvement over the Born-Oppenheimer
approx mation.

In order to pursue further the study of the dynamical
problem, we have investigated in this paper the excita-
tion of the 2'P state of helium by electron impact. In
Sec. II, we brie6y recall the relevant theoretical for-
mulas. Our results are presented and discussed in Sec.
III, where they are also compared with previous
theoretical calculations and the existing experimental
data.

H. THEORY

Let us label the three electrons involved in the reac-
tion with suKxes 0, 1, 2. If we single out the (0) particle
as the incoming one, then the unsymmetrized state is
given by

1
~;(0)=~,(0) (0)—[ (i)~(2)- (2)~(&)3,

In the same way, the unsymmetrized Gnal state with
particle (1) singled out as the outgoing one is

~ (&)=X (1) L-(1)-(0)~(2)
g6

+ (l)~(0) (2)-2~(l) (0) (2g, (3)

Xf(i)=e os '4'i(ro, rs) (4)

is the final free wave and gi is the spatial part of the
2'8 state of helium. The spin part represents an ortho-
normal doublet state symmetric in the interchange of
particles (0) and (2).

A,fter meeting the symmetrization requirements and
performing the spin algebra, one gets for the differential
cross section in atomic units':

do' 3 py

dQ 4n-' p;

where the initial and final momenta p; and pf are
related by

and where ~=I.54j. is the experimental value of the
excitation energy of the 2sJ' state (in atomic units). The
quantity Ty; refers to the reduced T matrix from which
the spin dependence has been removed. '

%e now perform the calculation of the various ap-
proximate forms of the T matrix which were considered
in Ref. I in the framework of the free wave approxima-
tion (e.g., the replacement of the exact scattering wave
functions by their unperturbed values). The interaction
potential in the initial channel is given by

2
I (0)=—+—+—

«0 ~01 ~02

whereas in the 6nal channel
t %'ork supported in part by the U. S. Atomic Energy Commis-
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~ C. J. Joachain and M. H. Mittleman, Phys. Rev. 140, A432
(S96i).

I'r(~) = + +
~01 ~12

Therefore, the eight approximate T matrices which we
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consider are'

2' = &x (1)I' (1)x'(0)),

2 .= ( (1)J".(0) , (0)&,

r,= &x (1)V (1)x;(O)),
2' = &x (1)~'(0)x'(0))
2' = (x (1)L (1) l' (1)hx'(0)&,

r,= &x,(1)[V,(0), ;(0))x;(0)&,
2' = &xr(1)[ r(1)»jx'(0)&

Ts ——(4 (1)[H,lr;(0)]X,(0)&.

In these formulas, we have defined

(9)

(io)

(11)

(12)

(13)

(14)

(15)

(16)

10 —,

tl (RV}

4 5 6 7 8 9 10
I I l I I I I

and

2 1 1
l'r(1) = J'r(1)+—= +—,

~1 ~10 &12

2 1
l7', (0)= V, (0)+—=—+—,

~0 ~10 ~02

(17)

(18)

C)
10

b

10

WhereaS l», (0) and lr~(1) are prOjeCtiOn OperatOrS reSpeC-

tively on the initial and final state, and B is the total
Hamiltonian of the system.

We have evaluated the eight forms T,(i= 1, 2, , 8)
and the corresponding cross sections by using simple
variational wave functions to describe the relevant
bound states of helium. For the ground state we use the
Hylleraas one-parameter wave function

y, (r, r,)=a'/~e-. & "l+"»

with n =27/16, whereas for the 2'J' state we took a two-
parameter Eckart wave function

10-'
1.2
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I ro. 1.Total cross section for excitation of the 2'8 (3II=0) state
of helium in atomic units (a'—=0.2'79&(10 "cm') versus magnitude
of the incident electron momentum p; in atomic units (lower scale)
or incident electron energy pP in rydbergs (upper scale). ~ Born-
Oppenheimer approximation, Massey-Moiseiwitsch (Ref. 3);
Q distorted-wave approximation, Massey-Moiseiwitsch (Ref. 3).

where

1
gl, ~(ro, rl) =—[N(ro) &lr(r2) N(»2) &M(ro)] (20)

which was performed numerically after reducing it to a
one-dimensional integral. Since our expression for I
disagrees with a previous work, ' we give a brief survey
of our calculational method in the Appendix.

and
I(r) psl2/s 11—2e-ps' (21)

M being the magnetic quantum number with the direc-
tion of quantization taken as the incident electron
momentum. The variational parameters P and y are
given' respectively by P=1.99 and y=1.09. The only
complicated integral appearing in the calculations is the
expression

I= &xr(1)(1/»o )x'(o)) (23)

sir(r)=y~~~/(32')l~lre &"

cos8,
X (22)

(2 'I' sine)e+'& M=&1i

III. RESULTS AND DISCUSSION

In Fig. 1 we display the total cross section o.l,l(M= 0)
for excitation of the 2'P state with M =0. As expected,
curves 3 and 4 containing spurious exchange contribu-
tions from large distances grossly overestimate the cross
section. The Born-Oppenheimer curves 1 and 2 exhibit
a satisfactory post-prior behavior, as do the projection-
operator curves 5-7 and 6—8, respectively. We have also
shown several points of the Born-Oppenheimer calcula-
tion of Massey and Moiseiwitsch' and of their distorted-
wave treatment.

In Fig. 2, we show the total cross section ot,~(M= +1)
for excitation of the 2'P states with %=+1, which
again we compare with the previous theoretical calcula-
tions of Massey and Moiseiwitsch. '

' H. A. Bethe and E.E.Salpeter, Qgantgm Mechanics of One aed
Taboo Electron Atoms (Academic Press Inc. , New York, 1957), H. S. %. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.
p. 158. (London) A258, 147 {1960).
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The total cross section

og„——o „,(3f=0)+2oto, (M= ~1) (24)

for excitation of the 2 P state is shown in Fig. 3, where
it is compared with the presently available experiments.

An analysis of the experimental data for electrons
with energies less then 45 eV has been made by Frost
and Phelps' collected data from the observations of
Lies, 5 Thieme, ' Maier-Leibnitz, Dorrenstein, and
Schulz. ' The curve obtained by Frost and Phelps4
(quoted in the work of Massey and Moiseiwitsch') rises
to a maximum of o-~,~=0.07 a' at an incident electron
energy around 22.5 eV and gives 0-&,&=0.045 a' at 39 eV
(see Fig. 3). Recently, Holt and Krotkov" have
measured the sum of the 2'S and 2'P cross sections in
the energy range 19.8—23.2 eV. They also estimated the
2'P cross section by subtracting from the sum an

10—
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FIG. 3. Total cross section for excitation of the 2'P state of
helium in atomic units (u~) versus magnitude of the incident
electron momentum p; in atomic units (lower scale) or incident
electron energy pp in rydbergs (upper scale). & Experimental
points, Frost and Phelps (Ref. 4), p experimental points, Holt
and Krotkov (Ref. 10), g experimental points, Gabriel and
Heddle (Ref. 13), ~ experimental points, St. John et al. (Ref. 14),
& Born-Oppenheimer approximation, Massey and Moiseiwitsch
(Ref. 3), p distorted-wave approximation, Massey and Moisei-
witsch (Ref. 3).
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L. S. Frost and A. V. Phelps, Westinghouse Laboratory
Research Report No. 6-94439-6-R3, 1957 (unpublished).' j'. M. Lees, Proc. Roy. Soc. (London) A137, 173 (1932l.' O. Thieme, Z. Physik 78, 412 (1932).

7 H. Maier-Leibnitz, Ann. Physik. 95, 499 (1935).
R. Dorrenstein, Physica 9, 447 (1942).' G. J. Schulz, Phys. Rev. 112, 150 (1958)."H. K. Holt and R. Krotkov, Phys. Rev. 144, 82 (1966).

Fxo. 2. Total cross section for excitation of the 2'P (3f=~1)
state of helium in atomic units (a') versus magnitude of the
incident electron momentum p; in atomic units (lower scale) or
incident electron energy pp in rydbergs (upper scale). & Born-
Oppenheimer approximation, Massey-Moiseiwitsch (Ref. 3);
g distorted-wave approximation, Massey-Moiseiwitsch (Ref. 3).

estimated 2sS cross section (obtained by averaging
differential cross sections measured by Schulz and
Philbrick" and Chamberlain and Heideman"). Only
relative cross sections were measured in the Holt and
Krotkov" experiment. The absolute values quoted
were obtained by making measurements relative to the
peak of the 2'S cross section. Assuming a value of
(0.11+0.03) as for this peak, Holt and Krotkov found
that the 2'P cross section rises from threshold to
(0.11&0.04) a' at 23.2 eV. This value is substantially
larger than the maximum obtained by Frost and Phelps'
(see Fig. 3).

At higher energies, Gabriel and Heddle" have studied
the shape of the excitation functions for the e'P levels

"G. J. Schulz and J. W. Philbrick, Phys. Rev. Letters 13, 477
(1964).' G. E. Chamberlain and H. G. M. Heideman, Phys. Rev.
Letters 15, 337 (1965).

"A.H. Gabriel and D. W. O. Heddle, Proc. Roy. Soc. (London)
A258, 124 (1960).
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TABLE I. Percentage polarization P of 2'P2 ~ 2'S& radiation after excitation by electron impact.

Magnitude of the incoming Energy of the
electron momentum incoming electron

P; (a.u.) p (Ry)

From the various
P

"first-order" approximations T;(i= 1, ~

the T matrix t Eqs. (9)—(16)]
3 4 5 6 7

~, 8) to
Distorted-wave
approximation'

1.24 (threshold)
1.27
1.30
1.36
1.40
1.45
1.50

1.54
1.61
1.69
1.85
1.96
2.10
2.25

44.6
44.4
44.1
43.3
42.6
41.4
41.1

44.6
43.7
42.8
41.1
40.0
38.8
37.6

44.6 44.6 44.6 44.6 44.6
44.5 44.5 44.6 43.0 44.5
44.6 44.5 44.4 41.6 44.4
44.5 44.4 44.3 38.7 44.2
44.5 44.5 44.1 36.9 44.0
44.6 44.4 44.0 34.9 41.8
44.3 44.4 43.8 33.1 43.6

44.6
44.4
44.2
43.5
42.9
42.3
41.5

44.6
35.5

27.2

25.3

& See Ref. 3.

(rt=3, 4, 5), while at an energy of 108 eV absolute
measurements were carried out. They have also esti-
mated the cross section for 3'P excitation in the energy
range 30—400 eV using observed values of Thieme' cor-
rected for cascade eGects. The data suggest that these
measurements can be extrapolated to e= 2 by assuming
that o.&,t(pp)~ps '. Thus Gabriel and Heddle" quote
at, r, =0.26X10 is cms (i.e., o~,t, =9.3X10 ' a') as an
absolute value for the excitation of the 2'P level at
108 eV. Other "experimental" points can be obtained

by this extrapolation procedure from their estimated
cross sections for the 3'P level in the range 30—400 eV.
We have displayed several of these in Fig. 3.Also shown

in Fig. 3 are the results (extrapolated to pt=2) of
recent absolute measurements performed at 60 and
100 eV by St. John et u/. "for the excitation of the 3sP
level. It is worth noting that the values obtained by
St. John et al. , are much larger than those of Gabriel
and Heddle. "

Comparison of our various theoretical curves with

these experimental data shows that all the "first-order"
formulations we have used overestimate the total cross
section at low energies (curve 6 being the best one),
whereas at higher energies curves 1, 2, 6, and 8 are in

reasonable agreement with the Gabriel and Heddle'3

experiments. A disturbing fact, however, is the behavior
of curves 5 and 7. This seems to indicate that our first-
order formulas (13) or (15) are not accurate enough to
take into account the considerable amount of distortion
occurring in the outgoing P-state channel. On the
contrary, since in the ingoing channel the helium atom
is in its ground state the distortion is less marked and

the first-order formulas (14) and (16) leading respec-

tively to curves 6 and 8 are probably more reliable. "
Among those two last curves, 6 is presumably more
trustworthy than 8, since the appearance of kinetic-

energy operators in H (formula 16) emphasizes the
errors in the approximate bound state wave functions.

We also display in Fig. 3 several points of the Born-

"R.M. St. John, F. L. Miller, and C. C. Lin, Phys. Rev. 134,
A888 (1964).

~ The same argument holds for the excitation of the 2'S state.
In the light of the present calculations, the qualitative argument
suggested in Ref. 1 and favoring curve 5 should be discarded,
therefore leaving curve 6 as the most reliable one.

of the light emitted in the 2'P2 —+ 2'S1 transition after
impact excitation, in a direction at right angles to the
incoming electron beam. We have compared the values
obtained from our eight approximations to the T
matrix (Eqs. (9)—(16)] with the distorted-wave cal-
culation of Massey and Moiseiwitsch, e for incoming
electron energies ranging from threshold to about 30 eV
(i.e., p, =1.5 a.u.). If we accept the distorted-wave
results as the most reliable points of comparison, then
formulation 6 proves again superior to our other "6rst-
order" ones, yielding a percentage polarization which
decreases from 44.6% at threshold to 33.1% at
p, =1.5 a.u.

APPENDIX

We want to evaluate the quantity

1
I~= (X/(1) —x'(o)) (A1)

or, explicitly

e
—~p/. r&y1 M(rs rs) eip;. ro

~01

Xrt/o(ri, rs)drodridrs, (A2)

where Pp (rt, rs) and d i, pr(rs, rs) are given respectively by
Eqs. (19) and (20). After performing the integration
over the r2 coordinates, we get

~sos/2~5/2

IM- ~M)
(n+p)'. (A3)

"It is interesting to note that improving the ground-state wave
function of helium does not lead to any significant change in the
distorted-wave calculation Lsee C. ¹ Lashmore-Davies, Proc.
Roy. Soc. (London) 86, 783 (1965)g.

Oppenheimer calculation of Massey and Moiseiwitsch, '
and of their distorted-wave treatment. "

Finally, in Table I, we give the percentage polari-
zation'

100Lo.&.s (3ll =0)—o-«&(M =+1)j
(25)

(47/21)o ~,t(M =0)+ (73/21)o.t,,g(M = +1)
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where

J(M 0) e
—sPf .rIype —

s yr0

with

and
p '(1 t)+pft (A14)

ancl

1.
Xcos8p—e'2* "e "'drpdrj, (A4)

y01

r'= 'ty-', &'(1—t)+(p, —y )'t(1 —t). (A15)

The K integration can be done by starting from the
known integral'

1J(M=+1)
W2

lim (A16)
oy [g2 jp][

~

K A (2+r2]2 r (A2+r2)
Pf. rIy e

——,'&r

AM K-+(AM A)(A. K)/A2. (A17)

1.
Xsin8pe+'&' —t:"*' "t: "'drodri. (AS) and using the fact that

y01

Using the well-known relation This yields

1 1
llm

yp1 2m2 ' '+

eix. (rl—rp)

K'—se
(A6)

AM (K—p) 1
dK

zp —i. [~ K—A~2+r2]P

and doing the rp and r1 integrations in momentum space,
we obtain

JM = —i640.y
AM (K—y,)

E z6

X (A7)
[n'+

)
K—pf [']'[42/2+ [y,—K[']2

where the axis of quantization is defined along the
incident momentum (which we choose to coincide with

the s direction) such tha, t

(AS)
and

A~4 ——(1/v2) (a.a ia„). (A9)

SA.'+14A'r'+ (35/3) r
AM A.

64I ~ (A2+.r2) 2

SA'+ 21A'r'+35A. 'I" +35r p-
—AM y;

(A2+ r2)4
(A18)

1277424pp/277/» t (1—t)2

IM=p(8) =i
(~+0)'

SA.4+14A.'I'+ (35/3) r4
X [pf/4t+ p, (1—t)]

(A2+.r2) 2

and therefore, using Eqs. (A3), (Ag), (A9), (A13), and
(A14), we get

5A'+21A'r'+35A r y35rp
p

(A'+r')4
a= '-+~K —

pf~

b= ',ypy~p, —K~2-

(A10) and
1 2~424P2/2~7/2 1 t2 (1 t)2

(A11) IM +y(8,$)= z e+'&

~&(~+t3)' o

ancl

Here p; is the unit vector along y, , whereas tt, and tt„
are unit vectors respectively in the x and y directions.

Now, setting
dt, (A19)

g 2b 3

we get from (A7)

12t(1—t)
dt,

[a.t+b(1—t)]'

and using the Feynman integral representation"

(A12
where

SA4+14A'r'+ (35/3) r4
X XPf (1—t4')'"dt, (A20)

(A'+r')'

t4= cos8= p,"yf/p;pf, (A21)

1

JM = i768nq —t(1—t)'dt
0

AM (K—y) 1
X dK,

z2—i& [[K—A [2+r2]'

'7 R. P. Feynman, Phys. Rev. 76, 769 (1949).

(A13)

and where the angle P is measured in the xy plane from
the x direction d .

The one-dimensional integrals appearing in
expressions (A19) and (A20), as well as the subsequent
angular integrations leading to the total cross sections,
have been evaluated numerically.

» P. M. Morse and H. Feshbach, Me/hods of Theoretical Physics
(McGraw-Hill Book Company, Inc., Neve York, 1953), p. 1083.


