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By taking into account three-ion exchange interactions in solids of 4 X2 compounds, it is shown how the
observed stability relations can be explained on a quantitative basis. The analysis is an extension of those
given earlier for stability of rare-gas crystals, of solids of the alkali halides, and of II-VI and III-V com-
pounds whose ions are isoelectronic with rare-gas atoms. Of the compounds 4 X3, 4 denotes an element of
columns II, IV, or VI of the periodic table, X a corresponding element of the columns I, IT, VI, or VIL. All
ions considered are isoelectronic with rare-gas atoms. As before, the stability analysis is based on a first-
and second-order perturbation calculation, starting from complete ionicity in zeroth order of approximation,
with Gaussian-type effective electron wave functions for the ions. The structures considered are (the ideal
lattices of) fluorite, two types of rutile, anatase, cadmium chloride, cadmium iodide, cuprite, quartz, and
cristobalite; a comparison is made between the static lattice energies of these structures. The effect of
polarization energy on crystal stability is considered in detail in the framework of the Born-Mayer model;
Madelung constants for all structures were determined on the basis of the Bertaut method. The theory
accounts for all observed stability relations; except that for the compound TiO, the fluorite structure is
found to be more stable than a rutile lattice on the basis of closed-shell electron configurations of the Ti
jon. In particular, a quantitative explanation is given for the difference in lattice energy between the
cadmium iodide and cadmium chloride structures (6,3 coordination) and between the g-quartz and 8-
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cristobalite lattices (4,2 coordination).

I. INTRODUCTION

N previous publications we have undertaken a
stability analysis for rare-gas crystals,! for solids
of the alkali halides? and for those of IT-VI and III-V
compounds® whose ions are isoelectronic with rare-gas
atoms. It was found in all cases that simultaneous
exchange interactions between three atoms or three ions
constitute the essential short-range, structure-sensitive
component of the crystal field. In this paper, a similar
analysis is undertaken for crystals of compounds of the
type AX,, whereby we restrict ourselves again to the
rare-gas isoelectronic series. '

In the analysis we will not consider carbon as one of
the constituents (carbides, or molecular compounds
such as carbon dioxide). With this limitation, 4 is an
element of columns II, IV, or VI of the periodic table
and X is an element of the corresponding columns I,
II, VI, or VII. Representatives are OCs; (VI-I), CaF,
(II-VII), SiO; (IV-VI), etc. The ideal crystal struc-
tures can have 84, 6,3, or 4,2 coordination; distorted
structures have frequently been found but these will
not be considered here. The only lattice type with 8, 4
coordination is fluorite (C1); to the second category
(6,3 coordination) belong the structures known as
rutile (C4), anatase (C5), cadmium iodide (C6), and
cadmium chloride (C19). In the category with 4,2
coordination we find the structures cuprite (C3),
quartz (C8), and cristobalite (C9). The symbols in
parentheses are the Structure Reports notations
for the various lattice types.

*On leave of absence from the Institute of Industrial Chem-
istry, Polytechnic Institute, Milano, Italy.
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We note, first, that the stability relations for crystals
of AX, compounds appear to depend strongly on
whether A or X is the larger ion of the compound. In
the first case (4 larger) we always find stability of the
fluorite structure; on the other hand, if X is the larger
ion, then all possible coordinations are observed. A
satisfactory stability theory must reflect this char-
acteristic distinction.

The first stability analysis involving 4 X» compounds
was undertaken by Hund.* In his model, the ions
interact electrostatically as point charges; the non-
Coulombic part of the interactionsis represented by a
short-range repulsion proportional to R~?, where R
is the interionic distance. A pair potential of this type,
with R—? often replaced by an exponential term and
with sometimes an additional van der Waals long-range
attraction proportional to RS, is generally called a
Born-Mayer potential. Hund found that no essential
structure sensitivity of the potential is lost when the
repulsions are restricted to nearest neighbors in the
lattice. If we denote the Madelung constant of a given
lattice by M, the coordination number of the 4 ion by
Z, then stability is determined uniquely (neglecting
thermal effects and zero-point energy) by the value of
the parameter (M?/Z)Y@=D; the structure with the
largest value for this parameter is the most stable one.
Hund compared the fluorite, rutile, and cuprite con-
figurations for different values of p and found that,
for p>6, the fluorite structure is always favored.
Since the values of p are expected to lie in the neigh-
borhood of 8 to 10, in analogy with the case of other
ionic solids, all AX, compounds should crystallize
with the jfluorite structure. This prediction agrees
with experiment if 4 is the larger ion, but with X
as the larger ion the agreement is very poor. Therefore,

4F. Hund, Z. Physik 34, 833 (1925).
694
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a stability theory for crystals of 4X> compounds which
is based on a Born-Mayer pair potential does not
reflect the observed differentiation in crystal structures
when X is the larger ion of the compound.

Later analyses®® were based, instead, on a more
empirical approach, namely, on the Goldschmidt rules.
In the model underlying these rules, the ions are repre-
sented by rigid spheres; the structure-dependent
parameters are then the Madelung constant M, the
coordination number Z, and the ratio r,/7_ between
the radii of positive and negative ions. It appears that
the predictions from the Goldschmidt rules agree more
closely with the observed stability relations; this is not
surprising since in these rules the different size of 4
and X ions enters as an explicit parameter. For a
detailed discussion of the Goldschmidt rules we refer to
Pauling.” Analyses based on these rules were carried
out by Goldschmidt® and Hund® for the three main
categories with 8,4,6,3, and 4,2 coordinations.

For our stability analysis it is of interest to pursue
the predictions from the Goldschmidt rules a little
further. We have therefore extended these considera-
tions by taking into account two different rutile modi-
fications, denoted by rutile I and rutile II, for which the
crystallographic parameters are (rutile I) ¢/a=(%)'?,

=1 and (rutile II) ¢/a=2'2/(1+42'?), u=1—2"1/2
Here, ¢/a is the axial ratio and # is the z coordinate of
the X ion, divided by ¢. The parameters of all ob-
served rutile structures lie between these two limits.
We also included the (ideal) anatase lattice (c/a=2,
u=%), as well as the (ideal) cadmium iodide and
cadmium chloride modifications; the latter are defined
by cosa=$, =% for cadmium chloride (« is the rhom-
bohedral angle of the unit cell) and by ¢/a=(8/3)V/2,
u=1% for the cadmium jodide lattice. For the Madelung
constants we used values as given in the next section.
The results can be described as follows. When 4 is the
larger ion of the 4 X, compounds, the fluorite structure
has a broad domain of stability, ranging from 7, /r-=1
(4 and X of the same size in the limit) to 7, /7_=0.163.
Below the latter value, rutile I becomes first competitive
with C1, whereas for the smallest values of this parame-
ter (<0.077) the C8, C9 structures are more stable.
Agreement with experiment is very good for this
category. The C6, C19 configurations are always the
least stable ones, but their stability is certainly under-
estimated because polarization energy is not considered.
When X is the larger ion, we first find fluorite stability
(ry/r_>0.636), but then rutile II takes over, for the
whole domain until 7,/7_=0.323 (rutile I behaves
abnormally in that it is always the least stable con-
figuration). Finally, if r, /7_<0.323, we find C8 (C9) as
the most stable structure. Agreement with experiment
is very poor for this category, since C6 and C19 dominate

5 V. M. Goldschmidt, Z. Tech. Physik 7, 251 (1927).

6 F. Hund, Z. Physik 94, 11 (1935).

7 L. Pauling, The Nature of the Chemical Bond (Cornell Univer-
sity Press, Ithaca, New York, 1960), Chap. 13.
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the observed stability relations. Again, it should be
remembered that the stability of C6 and C19 is under-
estimated in the Goldschmidt rules because polariza-
tion energy is not considered, which is particularly im-
portant when X is the larger ion of the compound. Ex-
cept for rutile I, we again find C6 and C19 at the end of
the stability scale. Excluding C6 and C19, we find very
little distinction between structures with the same co-
ordination, since their Madelung constants are practic-
ally equal.

Although the differentiation in stability is con-
siderably more pronounced on the basis of the Gold-
schmidt rules than in the framework of the Born-
Mayer model, it is apparent that in both models es-
sential structure-sensitive components of the crystal
field are missing. One of these is the polarization
energy which increases the stability of the cadmium
iodide and cadmium chloride configurations. We will
first give the crystal structures for 4 X, compounds and
then analyze the first-order (Madelung) and second-
order (polarization) components of the electrostatic
crystal energy.

II. GAUSSIAN PARAMETERS AND CRYSTAL
STRUCTURES FOR AX, COMPOUNDS

The analysis of crystal stability for 4X, compounds
presented in this paper is an extension of those given
earlier for stability of rare-gas crystals [T, solids of
the alklai halides [II], and solids of II-VI and III-V
compounds [IIT]. The three-ion component of the static
lattice energy is evaluated, as before, in first and second
orders of perturbation theory, using free-ion, effective-
electron wave functions of Gaussian type in zeroth
order of approximation and taking into account only
single-exchange interactions between the ions.

The inverse width 3 of the Gaussian electron-charge
distribution for each ion,

p(r)=(B/m'/%)% exp(—pr?) 1)

where 7 is the distance from the effective electron to its
nucleus, can be determined empirically from values of
the diamagnetic susceptibility of the ions,® taking
the value for the corresponding isoelectronic rare-gas
atom as reference (cf. [II]). A compound AX, is
characterized by two Gaussian parameters 3 and ', one
for the 4 ion and one for the X ion. We adopt the con-
vention that 8 denotes the larger, and 8’ the smaller,
ion of the compound, i.e., 8’>B. The three-ion com-
ponent of the lattice energy, relative to the sum of
non-Coulombic pair interactions, is then completely
determined by the crystal structure, by the dimension-
less parameter BR, where R is the nearest-neighbor dis-
tance in the lattice, and by the parameter y=(8/8)?2> 1.

In the following Tables I and II we list the values
for the parameters SR and vy of 4X. compounds, as

8 C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1957), Chap. 9.



696

TaBLE I. Values for the Gaussian parameters BR (R is the
nearest-neighbor distance in the lattice) and y=(8'/8)? for
crystals of 4X, compounds of which 4 is the larger ion. All
these compounds crystallize in the fluorite (C1) structure; 8
represents the larger ion (4) of the compound.

E. LOMBARDI AND L. JANSEN
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TaBLE II. Values for the Gaussian parameters BR (R is the
nearest-neighbor distance in the lattice) and v=(8’/8)? for cry-
stals of 4X; compounds of which X is the larger ion, and their
crystal structure observed at normal temperature and pressure.
The parameter 8 represents the larger ion (X) of the compound.

AX, BR ¥ AX, BR ¥ AX: BR v Structure* 4X: BR v Structure®
Li,O 1.200  18.77 K.S 1424  2.60 Css0 1470 142 C19 TiS, 1072 760 C6
Li,S 1.100  34.14 KsSe 1.350  3.13 BeF: 1468 1228 (C8C9 TiSe: 1016 9.13 C6
LizSe 1.056  41.00 K;Te 1.257  4.07 MgF: 1860 2.17 C4 TiTes 0945 1190 C6
Li;Te 1.003  53.34 Rb:0 1751 1.00 MgCl, 1417 6.12 C19 Zr0, 1317 220 (1
Na:0 1.440 3.75 RbsS 1474  1.82 MgBro 1290 830 C6 ZrS; 1152 400 C6
Na,S 1.258 6.82 CaF, 1985  1.24 Mgl. 1.227 1085 C6 ZrSe; 1.082 481 C6
NasSe 1.197 8.19 SrF, 1.668  1.99 Cal, 1327 4.00 C6 ZrTe; 0994 626 C6
Na;Te 1127 10.65 BaF. 1482  2.88 SrCl; 1686 142 C1 HfO., 1329 154 Cl1
K:0 1.672 1.43 BaCl: 1.754  1.02 Si0, 0912 1542 C8-C9 |HfS, 1143 280 C6

SiTe; 1.077 43.34 C6 HfSe; 1.076 337  C6
TiO; 1.146 4.18 C4-CS

well as their crystal structures® at normal temperature
and pressure. The data of Table I concern 4X, com-
pounds of which 4 is the larger ion, whereas the values
of Table II refer to those compounds of which X is
the larger ion.1

III. THE ELECTROSTATIC LATTICE ENERGY

In the Born-Mayer model of ionic solids, the ions
interact electrostatically as nonoverlapping charge dis-
tributions. The first-order electrostatic energy, per
mole of the crystal, is the Madelung energy; the second-
order electrostatic contribution is commonly called
polarization energy. We assume that the effect of the
net ionic charges on crystal stability is reflected essenti-
ally by the different values of these two components for
the different structures. We first analyze the Madelung
energy of the lattices and then proceed to the polariza-
tion contributions.

A. Madelung Constants for A X, Lattices

Several methods are available in the literature for
calculating the Madelung energy of a given type of
structure and ions which interact electrostatically as
point charges (nonoverlapping charge distributions).
Extensive reviews of these methods and of the results
obtained by different authors for solids of composi-
tion AX, AX,, and for more complicated structures
are given by Waddington!! and Tosi?; we refer to
these reviews for a general discussion. Among the
structures occurring for 4X; compounds which we have
specified earlier, the only missing Madelung constant
is that of the (ideal) cadmium chloride lattice. For
cadmium iodide, Waddington reports values determined
by Hund* for different parameters of the axial ratio
¢/a and of #, the z coordinate of the position of the
iodide ion, divided by ¢. For the structure closest to

9R. W. G. Wyckoff, Crystal Structures (Interscience Publishers,
Inc., New York, 1963), 2nd ed., Vol. 1.

10 Although Hf** is not isoelectronic with a rare-gas atom we
have included Hf compounds in Table II, since the Hf** ion also
has a closed 8 electron (s,p) shell.

uT. C. Waddington, Advan. Inorg. Chem. Radiochem. 1, 157

(1959).
12 ), P. Tosi, Solid State Phys. 16, 1 (1964).

a C1 =fluorite, C4 =rutile, C5 =anatase, C6 =cadmium jodide, C8=g-
quartz, C9 =p-cristobalite, C19 =cadmium chloride.

the ideal one, the Madelung constant reported is 4.71,
differing only slightly from the value of 4.72 for rutile
types. The values for cadmium iodide are surprisingly
high, considering the layer type of structure for this
compound, which is expected to result in a lowering of
the Madelung constant as compared with more sym-
metric arrangements of ions with the same coordination,
as in rutile. Indeed, a more recent calculation by John-
son and Templeton!? for two common forms of cadmium
iodide yields an average value of 4.38, corresponding
accurately to a value for these two types determined
earlier by Hartmann.* Johnson and Templeton ob-
tained a value of 4.489 for the mineral cadmium
chloride, about 29, higher than the Madelung constants
for the cadmium iodide structures. The lattice of the
mineral cadmium chloride deviates considerably from
the ideal configuration, for which the Madelung con-
stant is not available in the literature.

We have calculated the Madelung constants follow-
ing the Bertaut method,'s which method was also used
by Johnson and Templeton. Bertaut showed that, in
replacing the ions by spherically symmetric, nonover-
lapping charge distributions, the Madelung constant
of a lattice is obtained as a single, infinite, series which
is absolutely convergent and whose terms are functions
of the reciprocal lattice vectors. The convergence pro-
perties of the Bertaut series for different forms of the
charge distributions, and cutoff errors, were inves-
tigated by Jones and Templeton.!® Details of the
Bertaut method will be given below in connection with
the calculation of the polarization energy.

The determination of Madelung constants was
carried out for the ideal lattices (in all cases), using a
charge distribution for the ion at position r;, of the form
oi(|t—r;|)=a(|r—1;])? with p=0, 1, 2, and 3, re-

. ;36? C. Johnson and D. H. Templeton, J. Chem. Phys. 34, 2004
¢ u P) Hartmann, Acta Cryst. 11, 365 (1958).
15 F, Bertaut, J. Phys. Radium 13, 499 (1952).

« “513 E. Jones and D. H. Templeton, J. Chem. Phys. 25, 1062
956).
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TaBLE. III. Values of the Madelung constants, on the basis of
the Bertaut method, for nine ideal structures of A*2X,™1 com-
ponents as defined in the text. The charge distribution of the ion
at position r; is taken as o;=a(|r—r;|)?, with =0, 1, 2, and 3,
respectively.

Structure =0 p=1 p=2 »=3
fluorite 5.03947 5.03881 5.03879 5.03884
rutile I 4.78350  4.78307  4.78306  4.78308
rutile IT 4.76067 4.76001 4.76000 4.76005
anatase 4.65310 4.65243 4.65242 4.65247
cadmium chloride  4.36953 436804  4.36803  4.36899
cadmium iodide 4.36632 4.36518 4.36516 4.36535
B-cristobalite 4.45506 4.45345 4.45342 4.45372
cuprite 4.44316 4.44250 4.44248 4.44254
B-quartz 4.40501 4.40311 440308  4.40350

spectively; i.e., the same distributions as employed by
Johnson and Templeton. The results are given in Table
IIT; all values refer to a composition A+2X;71. The
values for cadmium chloride, cadmium iodide, anatase,
rutile I, and rutile IT refer to the ideal structures as
defined in the Sec. I; for the B-quartz lattice ¢/a=1.1,
#=0.197. The @-cristobalite structure is the high-
temperature modification defined by Wyckoff.? All
calculations were carried out on an IBM 1620 computer.

From the values of Table III we draw the following
conclusions: (a) different forms for o;(|r—r;|) yield
very nearly the same values for the Madelung con-
stants; (b) in first approximation, the Madelung con-
stant of a structure is determined by its coordination
and decreases with decreasing coordination. The only
exception is formed by the cadmium iodide and cad-
mium chloride lattices, which have abnormally low
Madelung constants. (c) The values for the Madelung
constants of the ideal cadmium iodide (C6) and cad-
mium chloride (C19) structures are practically identical
(difference of the order of one-tenth of 19).

Some of the values of Table III can be compared
directly with those given by Johnson and Templeton,!?
as they refer to the same structures. These authors
report for fluorite a value of 5.03879, for cuprite 4.44249,
and for B-quartz 4.40225. It is of interest to note that
the ideal and mineral forms of cadmium chloride differ
by as much as 29, in their Madelung constants, the
nonideal lattice having the larger value. As a compari-
son, it is found found that the nonideal types of cad-
mium iodide!® differ from the ideal structure by only
0.2 of 19, in Madelung constant. Apparently, distor-
tion results in a considerably more negative value for
the Madelung energy only for the cadmium chloride
lattice.

We observe, also, that the Madelung constant for the
fluorite structure is much larger than for any of the
other lattices; the smallest difference is of the order
of 59, (with rutile I), much larger than that between
B2 (cesium chloride) and B1 (sodium chloride), for
example, which amounts to only 1%,. In addition, we
note that the Madelung constants of the cadmium
iodide (C6) and cadmium chloride (C19) lattices are
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so low that their observed stability must be ascribed
to additional contributions to the electrostatic com-
ponent of the lattice energy (polarization effects).

B. Polarization Energy

As we have 'seen above, the Madelung constants for
the C6 (cadmium iodide) and C19 (cadmium chloride)
lattices are low with respect to other configurations of
the same or lower coordination. On the other hand,
these structures are very frequently observed with
solids of AX, compounds where X is the larger ion.
Apparently, their stability must be enhanced by an
additional, considerable, electrostatic component of the
lattice energy; this component is called “polarization
energy”’; it is of second order in perturbation theory.
An estimate of this polarization energy can be ob-
tained by calculating, from a Born-Haber cycle, the
value of the crystal energy for several compounds with
C6 or C19 structure. To a good approximation, it is
found that the crystal energy is 1.05 times the Made-
lung energy. Compared with a Born-Mayer model
without polarization components, this means an increase
of 15 to 209, in lattice energy. This energy increase must
be primarily due to a dipole polarization contribution,
which is of the form —3aF.? per X ion, where Fe, is the
electric field strength at the X ion due to all the other
charge distributions in the crystal (the field is identic-
ally zero at the site of an A ion). The electrostatic
energy in first order (Madelung energy) is calculated
on the basis of a model of nonoverlapping charge dis-
tributions. For this reason, we cannot use for the
parameter « in the expression —3aFe? the values of
free-ion polarizabilities. Instead, we assume only the
same analytical form for the polarization energy and
determine « in the Born-Mayer model, using the Born-
Haber values for the crystal energy of the stable struc-
ture. We will discuss this procedure in more detail later.

For the calculation of the total field strength Fy
at the site of an X ion, we choose the origin of our co-
ordinate system at the site of the ion considered and
denote the position vectors of the other ions by {r;},
their charges by {¢;}. The charge density p(r), at posi-
tion r is in the point-charge approximation, with ¥ the
volume of the unit cell,

p(M=% gd(Jr—r;| )=V Zhi F(h) exp(—2wih-1),

where the Fourier coefficients (structure factors) F(h)
are given by

F(h)= / o(r) expwih-r)d¥r=3"; qrexpmih-1;). (2)

Here, the summation over / extends over all ions of the
unit cell of the crystal; h is a general vector of the re-
ciprocal lattice.

Instead of the point charges, Bertaut'® introduced
spherical charge distributions ¢;(|r—r;|) centered at the
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ion positions r;, each normalized to unity. If we denote
by o(r) the sum 3_; o;(|r—r;|) over these distributions,
then we can develop o(r) again as a Fourier series, with
coefficients ¢(h) given by

o(h)= [ o(r) exp(2mih-r)d?r.
v

The modified charge density function p’(r) can then be
written as

p'(r)= ; gioi(|t—1;])= [ p(r—u)o(u)d®u
=V-13 F(h)o(h) exp(—2wih-r). 3)

The electric field strength Fe; at the position r=0 of the
selected ion is given, using p’(r) as charge density, by

Fu(0)= / SOV (1/)dr=— [ (Vo @)/F i,

which, on substituting (3), becomes

2n1
Fa.(0)= 7 %: F(h) go(h)h/ [exp(—2wih-1)/r]d%

2
=—2 F(h)e(Wh/k*, 4
V n
where we have used the identity'?
/ [exp(—2mih-1)/7]d% =1/nh?.

In combination with the expression (2) for F(h) we
then obtain the following final equation for the elec-
tric field strength at the selected site =0,

2
Fa(0)= - S [ gisin(2rh r) Job/i. (5)

In this expression, the summation in / extends over the
unit cell of the crystal and the summation in h over
the reciprocal lattice. The Fourier coefficients ¢(h)
depend, of course, on the analytic form of the distribu-
tion functions ¢;(|r—r;|); in all cases ¢(h) is real,
with the property ¢(—h)= o(h). It is verified directly
from (5) that F is identically zero if the ion considered
is located at a center of symmetry of the crystal. Values
of ¢(h), for o; of the form a([r—r;|)? with =0, 1, 2,
and 3, were calculated by Jones and Templeton's;
in our analysis of the polarization energy we have used
the same charge distributions. On the basis of (5) it is
most convenient to calculate the components of F; along
the basis vectors by, by, bs of the reciprocal lattice for
each structure; we denote these components by Fy,
F,, and Fs3, respectively.

E. LOMBARDI AND L. JANSEN
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TaBLE IV. Values of the parameter X in the dipole-polarization
energy Epo=—(/R*)K for nine different structures of AX,
compounds, with « in units 1072¢ cm?, R in A, and E,, in kcal/
mole; the cation has charge two. The last column gives the sym-
metry properties of the electric field components Fi, Fs, Fs along
the axes by, be, bs of the reciprocal lattice.

Structure K Field components
fluorite 0 Fi=Fy=F3=0
rutile I 32 F1=F2, Fa=0
rutile II 67 F1=F2, F3=0
anatase 425 F1=F,=0, F3
cadmium chloride 2391 Fi=F,=F;
cadmium iodide 2419 Fi1=—F;=0, F3
B-cristobalite 0 Fi=F;=F3;=0
cuprite 0 Fi=Fy=F3;=0
ﬂ-quattz 8 F1=—F2, F3=O

For all (ideal) structures of AX; compounds the
electric field at the site of an A ion is identically zero,
so that only the polarization energy of X ions remains
to be calculated. The total polarization energy, for one
mole of the compound 4 X, can be written in the form

Epor=—(a/RYK, (6)

where a is a polarization parameter associated with the
X ion, R is the distance between nearest neighbors in
the lattice, and where the parameter K is a function
only of the type of structure. In Table IV average
values of K (averaged for p=1, 2, and 3) are given
for nine different (ideal) structures, with E,0 in kcal/
mole, ¢ in units 107 cm?, and R in units 10~% cm.
Also listed are the symmetry properties of the three
components Fy, Fy, F3 of the electric field along the
basis vectors of the respective reciprocal lattices. It
is seen from Table IV that the polarization energy in
the cadmium iodide (C6) and cadmium chloride (C19)
structures is much larger than in the other seven con-
figurations. The relative difference between C6 and
C19, for the same nearest-neighbor distance R, is small,
namely, only of the order of 1%, and in favor of cad-
mium iodide. As we will see later, this difference is
negligible compared to that between the three-ion
energies in the two structures for relatively small
values of BR. When, on the other hand, B8R is larger
than about 1.3, the three-ion energies are very nearly
the same and the 19, higher polarization energy for C6
is overcompensated by a gain in Madelung energy which
the C19 structure can acquire through distortion of the
ideal lattice.

IV. THREE-ION INTERACTION ENERGY

The evaluation of three-ion interactions for solids of
AX, compounds follows closely the analysis given
in [T], [II], and [IIT] for rare-gas crystals and ionic
solids of composition 4X. We select a central ion ¢
and consider all triplets (abc) formed by that ion and
two other ions of the crystal. As before, we consider
only isosceles triangles, i.e., b and ¢ are ions from the
same shell around the central ion g. The three-ion
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interactions are determined in first and second orders of
perturbation theory; the zero-order wave function for
the triplet (abc) is (Slater determinant)

TO=[31(1—Aw2) T2 det{ pu(1) 04(2) 0:(3)} ,

where 1, 2, 3 number the electrons, with one (effective)
electron per ion. The wave function for ion g is

0a(r)=pa'/*(r)=(B/7/*)** exp(—B%.%/2),

i.e., by the positive square root of the charge distribution
(1); the quantity Ags. is a total overlap, defined by

Agpe i= A, 62+Aac2+Ab02— 2AabAacAbc )

in terms of the overlap integrals A, etc., for the
different pairs. The perturbation Hamiltonian H g,
can be written as

Habc,= Hab’+Hac’+Hbo’ )

in terms of the perturbations for the pairs.

We denote by E; and E. the first- and second-
order perturbation energies for the triplet, by F;©
and E»® the corresponding sums of interactions for
the isolated pairs, and by AE;/E,® = (E,—E,®)/E;©
and AE,/EyO = (E;— E;®)/E,® the relative first- and
second-order three-ion interactions. In view of the
exchange character of the three-ion forces, only tri-
angles of small dimensions need be considered. If the
ions of the triplet are of the same kind (4 or X), then
the following approximate equality holds

AEl/El(O)z AEg/Eg(o) 5 (7)

for all values of the opening ® of the triangle at the
central ion. If the ions of the triplet are of both types
(4 and X), then this equality is again valid if the
Gaussian parameters 8 and @’ are about equal, i.e.,
for values of ¥ not much larger than 1. If 4>>1, then we
consider only triplets of the larger ions, and (7) holds
again. For the total three-ion energy, AE=AE+AE,,
of the triplet, relative to the total pair energy E©
=FE;4E,©®_ we can then write, in view of (7),

AE/E®=AE,;/E;®=AE,/E,®,
so that

AE=(AE,/E,©)E®, ®

for each (isosceles) triangle and y~1.

It has been found ([1], [II]) that AE/E:® (or
AE,/E,®), is <0 for values of the opening angle ©
between 60° and approximately 110°, and positive for
larger ©. The relative three-ion interactions amount to
about —209%, at ®=060°; they are generally smaller
at @=180° except for the smallest values of BR(<1.1).
For stability calculations it is appropriate to write the
pair energy E© in (8) for each triplet as a sum of a
repulsive term E.e,® and an attractive term FE,u,©;
E.p@ combines E;©@ and the second-order exchange
interactions for the pairs, whereas FE,:©@ is the long-
range van der Waals component (without exchange).
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In this way it is possible to identify E.e,@ with the
short-range pair repulsion of the Born-Mayer model.

On this basis, Eq. (8) for AE becomes, for each triplet,
AEz (AEl/El(O))Erep(O)(l+Eattr(0)/Erep(0)) ) (9)

in which form we use it for the stability analysis.

Consider a central ion and a selected shell of ions
around it. For all triplets with two ions from that shell,
the quantities E.e, @ and E,u..@ are practically con-
stant, so that we can associate with a given skell certain
values of Erep® and of (14Eu4r@/Erep®). If the
latter factor is <0 for the shell, which is the case if an
ion from the shell and the central ion attract each other,
then AE for each triplet has the opposite sign from that
of AE,/E,® of the triplet. If an ion from the shell and
the central ion repel each other, then the factor
(14 Ea44: @/ Erep @) is >0, so that AE and AE,/E,©®
have the same sign. From the properties of AE,/E;©®,
as a function of ©, we see that three-ion interactions
from the selected shell in the first case favor the crystal
structure with the largest number of triangles of large
opening, in the second case the structure with the largest
number of triangles of small opening .

For the determination of the total three-ion com-
ponent of the static lattice energy of 4X, compounds
we must know the triplet arrangements in the different
structures for a number of shells close to the central ion,
once for 4 as central ion and once for X at the center
of the triangles. The number of shells which must be
considered depends on BR (R is the nearest-neighbor
distance), on the specific structure, and on y=(8'/8)
For v>>1 it is sufficient to know the triplets 44,4, or
XoXnX, (depending on which ion is larger); the sub-
script “0” refers to the central ion, and #» numbers the
shell of A ions, or X ions, respectively. We have

TasBLE V. Numbers of ion pairs and of triplets 40X 1X; involving
a central ion 4 and its first shell of neighbors for the nine ideal
structures of 4X» compounds. The opening of the triangle at the
central ion is denoted by ©.

Number of
Number triplets
Structure of pairs  A4,X:1X) cos®

fluorite 8 12 +0.3333
12 —0.3333

4 —1.0000

rutile I 6 2 -+40.5000
8 0.0000

2 —0.5000

3 —1.0000

rutile IT 6 12 0.0000
3 —1.0000

anatase 6 12 0.0000
3 —1.0000

cadmium chloride 6 12 0.0000
3 —1.0000

cadmium.iodide 6 12 0.0000
3 —1.0000

B-cristobalite 4 6 —0.3333
cuprite 4 6 —0.3333
B-quartz 4 6 —0.3333
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TaBiE VI. Numbers of ion pairs and of triplets X414, involv-
ing a central ion X and its first shell of neighbors, for the nine
ideal structures of 4X, compounds. The opening of the triangle
at the central ion is denoted by ©.

Number of
Numbers triplets
Structure of pairs  Xod:14: cos®

fluorite 4 6 —0.3333
rutile I 3 3 —0.5000
rutile IT 3 1 0.0000

2 —0.7071
anatase 3 2 0.0000

1 —1.0000
cadmium chloride 3 3 0.0000
cadmium iodide 3 3 0.0000
B-cristobalite 2 1 —1.0000
cuprite 2 1 —1.0000
B-quartz 2 1 —0.9107

analyzed the nine different structures in terms of their
triplet arrangements relevant for the three-ion crystal
energy, as a function of SR and of y. Detailed results
will not be given here, but it is of interest to consider in
advance a few illustrative examples from which certain
conclusions can already be drawn.

Suppose first that BR is relatively large and v small,
i.e., that the first shell of ions around a central ion gives
an essential contribution to the three-ion energy. The
corresponding triplets can be of the form (4X1X1)
or of the form (X,4141); in the first case, an 4 ion is
at the center of the triplets and in the second case X
is the central ion. In Tables V and VI we list these
triplets for the nine different lattice types.

Upon inspection of the tables it appears that the
arrangement of 4,X:1X; triplets in fluorite (C1) is the
same as in cesium chloride (B2); in rutile II (C4),
anatase (C5), cadmium iodide (C6), and cadmium
chloride (C19) the same as in sodium chloride (B1);
in rutile I (C4) the arrangement is only slightly different
from that in B1 and in the structures with 4,2-coordina-
tion (C3, C8, C9) we have sphalerite (B3), wurtzite
(B4) arrangements. In other words, the effect of these
triplets on stability is the same as in the lattice types
for AX compounds, analyzed in [II] and [III], where
we found that these triplets favor the B2 configuration.
Therefore, the fluorite structure is the most stable one
for AX, compounds (large SR, small v), and at large
values of BR no other triangles with 4 as the central ion
need be considered. The X414, triplets (Table VI)
are much less important in number; therefore, we expect
qualitatively that three-ion interactions at large values
of BR will stabilize the fluorite structure. When BR
decreases, vy increases and, consequently, the im-
portance of 4,X1X1 (Xod141) triplets diminishes, just
as in the transition from B2 to B1 stability. The dif-
ference here is that, if 4 is the larger ion, then v in-
creases more slowly than for AX composition, resisting
a lowering of the coordination for solids of these 4X,
compounds. In addition, the Madelung energy of the
fluorite lattice is relatively much larger than that of
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the other configurations; this difference is never over-
taken, even for the smallest values of BR, if 4 is the
larger ion.

As a second example, we discuss qualitatively the
relative stability of the cadmium iodide (C6) and cad-
mium chloride (C19) structures. As we found before,
these two lattices are practically identical with respect
to their electrostatic energies; also the non-Coulombic
repulsions are very nearly the same. These structures
are frequently observed with 4 X, compounds where X
is the larger ion and where # is relatively large. As a
consequence, we must primarily consider triplets
XoX,X, and determine the effect of these three-ion
interactions on stability.

The X ions in these two structures have close-packed
configurations, as the atoms in rare-gas crystals:
hexagonal close-packed in C6, face-centered cubic in
C19. We found in [TI] for rare-gas crystals that only
differences in three-atom energies between the shells
of nearest neighbors have to be considered, in view of
the large values of R for these solids (2 2). For ionic
solids these differences are negligible on the energy scale
of their cohesive energies. In addition, the SR values
are now much smaller, so that we cannot limit ourselves
to the first shell of X ions.

The important shells for stability appear to be (as
shown in a later section) the fourth shell of X ions
in C6 and the third shell of X ions in C19, both at a dis-
tance 6'/2R from the central ion. These shells give rise
to a negative first-order three-ion energy AE; con-
siderably more negative in C19 than in C6 at small
values of BR(<1.3). As these shells are clearly in the
attractive field of the central ion, their weighting factors
are <0, and the resulting three-ion energy is repulsive,
more repulsive in C19 than in C6. Consequently, the C6
(cadmium iodide) structure is the more stable of the
two at small values of GR, in agreement with experi-
ment. For values of BR>1.3 these critical shells are less
important, and stability shifts towards the C19 lattice
probably because distortion of this lattice results in a
lower Madelung energy.

V. CRYSTAL STABILITY OF 4AX, COMPOUNDS

We now present the results of the stability analysis
for solids of AX. compounds, comparing the static
lattice energies of the nine (ideal) structures defined
earlier. Each solid is characterized by the Gaussian
parameters y=(8'/8)? and SR (B represents the larger
ion), and by the type of ion (4 or X) associated with 8.

The static lattice energy E for each structure and
for one mole of the compound 4 X is written as

Ew=En+Ep.+ X AE(abo)+Epo,

a<b<lc

(10)

where En stands for the Madelung energy, E, .., for
total non-Coulombic pair repulsion, AE(abc) for the
(first- plus second-order) three-ion interaction of the
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triplet (abc), and E,n for the (dipole) polarization
energy — (a/RY)K of the lattice.

We compare the static lattice energies for the nine
structures at the observed value R of the nearest-
neighbor distance in the stable structure. Let oy denote
the pair repulsion between nearest neighbors at the
equlibrium distance R. The pair repulsion between
more distant ions is calculated relative to that between
nearest neighbors by assuming that this ratio is equal
to that for first-order interactions between Gaussian
distributions of charge. Since these interactions are
v-dependent, we thereby take into account the different
size of A and X ions. The total pair repulsion E, ;. of
(10) can in this way be expressed as a function of a,
for each structure.

Also the three-ion energy AE of (10) can be written
as a function of a; and of the lattice considered. To see
this, we note that in each term AE(abc) there again
occurs, according to (9), thenon-Coulombic pair repulsion
E.;,©®. For each triplet, therefore, this term can be
related to the pair repulsion «; between nearest
neighbors. By determining the values of the parameter
(14 Est4x @/ Erepy @) of (9) for each different shell (as
specified later), we express the total three-ion energy
for each lattice as a function of a;.

The values for this nearest-neighbor repulsion aj,
at the observed equilibrium separation R, are deter-
mined from information on the stable structure, on the
basis of the following considerations. We distinguish
between two possibilities: (a) for the stable structure
the polarization parameter K is zero or mnegligibly
small, i.e., Eyo may be omitted from (10) for this
particular structure; (b) K for the stable structure is
large (C6 or C19). Category (a) comprises all compounds
where A4 is the larger ion, since here the stable structure
is always C1. Certain compounds where X is the larger
ion also belong in this class, namely (Table II) the
oxides of Si, Ti, Zr, and HIf, as well as SrCly. For this
category we can, in principle, #ot determine the stability
of C6 and C19 with respect to the other structures, since
no reliable estimates of E,, can be made in this case
(except if A4 is the larger ion and v is large). For both
categories (a) and (b) we make a further distinction,
according to whether or not the static lattice energy of
the stable structure is known from a Born-Haber cycle
(determined from thermochemical data and electron
affinities).

We now have to consider four different possibilities:

(al) Epoi~0; Born-Haber values known. We sub-
stitute the Born-Haber value for the static lattice
energy on the left-hand side of (10), which equation is
then solved for «;. The values of Eg for the other
structures (generally, excluding C6 and C19) are
determined at the same value of BR. The lattice with
the largest negative Eg is the most stable one at R.
The result is correct if this is just the observed structure.

(a2) Epo~0; Born-Haber values mnot known. The
nearest-neighbor pair repulsion a; can in this case not
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be determined from (10) in a one-step procedure. We
now adopt validity of the Born-Mayer model with
an effective pair repulsion varying with distance as
R-», The static lattice energy of the observed structure,
at equlibrium distance R, is then given by

Eg=Em(1—1/p). (11)

Different values for p (between p=7 and p=12) are
then chosen, and the corresponding values of Eg
calculated from (11). With this set of values we obtain,
from (10), a set of values for a;, with which we proceed
as under (al). This method of determining oy via (11),
for a range of values of p, is also in (al) preferable to
using the Born-Haber values directly, since, for ex-
ample, the electron affinities of the ions of O, S, Se, and
Te are not known with sufficient accuracy.

(1) Epor large; Born-Haber values known. Category
(b) refers to the C6 and C19 structures exclusively. In
this case we cannot determine «; directly from (10),
since this equation contains Ep,; of which we know only
that its contribution to the crystal energy is appreciable.
We therefore extend the Born-Mayer model by also
incorporating Fp, in the expression for the static
lattice energy (which contains the Madelung energy
and the total effective pair repulsion). Since Eyo1 varies
with R as R4 it follows readily that the expression
for the static lattice energy of the stable structure, at
the observed nearest-neighbor distance R, is now
given by

Ey= EM(I‘ 1/?)+[(17— 4)/?]Epol )

where p denotes again the exponent in the dependence
R—? of the effective repulsion on distance.

Using the Born-Haber value for Es we obtain, from
(12), E,m as a function of p. Then, substituting Epo
into (10), we determine o as a function of p, and com-
plete the calculation of Eg for the remaining eight
structures.

(82) Epor large; Born-Haber values not known. Here,
the unknowns in Eq. (10) are Eg, a;, and E,n. We
determine Eg by observing that for several compounds
of category (b1) a relation E¢~1.05Ey holds to a good
approximation. This applies for the compounds TiS,,
MgCly, MgBr;, Mgl,, and Cal,; from thermochemical
datal” and electron affinities we determined Born-
Haber values and obtained for Ey/Em (in order of
the compounds as given above) the values 1.05, 1.04,
1.06, 1.10, and 1.07. The same relation is assumed to
hold for all compounds of class (b2); we then calculate
again E,q for different values of p and proceed as
before.

It is noted that the relative stability of the C6 and
C19 configurations is not affected by an uncertainty
concerning .the values of E,q, since these values can
be assumed to be practically the same in the two
structures.

17 0. Kubaschewski and E. L. Evans, M etallurgical T hermochem-
istry (Pergamon Press Ltd., London, 1956), Chap. 4.

(12)
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TaBLE VII. Madelung energy En (kcal/mole), total pair repulsion Ey ., total three-ion energies for triplets 4X1X1 (Xod141),
triplets XoXnXn, AoAmAm, and the sum of two-body and three-body energies (all in units of nearest-neighbor repulsion) for CaF,,

Na;0, and LizSe. The last three columns list the difference in energy

SE between the corresponding structure and the fluorite configura-

tion (in kcal/mole); the values in parentheses refer to pair interactions only.

CaFz; BR=1.985 ~=1.244

8E
Structure Enm Ep,r_ AOX1X1+XOA1A1 AOA1A1 XOX1X1 Ep[+AE ﬁ=8 ﬁ=9 f=10
C1 —706.9 9.3613 —1.4685 —0.0836 7.8092 0 0 0
C4-1 —671.1 6.7400 —0.3572 oo 0.2103 6.5931 22.0(11.0) 23.6(13.8) 24.8(16.0)
C4-1I1 —668.1 6.0718 —0.4859 —0.0025 0.1433 5.7267 15.2( 7.7) 17.9(11.2) 19.9(14.0)
C5 —655.0 6.1437 —0.4314 0.0027 0.1688 5.8838 30.1(21.5) 32.5(24.9) 34.5(27.6)
C19» —626.3 6.2155 —0.7700 0.0700 0.1688 5.6843 56.7(50.9) 59.2(54.2) 61.4(56.8)
C6» —625.9 6.2155 —0.7700 0.0700 0.1690 5.6845 57.0(51.3) 59.6(54.6) 61.8(57.2)
9 —624.7  4.0000 0.3724 43724 433(31.6)  47.6(372)  SL.1(4L.7)
C3 —6232  4.0000 0.3724 43724  448(331)  49.1(387)  52.6(43.2)
Na:0; BR=1.44, v=3.75
SE
Structure Ex Ep,r, AOX1X1+XOA 1A1 Zm AoAmAm Ep.r'+AE P=8 17=9 p= 10
C1 —696.8 9.9027 —0.6113 —0.3157 8.9757 0 0 0
C4-1 —661.6 7.2236 0.1225 0.6624 8.0085 25.9(11.7) 27.0(14.3) 27.8(16.4)
C4-11 —658.5 7.2803 0.1018 0.6063 7.9884 28.7(15.2) 29.8(17.8) 30.6(19.8)
C5» —644.5 7.8123 0.0997 0.0140 7.9260 42.1(33.9) 43.2(36.0) 44.2(37.6)
C19= —610.8 8.5477 —0.2944 —0.0328 8.2205 78.7(74.1) 79.5(75.4) 80.1(76.4)
ce —610.4 8.5384 —0.2944 —0.0328 8.2112 79.0(74.4) 79.8(75.7) 80.5(76.8)
c9 —615.8 4.0728 0.5474 —0.0012 4.6190 38.7(29.7) 43.3(35.4) 47.2(40.0)
C3 —614.4 4.1886 0.5474 0.1241 4.8601 42.5(32.1) 46.9(37.7) 50.4(42.2)
LisSe; BR=1.056, y=41
SE
Structure EM Ep,r_ A0X1X1+X0A1A1 Zm AoAmAm Epr+AE p=8 ?=9 p=10
C1 —643.2 62.8067 —3.1436 —2.8642 56.7989 0 0 0
C4-1 —610.6 43.2606 —1.3676 —4.1798 37.7132 5.6( 7.6) 8.6(10.4) 11.0(12.6)
C4-11 —607.7 42.0195 —1.5820 —0.7294 39.7081 11.3( 8.9) 14.0(11.8) 16.1(14.2)
C5e —504.0 46.3850 —1.6098 15.5910 60.3662 54.2(28.2) 53.7(30.5) 53.2(32.4)
C19a —558.1 54.3045 —1.9871 12.2363 64.5537 96.1(74.2) 94.9(75.4) 93.9(76.4)
C6? —557.7 54.3585 —1.9871 11.6987 64.0701 95.8(74.7) 94.6(75.9) 93.7(76.8)
c9 —568.5 9.7382 —0.2753 0.1137 9.5766 7.9( 6.8) 15.3(14.3) 21.2(20.4)
C3 —567.1 19.0216 —0.2753 —2.1545 16.5918 19.2(20.0) 30.6(31.3)

25.5(26.3)

a The polarization energy is not included.

For the presentation of numerical results, we dis-
tinguish between the following three classes of solids:

(I) A4 is the larger ion (C1 stability);
(IT) X is the larger ion; no polarization energy in the
stable structure (C1, C4, C8, and C9 stability);
(IIT) X is the larger ion; stable structure C6 or C19.

It is of importance to also include in the results the
stability relations obtained on the basis of (non-Coulom-
bic) pair interactions, i.e., by omitting from Eq. (10)
the contribution of three-ion forces to the lattice energy.
This comparison is relevant, since a Born-Mayer type
of pair potential, extended by taking into account the
difference in size between A4 and X ions through the
parameter v, for each compound, is expected to yield
stability relations closely similar to those of the Gold-
schmidt rules.

Class (I). Detailed numerical results are given for
three typical representatives of this class: CaF,
(BR=1.99, y=1.24), Na,0 (BR=1.44, v=3.75), and
Li,Se (BR=1.06, y=41). In Table VII we list, for these
three compounds in the nine ideal structures, the Made-

lung energy (in kcal/mole), the total pair repulsion
E, ... (in units of nearest-neighbor repulsion), the three-
ion energy for triplets AoX1X1 (Xodidy), triplets
XX, X, (summed over #), A4 ndn (summed over m),
as well as the sum of pair- and three-ion interactions.
The summations over # and 7 extend up to values
of BR,, BRx of about 3.4 (for larger values three-ion
energies are negligible.) The last three columns of
the table give, in kcal/mole, the difference in lattice
energy 8E between the structure considered and the
stable C1 configuration, for values p=8, 9, and 10 of the
exponent p in the Born-Mayer effective pair repulsion
R-?. A positive value means that C1 is the most stable
structure. The weighting factors (14 Eattr@/Erep®)
for the different shells are the same as those used in the
analysis of alkali halide crystals and of solids of II-VI
and III-V compounds (a two-step function with values
0.5, 0.25 for shells in the repulsive part of the pair
potential,and a value — 1 for shells in the attractive part
of the pair potential). We also list in the last three
columns, in parentheses, the difference in lattice energy
between the corresponding structure and C1, calculated
on the basis of pair interactions alone.
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TasLE VIIL. Madelung energy Ewm (kcal/mole), total pair repulsion E,.r., total (first- plus second-order) three-ion energies for triplets
AoX:1 X1 (XoA141), XoX»Xn, and sum of two-body and three-body energies (all in units of nearest-neighbor repulsion), for SrCls, ZrOg,
and HfO.. The last three columns list the difference in energy 8E between the corresponding structure and the fluorite configuration
(in kcal/mole); values in parentheses refer to pair interactions only.

SrCly; BR=1.686, y=1.416

O
Structure EM Ep,,-_ AOX1X1+XOA1A1 Zn XoXan Epr+AE P=8 17‘—“9 ﬁ=10
C1 —553.7 12.7335 —2.9293 —0.5572 9.2470 0 0 0
C4-1 —525.7 9.2947 —1.1169 1.8368 10.0146 33.7( 9.3) 33.1(11.4) 32.6(13.0)
C4-11 —523.1 8.1073 —1.4427 1.4096 8.0742 21.8( 5.8) 22.8( 8.6) 23.6(10.9)
C5e —511.3 8.3046 —1.4320 1.5345 8.4071 36.1(18.9) 36.8(21.6) 37.4(23.7)
C19» —480.2 8.3404 —1.8795 1.5345 7.9954 64.1(50.1 65.2(52.8) 66.0(54.9)
Cc6* —479.7 8.3293 —1.8795 1.5407 7.9905 64.6(50.0) 65.6(52.7) 66.5(54.8)
9 —489.4 4.2638 0.0329 0.0820 4.3787 27.9(18.9) 31.9(24.1) 35.1(28.2)
C3 —488.2 4.5275 0.0329 0.4172 49776 33.5(21.3) 37.1(26.3) 39.9(30.3)
ZrOs; BR=1.317, y=2.2
oE
Structure EM Ep.r. A0X1X1+XDA lAl Zn XOXan Epr+AE P=8 1>=9 P=10
C1 —3048 18.5105 —4.3908 —2.5829 11.5386 0 0 0
C4-1 —2893 13.7291 —1.9059 —2.2248 9.5984 91( 57) 98( 68) 104( 76)
C4-11 —2879 12.3500 —1.4073 —1.7287 9.2140 92( 42) 101( 56) 108( 68)
C5 —2814 12.7734 —3.7042 —1.7294 7.3389 95(116) 111(129) 123(140)
C19» —2643 12.7372 —3.0443 —1.7294 7.9635 287(286) 300(299) 310(310)
Cc6» —2640 12.7372 —3.0443 —1.6982 7.9947 291(289) 304(302) 314(313)
9 —2694 5.3450 —1.3266 —0.0364 3.9820 105( 83) 132(113) 154(137)
C3 —2687 6.8645 —1.3266 —0.4269 5.1110 149(121) 172(148) 191(169)
HfO;; BR=1.329, y=1.54
8E
Structure Ey Ey: AXiX1+Xod141 TaXoXnXn Epr+AE p=8 =9 »=10
C1 —3020 15.7285 —3.8828 —1.8183 10.0274 0 0 0
C4-1 —2867 12.0835 —1.4812 —1.5720 9.0303 115( 66) 120( 75) 123( 83)
C4-11 —2853 10.6854 —0.7598 —1.2141 8.7115 117( 46) 123( 59) 127( 70)
Cse —2789 11.1756 —1.9950 —1.2172 7.9634 153(122) 162(134) 169(144)
C19» —2619 10.0651 —2.8248 —1.2172 7.0231 288(289) 300(302) 311(312)
C6» —2616 11.1791 —2.8248 —1.1967 7.1567 296(294) 308(307) 318(317)
9 —2669 4.2969 —0.0749 —0.0274 4.1946 131( 76) 156(107) 175(132).
C3 —2663 6.0688 —0.0749 —0.2967 5.6972 194(125) 212(151) 227(172)

2 The polarization energy is not included.

The values in Table VII for the structures C5
(anatase), C6 (cadmium iodide), and C19 (cadmium
chloride) were calculated without taking polarization
energy into account. Since the electric field at the site of
the larger ion (A4) is identically zero for this class of
solids, polarization contributions from the smaller ion
(X) are small. It is seen from the table that the fluorite
structure is indeed always the most stable one, both on
the basis of pair interactions and when three-ion energy
is taken into account.

Class (IT). In this class we find the compounds ZrO,,
HiO,, SrCl; (C1 stability); MgF,, TiO, (C4 stability);
and SiO., BeF: (C8, C9 stability). The range of SR
values extends from 1.86 (MgF:) to 0.91 (SiO;); the
v values extend from 2.17 to 15.4.

We first give the results for SrCly, ZrO,, and HfO,
(C1 stability). In Table VIII we list, for these three
compounds, the same quantities as in Table VII; the
values in parentheses in the last three columns refer
again to a pair potential only (Madelung energy plus
sum of non-Coulombic, y-dependent pair repulsions).

We see from the table, that, for all three compounds,
three-ion interactions sncrease C1 stability, in particular

with respect to C3, C4, and C9, compared with the
results based on pair interactions alone; this extra
stability arises from triplets 4oX1X1 (Xo414:1) and
XoX1X:1. The effect of three-ion interactions is, there-
fore, to resist a lowering of the coordination number as
long as v is relatively small. In the case of alkali halides,
on the other hand, the y values are much larger for com-
parable values of BR; for this category of ionic solids
the B1 structure (coordination 6) is, consequently, more
stable than B2 (coordination 8). Although we have
not taken account of polarization energy for the struc-
tures C6, C19, (and C5), it is seen from the table that the
fluorite configuration is more stable than these struct-
ures by a large margin; this difference cannot be over-
taken by polarization effects.

Next, we discuss MgF, (8R=1.86, y=2.17) and
TiO; (BR=1.15, y=4.18), for which the observed
stable structure is C4 (rutile type). Here, we have the
unusual phenomenon that a structure is stable in two
widely separated domains of SR values, for similar values
of . In view of this peculiarity, the stability analysis
requires a more precise consideration of the influence
of three-ion interactions than for the solids discussed
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TaBLE IX. Total pair repulsion E, . and first-order three-ion
energies AE; for triplets 4oX1X:1 (X04141), XoX1X1, and XXX,
for MgF; in the structures C1, C4-I, C4-II, and C9. The quantities
BR; and BR; denote the dimensionless distances from the first
two shells of X ions in these structures to the central ion (X).
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TaBLE X. Energy differences 5(C9-C4) between the cristobalite
and rutile-IT structures, and §(C1-C4) between the fluorite and
rutile-IT structure (in kcal/mole), for MgF; as a function of weight-
ing factors (S1,52) for the first few shells of X ions, and of the
exponent p=8, 9, and 10 of the effective Born-Mayer pair re-
pulsion. The sets 51,52 are defined in the text.

AX:Xs 3(C9-C4) 3(C1-C4)
Structure  Epr +Xodid: BRi XoXiX:1 BR:  XoXaXa MgF, =8 p=9 p=10 p=8 p=9 p=10
c1 152954 —7.7452 2.15 —2.5418 3.04 —0.3545  pair interactions 21 7.7 120 364 272 202
C4I 104600 —3.5578 2.63 —2.2306 2.94 00023  set Sl 127 171 206 21 146 85
CAII 83755 —35130 2.63 —1.7428 322 000015 set S2 0 59 105 —53 —98 —134
c9 41884 —0.5050 3.04 —0.0771

so far. The principal structures to be compared for
stability appear to be C1, C4-I, C4-II, and C9; with
respect to these four configurations the remaining
structures are found to be of much lower stability.

In Table IX we list, for the structures C1, C4-I,
C4-I1, and C9 of the compound MgF,, the total pair
repulsion E, . and the firsi-order three-ion energies
AE1 for triplets AOX1X1 (X()A 1A 1), X0X1X1, and
XoX2X5. The corresponding dimensionless distances
BR; and BR, for the first two shells of X ions are also
given. First we note that three-ion interactions arising
from triplets 40X1X1 (Xo4141) are attractive in all four
configurations (since the weighting factor for the shell
of nearest neighbors is positive) and that they favor the
Jfluorite structure.

The three-ion energy resulting from triplets XoX1X
has a very semsitive effect on crystal stability. The first
shell of X ions is inC1 at distance SR;=2.15, in C4-1,
II at distance 2.62, and in C9 at distance 3.04. The
weighting factor for this shell in C9 is certainly nega-
tive; we take it as —1, in accordance with the procedure
adopted for all other ionic solids considered previously.
To estimate the weighting factor for this shell in the
fluorite and rutile structures, we note that the fluorine
ion is isoelectronic with neon. The separation for zero
potential between neon atoms is approximately 387!
(2.85A), that between argon atoms 2.158~1 (3.45 A).
Consequently, we estimate this distance to be ap-
proximately 2.68~! for fluorine ions, by linear extrapola-
tion on the basis of the B values for neon, fluorine, and
argon. The weighting factor for the first shell of X
ions in rutile is then zero, in fluorite positive (taken as
0.25), and in cristobalite negative (taken as —1). To
investigate stability as a function of weighting factors,
we choose also a value of zero at 2.15, and —1 at 2.62
and 3.04 (set S2); the set 0.25,0, and — 1, selected above
on the basis of 8 values, is denoted by S1. In Table
X the energy differences 6(C9-C4) and 6(C1-C4)
between C9 and C4 and between C1 and C4
are given, first for pair interactions alone, and then for
the two sets S1, S2 of weighting factors defined above.
The three columns refer, respectively, to values p=3§,
9, and 10 of the exponent p in the effective Born-
Mayer pair repulsion. The symbol C4 stands for the
structure C4-II; its parent configuration C4-I is ex-

cluded on the basis of higher pair repulsions (see Table
IX). From the table we see, first of all, that pair inter-
actions account correctly for the observed rutile stability
of MgF,, although stability with respect to C9 is low
for p=8. Upon including three-ion interactions, the
stability relations skift markedly with different choices
of weighting factors for the first shell of X ions. For the
most probable set (S1), the rutile stability is reproduced,
both with respect to C1 and C9, whereby we observe
that the rutile stability relative to C9 is considerably
higher than on the basis of pair interactions alone.

On the other hand, displacing the first X shell
towards the attractive part of the pair potential (set
S2) results immediately in stability of the fuorite
configuration; also the stability of rutile with respect
to cristobalite is then greatly reduced. These results
indicate that the rutile lattice can be stable only in a
narrow range of BR, v values. Upon increasing SR, the
fluorite structure becomes more stable, primarily
because the three-ion contribution from triplets X ¢X1X;
is then quenched and stability is decided by triplets
AoX1X1 (Xo4141). On the other hand, if we decrease
BR, retaining small values of y(<2), then the C1
structure is again more stable, as in the case of ZrO,.
Finally, upon increasing vy while decreasing BR, the
stability shifts towards the cristobalite (quartz) con-
figuration, as is illustrated in BeF, (see below).

A very different situation is encountered in the
stability analysis of the compound TiO, (BR=1.15,
y=4.2), observed as a distorted rutile type and also
as a distorted anatase structure. As for MgF,, we first
present the total pair repulsion, together with the firss-
order three-ion energies for triplets 4,X1X; (Xo41431),
XoX1X1, and XoXwXm (m2>2). Since BR is here con-
siderably smaller than for solid MgF,, several more
shells of X ions must be considered for stability; we
have calculated the three-ion energies for XXX
triplets with m=2, 3, - -, 10. The results are given in
Table X1, for TiO; in the structures C1, C4-I, C4-1I,
and C9. First we note that, as with MgF,, three-ion
interactions from triplets 4,X1X1 (Xo4141) are atirac-
tive in all configurations considered; they favor the
fluorite structure. Three-ion energy from the first shell
of X ions favors the rutile-I lattice; this gain in energy
is, however, not preserved upon considering more distant
shells. Qualitatively, it can already be seen that, al-
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Tasie XI. Total pair repulsion E, .. and first-order three-ion energies AE; for triplets 4oX1X1 (Xo4141), XoX1X1, and XoXmXm,
with m=2, 3, - -+, 10, for TiO; in the structures C1, C4-I, C4-I1, and C9. The quantity BRn denotes the dimensionless distance from the
mth shell to the central ion X,. All energies are in units of nearest-neighbor repulsion.

TiO; BR=1.146, y=4.18

Structure Ep,r, AOX1X1+XOA 1A1 ﬂR1 X0X1X1 ﬁRz XngXz ﬁRs XoXaXa BR4 X0X4X4 ﬂRs XoXsXﬁ
C1 33.1229 —11.2058 132 —11.2079 187 —4.5089 229 —14540 2.65 —0.0688 296 —2.9366
C41  24.4328 — 5.5064 1.62 —13.0703 1.81 0.3320 1.98 0.2018  2.29 0.0689 243 —0.0427
C4-I1  22.2468 — 5.0158 1.62 — 84122 1.98 0.1924  2.29 0.0287 2.56 —0.0440 2.77 —0.0103
c9 23.0521 — 1.7834 1.87 0.0989 3.24 —0.1660
Structure  BRs XoXeXs BRy XXXy BRs XoXsX3 BRy XXXy BR1o XoX10X10

C1 3.24 —0.8793
C4-1 2.56 —2.0694 2.69 —0.0269 3.03 —0.0019 3.14 —0.0359 3.24 —0.5665
C4-11 2.81 —1.2776 2.99 —0.5681 3.21 —0.0272 3.24 0.0000

though the packing of X shells in rutile I is very com-
pact, the resulting three-ion energy does not favor the
rutile structure by an appreciable margin.

To select the weighting factors for the X shells, we
have to know the separation for zero pair potential
between oxygen ions. Remembering that this distance,
in units 871, is 3.0 for neon, 2.6 for fluorine ions, and
2.15 for argon, we choose a probable value of 2.487!
for the distance for zero pair potential between oxygen
ions. Shells with BR,, values >2.4 are weighted by a
factor —1 or —1.5, those for which SR.<2.4 by a
factor 0.25 or 0.5. In total, we selected the following sets
of weighting factors:

S1’: 0.5if BR.<2.4; —1ifBR,>24;

S2': 0.5 if BR.<2; 0.25 for 2<BR,<2.4 and —1 if
BR»>2.4;

S3: 05 if BR.<2.4; —1.5if BR,>24.

In Table XII we list the energy difference 6(C9-C4)
between the [-cristobalite and rutile structures (C4
denotes C4-I; no significant difference exists between
C4-1 and C4-II), and the difference §(C1-C4) between
the fluorite and rutile structures, for the three above
sets S1/, 52/, and S3’ of weighting factors for X shells.
Also given are the values of these differences obtained
on the basis of pair interactions only. The results are
quite remarkable already on a two-body basis, since it
is seen from the table that the rutile structure is never

TaBLE XII. Energy difference §(C9-C4) between the cristobalite
and rutile-I structures, and §(C1-C4) between the fluorite and
rutile-I structures (in kcal/mole), for TiO; as a function of weight-
ing factors (§1/,52',53’) for shells of X ions (defined in the text)
and of the exponent p=8, 9, and 10 of the Born-Mayer effective
pair potential.

5(C9-C4) 5(C1-C4)
TiO, p=8 p=9 p=10 p=8 p=9 p=10
pair interactions —52.5 —21.2 3.8 —29.2 —45.6 —58.7
set S1’ —219 59 282 —71.2 —83.0 —924
set S2’ —21.8 6.1 284 —624 —751 —853
set S3’ —31.7 —-275 204 —66.5 —788 —88.6

stable: for p=9 and 10, fluorite is the most stable
structure, whereas for p=8, crisiobalite is stable both
with respect to rutile and to fluorite. Upon including
three-ion forces, the fluorite structure is always the
stable one for p=38, 9, and 10, removing the ambiguity in
stability with respect to p. We have also found that the
anatase structure is always less stable than rutile, both
with pair interactions alone and including three-ion
forces. The observed distortions of the real rutile or
anatase lattice of TiO, cannot overcome such large
differences in energy, since the Madelung constants of
the distorted structures differ from those of the ideal
lattices only by approximately 19,.!® Apparently, the
Ti4¢t ion, although isoelectronic with argon, cannot be
considered only on the basis of closed-shell electron
configurations.

The last two compounds of this class to be discussed
are SiO; (BR=0.91, y=15.4) and BeF, (BR=1.47,
v=12.3), which exhibit C8, C9 stability. Only structures
with 4,2-coordination must be compared for stability
of these compounds, since those with higher coordina-
tion are ruled out on the basis of pair repulsions alone.
In the following Table XIIT we list, for SiO, in the
structures B-cristobalite (C9), 8-quartz (C8), and cuprite
(C3), the same quantities as in Tables IX and XL
From the table we note that the pair repulsion is
lowest in C9, somewhat larger in C8, and very much
larger in C3. Triplets 40X 1X1 (Xo4141) give, because
of the same coordination, identical three-ion energies
in the three structures. On the other hand, the first X
shell in C9 develops much stronger repulsion than in
C8; in C3 this three-ion energy is large and negative,
because this shell in C3 has the same arrangement
as the second shell of X ions in fluorite (C1). A decisive
difference between C8 and C9 arises from three-ion
interactions of triplets X oX»X>; this second X shell is in
the repulsive part of the pair potential for C8 (8Ry=2.11)
and the resulting three-ion energy is aftractive, whereas
in the structure C9 this shell is already in the attractive
part of the pair potential (8R;=2.58), resulting in
repulsive three-ion energy in this case. In addition,

18 K. Sahl, Acta Cryst. 19, 1027 (1965).
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TaBiE XIII. Total pair repulsion E, ., and first-order three-ion energies AE; for triplets 4,X1X1 (Xo4141), XoX1X1, and XX nXm,
with m=2, 3, -+, 8, for SiO; in the structures g-cristobalite (C9), 8-quartz (C8), and cuprite (C3). The quantity B8R, denotes the
dimensionless distance from the mth shell of X ions to the central ion X,. All energies are in units of nearest-neighbor repulsion.

Si0s; BR=0.912, y=15.42

Structure  Epr  AoX1X14+Xod14:1 BRy XoX1 X1 BR2 XoXoX, BR3 XoX3X3 BR4 XoX X4
c9 30.6028 —2.7942 1.49 3.9723 2.58 —4.6925 2.98 — 0.2866
C8 35.2847 —2.7942 1.49 0.9776 2.11 —3.6825 2.29 — 0.7522 2.35 —1.6189
c3 62.8430 —2.7942 1.49 —31.4022 2.11 —1.8961 2.58 —25.4788 2.98 —0.2890
Structure BRs XoXsX5 BRs XXX BRq XoX1Xy BRs XoXsXg
C8 2.73 —0.0641 2.79 0.0014 2.88 —0.5763 293 —0.0910

shells =3 and 4 in C8 also develop attractive three-ion
energy. Consequently, we see that the difference in
three-ion interactions between C8 and C9 tends to com-
pensate for the lower pair repulsion in C9. Using the
same sets S1/, 52/, S3’ of weighting factors as defined
in the analysis of TiO, stability, we obtain the results
given in Table XIV for the differences in energy
8(C8-C9) between the B-quartz and B-cristobalite con-
figurations, and 8(C3-C9) between the cuprite and 8-
cristobalite structures. First we observe that the cuprite
structure is completely ruled out for stability, both for
pair interactions and including three-ion forces. Further,
the cristobalite configuration is considerably more
stable than quartz on the basis of pair interactions alone
(by about 39, of the total crystal energy). However,
upon including three-ion forces, their difference in
stability disappears. This result is qualitatively in-
dependent of the set of weighting factors chosen, i.e.,
stability of either structure is essentially determined by
the symmetry properties of three-ion interactions and
by the sign of the weighting factors for a few important
shells of X ions. On the basis of the above results, we
expect SiOp fo exhibit both C8 and C9 stability, in
striking agreement with experiment. Secondary effects,
such as lattice distortions, will in each particular case
decide stability of one, or another, of such configurations.

Finally, we consider crystal stability of BeF, In
view of the relatively large value of BR compared to
SiO, (1.47 compared to 0.91), pair energies are practi-
cally identical in C8 and (9. In addition, three-ion
energies from triplets A,X1X1 (Xo414:1) as well as

TaBLE XIV. Energy differences 8(C8-C9) between the g-quartz
and B-cristobalite structures, and 8(C3-C9) between the cuprite
and B-cristobalite structures (in kcal/mole), for SiO: as a function
of weighting factors (S1/,52',53") for shells of X ions (defined in
the text) and of the exponent values p=8, 9, and 10 of the Born-
Mayer effective pair potential. Values of these differences on the
basis of pair interactions alone are also given.

5(C8-C9) 8(C3-C9)
SiO. p=8 p=9 p=10 p=8p=9 p=10
pair interactions 122.7 1128 105 511 455 411
set S1’ —136 — 73 — 23 462 412 372
set 52’ 6.4 10.5 13.7 469 418 377
set S3’ —-36.1 —27.3 —-20.3 561 500 451

XoX1X; are the samein C8 and C9; further shells give
no contribution to the crystal energy. The Madelung
energy favors C9 over C8 by 11 kcal/mole; all energy
differences are of this order of magnitude, i.e., only
secondary effects, such as distortions, can stabilize
either lattice.

Class (IIT). The AX, compounds which crystallize
in the C6 or C19 structure are: (C6) MgBrz, Mgl,;
CavIz; SiTez; Ti52, TiSez, TiTez; Z1‘82, erez, ZI’Tez; HfS2,
HiSe, and (C19) Cs;0, MgCly. Further, we note from
Table II that the BR values for compounds with the C6
configuration lie between 0.95 and 1.33, and that C19
stability occurs only in a narrow range of SR values,
namely, between 1.4 and 1.5.

The comparison of static lattice energies of the nine
different ideal structures, for compounds of this class,
is carried out including polarization contributions, i.e.,
on the basis of Eq. (10) including E,.1. For the stable
structure of each compound, Eq. (12) then applies, and
E,o1 can be determined as a function of the parameter
p in the Born-Mayer effective pair repulsion, as we dis-
cussed in Sec. IV.

The principal task for the stability analysis of this
class of compounds appears to be the explanation of the
observed relative stability of the C6 (cadmium iodide)
and C19 (cadmium chloride) configurations. In an
earlier section we have already outlined this relative
stability on a qualitative basis; we will now give the
numerical results. Before doing this, we note that Ti
compounds have also been included as members of this
class (C6 stability), although from the analysis of TiO,
stability we concluded that the Ti** ion cannot be
considered only on the basis of closed-shell configura-
tions. The justification is that we find the C6 structure
for these compounds with large X ions to be consider-
ably more stable than C4 (rutile), C5 (anatase), or
any structure with 84 or 6,3 coordination. Con-
sequently, such additional components of the crystal
energy (stabilizing C4 for TiO,) are unlikely to be of
importance here.

For the analysis of C6, C19 relative stability we select
ZrSe; (BR=1.08, y=4.8) as an example. In Table XV
we list for this compound the total pair repulsion E, .,
and the first-order three-ion energies AE,; for triplets
Ao XX, (X()A1A1) and XoX,,X,., with n=1, 2, <o, 6,
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TasLE XV. Total pair repulsion E, ., and first-order three-ion energies AE; for triplets 4oX1X; (Xo4141) and XoX Xy, withn=1,2,
-+, 6, for ZrSe; in the C6 and C19 configurations. The dimensionless distances R, from the #th shell of X ions to the central ion X,

are also given. All energies are in units of nearest-neighbor repulsion.

ZrSe:; BR=1.082 v=4.81
Structure Ep.r, A0X1X1+X0A 1A1 ﬁRl XOX1X1 ﬁRz XonXz ﬁRa XoXaXa ﬁRd X0X4X1
C19 28.1227 —7.084 1.53 —11.2707 2.16 —0.6070 2.65 —8.3143 3.06 —0.0813
C6 28.1227 —7.084 1.53 —11.2494 2.16 —0.7662 2.50 0.0137 2.65 —5.5832
Structure BRs XoXsXs BRs XoXeXs
C6 2.93 —1.3777 3.06 —0.0178

together with the dimensionless distances SR, from the
nth shell of X ions to the central ion X, We conclude
from the table that no appreciable differences between
C6 and C19 arise from pair repulsions or from three-
ion energies of triplets 4oX1 X1 (Xo4141), XoX1 X3,
and X,X.X,. However, shells at BR,=2.65, i.e., the
third X shell in C19 and the fourth X shell in C0, generate
stgnificantly different three-ion contributions to the crystal
energy. Since these shells are in the attractive part of the
pair potential, their weighting factor (14 Eu:®/
E.,®) is negative, and the total (first- plus second-
order) three-ion energy is repulsive, more repulsive in
C19 than in C6. More distant shells have no appreciable
effect on crystal stability. We conclude, therefore, that
for these values of R the cadmium iodide (C6) configura-
tion is the more stable one, in agreement with experi-
ment. When BR increases to about 1.4, then the above
shells are at BR,~3.6 and their three-ion contribution
has become negligible. For such large values of SR
(MgCly, Csq0) the lattice energy of the ideal C6 and
C19 structures is practically the same (except for a
small difference in polarization energy of 19, in favor
of C6). Distortion of the C19 lattice, resulting in an
increase of the Madelung constant,’® can then account
for the observed C19 stability.

Finally, we give in Table XVI the complete results
for the stability comparison between the nine ideal
structures, selecting as typical examples ZrSe,, MgI,,
and MgCl,. The quantities listed are the same as those
of Tables VII and VIII; in the last three columns 6E
denotes again the difference in energy between the
structure considered and the stable one (in kcal/mole).
The values in parentheses refer to the difference 6E
obtained on the basis of pair interactions only. We note
from the table that a model of pair repulsions between
the ions, extended to account for polarization contribu-
tions and for the different size of 4 and X ions (param-
eter v), accounts correctly for observed stability rela-
tions. Of course, no distinction can be made on the basis
of pair interactions between the stability of C6 and C19.

VI. SUMMARY AND DISCUSSION OF RESULTS

In this paper we have analyzed crystal stability of
AX,> compounds on the basis of pair interactions and of
three-ion exchange forces in first and second orders of

perturbation theory. The three-ion component of the
interaction energy for each triplet of ions was calculated
on the basis of effective, one-electron, charge distribu-
tions of Gaussian form for the ions, taking into account
only single-exchange terms in the interaction energy.
For a discussion of double exchange, and of the con-
tribution from nonisosceles triangles of ion configura-
tions we refer to [II]; the analysis given previously
appears to apply equally well for 4X, compounds.
The static lattice energies of each compound in nine
different (ideal) structures were compared for the
observed value of the nearest-neighbor distance in the
stable structure.

Further, polarization contributions to the crystal
energy were taken to be of the form —(a/R4)K, where
K is a characteristic lattice constant, R the nearest-
neighbor distance, and where « is an effective polariza-
bility of the X ion; values of @ can be determined, in
the framework of the Born-Mayer model, as a function
of the exponent p in the Born-Mayer effective pair
potential R—?., The C6 (cadmium iodide) and C19
(cadmium chloride) lattices exhibit by far the largest
value of K, so that polarization is of importance only
in these layer structures. The calculation of K values
for the nine different structures, as well as that of their
Madelung constants, was carried out on the basis of the
Bertaut method.

For all compounds considered, the stability results
obtained upon including three-ion interactions were
compared with those resulting from a pair-potential
assumption only (however including polarization
effects, which have appreciable Coulombic three-ion
components). The pair potential is of the Born-Mayer
type, extended to take into account the difference in
size between 4 and X ions [through the parameter
v=(8'/B)2%, where 8’ and 8 are the Gaussian parameters
for 4 and X ions]. This extended pair potential was
found to yield stability results which are very close to
the predictions based on the Goldschmidt rules, and
which in some cases agree better with experiment. An
example is ZrO,: on the basis of ionic radii the predicted
crystal structure is rutile,” whereas on the basis of
v-dependent pair repulsions we find fluorite as the
stable lattice, in agreement with experiment.

The stability results for 4 X, compounds of which 4
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TABLE XVI. Madelung energy Eum (kcal/mole), total pair repulsion E,..., three-ion energies from triplets 40X 1X: (Xo414:) and
X0X,Xn, summed over #, together with the sum of pair repulsions and total three-ion interactions (all in units of nearest—neighbor

repulsion), for ZrSes, Mgl,, and MgCl; in nine different (ideal) configurations. In the last three columns the energy difference 6E

kcal/

mole) is given, for values p=6, 8, and 10 of the exponent p in the Born-Mayer effective pair repulsion. The numbers in parentheses refer

to pair interactions only.

ZrSe;; BR=1.082, y=4.81

oE
Structure Ewn Eyr AXiX1+Xod141 Xn XoXnXn  Epr.+AE p=6 =8 =10
C1 —2509 40.0453 —5.7800 —2.8902 31.7351 802(960) 578(702) 444(548)
C41 —2382 29.7180 —2.8702 —3.2819 23.5659 664(781) 498(590) 398(475)
C4-11 —2370 27.1272 —2.6463 —2.0065 224744 641(717) 482(542) 387(437)
C5 —2316 28.1220 —3.2177 2.6086 27.5129 692(635) 531(485) 433(396)
C19 —2176 28.1227 —3.5420 2.6086 27.1893 0 0 0
c6 —2174 28.1227 —3.5420 1.1487 25.7294 45( 0) 35( 0) 29( 0)
c9 —2218 9.2088 —0.9639 0.5294 8.7743 349(338) 287(278) 250(243)
C3 —2212 15.4285 —0.9639 —0.9979 13.4667 507(528) 412(429) 355(369)
Mgls; BR=1.227, v=10.85
S8E
Structure EM Ep,r, AOX1X1+XOA 1A1 Zn XoXnX” Ep_r,+AE P=6 ﬁ=8 P= 10
C1 —571.4 72.1077 —7.9910 —10.7425 53.3742 205(339) 148(269) 115(227)
C4-1 —542.3 51.7958 —4.0735 —12.8355 34.8868 147(286) 110(236) 88(206)
C4-11 —539.8 45.9129 —4.0034 — 8.6304 33.2791 141(251) 106(207) 85(180)
C5 —527.6 47.8910 —3.9831 — 2.6371 41.2708 155(221) 118(182) 97(159)
C19 —495.4 47.9448 —3.9850 — 2.6371 41.3227 10( 0) 8( 0) 6.6(0)
Cc6 —495.0 47.9448 —3.9850 — 4.8454 39.1144 0 0 0
9 —505.0 13.3798 —1.3262 — 0.0946 11.9590 73(143) 60(130) 53(122)
3 —503.8 23.4539 —1.3262 — 27479 19.3798 110(189) 90(166) 77(152)
MgCl;; BR=1.417, v=06.12
OoE
Structure EM Ep.r. AoX1X1+XoA 1A1 Zn XoXan Ep.r.+AE P=6 P=8 P= 10
C1 —658.7 38.1744 —6.8741 —2.0005 29.2998 296(290) 219(214) 172(169)
C4-1 —625.3 26.6846 . —3.4500 —3.0724 20.1622 219(218) 166(165) 134(133)
C4-11 —622.2 22.9696 —3.3727 —2.5879 17.0090 184(187) 139(142) 112(114)
Cs —608.1 23.9297 —3.3142 —1.5424 18.0731 167(167) 128(128) 104(104)
C19 —571.1 23.9410 —3.3281 —2.5424 18.0705 0 0 0
Cc6 —570.6 23.9410 —3.3281 —2.4835 18.1294 0 0 0
9 —582.2 7.3575 —0.9986 0.5910 6.9499 102( 84) 83( 70) 72( 61)
C3 —580.7 10.7716 —0.9986 4.6108 14.3838 193(117) 155( 96) 133( 83)

is the larger ion, are very simple. We find fluorite (C1)
stability with the Born-Mayer model, Goldschmidt
rules, y-dependent pair repulsions, and also upon in-
cluding three-ion forces (Table VII). The three-ion
energy for solids of these compounds, relative to the
total pair repulsion, is of the order of 159, (attractive)
for CaFs, 5%, (repulsive) for Naq0, and 129, (attractive)
for Li,Se, all in the stable fluorite structure.

For AX, compounds with larger X ions we reproduce
C1 stability for SrCly, ZrO,, and HfO, on the basis of
pair repulsions and also when three-ion interactions are
included (Table VIII). In the latter case, the fluorite
stability is approximately twice as large as with pair
interactions alone. The three-ion energy in fluorite
amounts, relative to the total pair repulsion, to 23%,
(attractive) for SrCl, and 359, (attractive) for ZrO,
and HfO,.

Of particular importance are the stability results for
the compounds MgF, and TiO,, observed in the C4
(rutile) type of lattice. These compounds have widely
different BR values (1.86 and 1.15, respectively),
whereas their ¢ values are small and of the same order.
Between these two values of BR we observed C1 and

C8, C9 stability (ZrO; and BeF). Pair interactions
predict rutile as the stable structure for MgF,, with a
small stability margin with respect to cristobalite.
Threeé-ion forces increase the stability of rutile relative
to cristobalite; they show that the rutile configuration
can be stable only in o narrow range of BR, v values
(Tables IX and X).

' The situation is quite different for TiO. stability
(Tables XTI and XII). Although the Goldschmidt rules
do predict rutile stability (ratio »,/7_ between the radii
of the ions is 0.55 for TiO; and 0.60 for MgF5), we find
that the smaller value of BR for TiO; causes further shells
to contribute to the pair repulsion with a central ion.
As a consequence, rutile stability is ruled out already
on the basis of pair interactions; the stable structure is
Sfluorite or cristobalite, depending upon the value of the
parameter p in the effective Born-Mayer pair repulsion.
When we include three-ion interactions, then this
ambiguity in stability is removed: fluorite is the stable
structure for TiO, for all values of p considered (8, 9,
10 and higher). Consequently, rutile stability of TiO,
can be due only to an additional attractive component
of the crystal energy which cannot be derived from pait-



151

or three-ion interactions between closed shells of elec-
trons. The origin of this stability must be related to the
known different valency states of Ti, possibly involving
Ti-Ti interactions via the oxygen ion.

For solids of the compounds SiO; and BeF, the SR
values are again rather different (0.91 and 1.47),
whereas the vy values are large and of the same order
(15.4 and 12.3, respectively). In view of the large values
of v, only structures with 4,2-coordination have to be
compared. If we consider, first, pair interactions only,
then the cuprite (C3) configuration is excluded for
stability because of large pair repulsion. Further, for
BeF,, there is no significant difference between the
cristobalite (C9) and quartz (C8) structures. Upon
including three-ion interactions, we find that for BeF,
(large values of SR) this component is practically the
same in the two structures. On the other hand, at small
values of BR (SiO,), pair repulsions in C8 are larger
than in C9; also the Madelung energy favors cristobalite.
Accordingly, on the basis of pair interactions, SiO.
should be considerably more stable in the cristobalite
than in the quartz configuration (by approximately
100 kcal/mole). Three-ion interactions play a very im-
portant role for stability of SiO,: all triplets XoXnXn
in C9 develop repulsive three-ion energy, whereas on the
contrary, several shells in the quartz structure generate
altractive three-ion interactions (Table XIIT). As a
result, the sum of non-Coulombic pair- and three-ion
interactions favors the guariz configuration (Table
XIV), compensating for the difference in Madelung
energy between C8 and C9. Due to this important
effect of three-ion interactions, we find that C8 and C9
are very nearly of equal stability, in agreement with
experiment.

It has often been supposed that the stability of the
quartz configuration arises from partial covalent bond-
ing,® on the basis of the observation that the opening
angle of the triplet O-Si-O in quartz is less than 180°,
which is not favorable on a purely electrostatic basis.
Indeed, the Madelung constant of C8 is 19, smaller
than that of C9; also pair repulsion in C8 is larger
than in C9. On the other hand, strongly repulsive three-
ion interactions, involving triplets XoX,X, of like ions,

9 See, e.g., R. C. Evans, An Introduction to Crystal Chemistry
(Cambridge University Press, New York, 1952), Chap. VII.
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are found in the C9 configuration, whereas these three-
ion repulsions are completely quenched in C8 because
of symmetry properties of three-ion interactions
(Table XIII).

Finally, the relative stability of the C6 (cadmium
iodide) and C19 (cadmium chloride) structures, for
values of BR< 1.3, was found to arise entirely from the
difference in three-ion energy between these lattices.
The shells of X ions which determine stability are the
third shell in C19 and the fourth shell in C6, both at
distance 6'2R from the central X ion. Corresponding
triplets XoX,X, develop repulsive three-ion energy,
more repulsive in C19 than in C6. This difference
stabilizes C6 at small BR, since all other contributions
to the crystal energy are very nearly the same. For
BR values larger than about 1.4, the contribution from
these shells to the three-ion energy is negligible. Ac-
cordingly, the crystal energy for the two structures is
then practically the same, and the observed C19 stability
for MgCl; and Cs:0 (BR between 1.4 and 1.5) must
be due to secondary effects (distortion of the C19
lattice's).

A certain number of AX, compounds has been
omitted from this stability analysis, because their
crystal structures show too large deviations from an
ideal lattice (e.g., CaCly, BaCly). Several intermediate
configurations may be constructed by combining two
sublattices of ions in the stoichiometric ratio 1:2; for
some of these combinations electrostatic effects may
often cause a lowering of the crystal energy with re-
spect to an ideal structure. A typical example is the
so-called PbCly (C22) lattice, for which the coordina-
tion number is not well defined (between 6 and 8 for
an A ion). The purpose of this paper was to investigate
whether general stability relations for 4X, compounds
can be interpreted on the basis of pair- and three-ion
interactions, taking as possible configurations nine
ideal lattice types. An extension of this analysis to dis-
torted and intermediate types of structures is not ex-
pected to introduce essentially different aspects of
the stability problem for 4X, compounds.
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