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Crystal Stability of AX2 Compounds in Tersiis of Three-Ion Interactions
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By taking into account three-ion exchange interactions in solids of AX2 compounds, it is shown how the
observed stability relations can be explained on a quantitative basis. The analysis is an extension of those
given earlier for stability of rare-gas crystals, of solids of the alkali halides, and of II-VI and III-V com-
pounds whose ions are isoelectronic with rare-gas atoms. Of the compounds AX2, 3 denotes an element of
columns II, IV, or VI of the periodic table, X a corresponding element of the columns I, II, VI, or VII. All
ions considered are isoelectronic with rare-gas atoms. As before, the stability analysis is based on a Grst-
and second-order perturbation calculation, starting from complete ionicity in zeroth order of approximation,
with Gaussian-type eRective electron wave functions for the ions. The structures considered are {the ideal
lattices of) Quorite, two types of rutile, anatase, cadmium chloride, cadmium iodide, cuprite, quartz, and
cristobalite; a comparison is made between the static lattice energies of these structures. The effect of
polarization energy on crystal stability is considered in detail in the framework of the Born-Mayer model;
Madelung constants for all structures were determined on the basis of the Bertaut method. The theory
accounts for all observed stability relations; except that for the compound TiO~ the Quorite structure is
found to be more stable than a rutile lattice on the basis of closed-shell electron configurations of the Ti
ion. In particular, a quantitative explanation is given for the diRerence in lattice energy between the
cadmium iodide and cadmium chloride structures (6,3 coordination) and between the P-quarts and P-
cristobalite lattices (4,2 coordination).

I. INTRODUCTION
' 'N previous publications we have undertaken a
~ ~ stability analysis for rare-gas crystals, ' for solids
of the alkali halides' and for those of II-VI and III—V
compounds' whose ions are isoelectronic with rare-gas
atoms. It was found 1n all cases that simultaneous
exchange interactions between three atoms or three ions
constitute the essential short-range, structure-sensitive
component of the crystal 6eld. In this paper, a similar
analysis is undertaken for crystals of compounds of the
type AX2, whereby we restrict ourselves again to the
rare-gas isoelectronic series.

In the analysis we will not consider carbon as one of
the constituents (carbides, or molecular compounds
such as carbon dioxide). With this limitation, A is an
element of columns II, IV, or VI of the periodic table
and X is an element of the corresponding columns I,
II, VI, or VII. Representatives are OCss (VI-I), CaFs
(II-VII), SiOs (IV-VI), etc. The ideal crystal struc-
tures can have 8,4, 6,3, or 4,2 coordination; distorted
structures have frequently been found but these will
not be considered here. The only lattice type with 8, 4
coordination is georite (C1); to the second category
(6,3 coordination) belong the structures known as
refile (C4), anafase (C5), cadmium iodide (C6), and
cadmsem chloride (C19). In the category with 4,2
coordination we 6nd. the structures cePri fe (C3),
quarts (Cg), and crisfobafite (C9). The symbols in
parentheses are the Structure Reports notations
for the various lattice types.

~ On leave of absence from the Institute of Industrial Chem-
istry, Polytechnic Institute, Milano, Italy.

t L. Jansen, Phys. Rev. 135, A1292 (1964), hereafter referred
to as D).' E. Lombardi and L. Jansen, Phys. Rev. 136, A1011 (1964),
hereafter referred to as fII).

3 E. Lombardi and L. Jansen, Phys. Rev. 140, A2/5 (196S
hereafter referred to as (III).
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4 F. Hund, Z. Physik 34, 833 {1925).
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We note, erst, that the stability relations for crystals
of AXg compounds appear to depend strongly on
whether A or X is the larger ice of the compound. In
the 6rst case (A larger) we always find stability of the
fluorite structure; on the other hand, if X is the larger
ion, then all possible coordinations are observed. A
satisfactory stability theory must reQect this char-
acteristic distinction.

The erst stability analysis involving AX2 compounds
was undertaken by Hund. ' In his model, the ions
interact electrostatically as point charges; the non-
Coulombic part of the interactions is represented by a
short-range repulsion proportional to E. &, where R
is the interionic distance. A pair potential of this type,
with E & often replaced by an exponential term and
with sometimes an additional van der Waals long-range
attraction proportional to R ', is generally called a
Born-Mayer potential. Hund found that no essential
structure sensitivity of the potential is lost when the
repulsions are restricted to nearest neighbors in the
lattice. If we denote the Madelung constant of a given
lattice by M, the coordination number of the A ion by
Z, then stability is determined uniquely (neglecting
thermal effects and zero-point energy) by the value of
the parameter (M&/Z)'i&i '&; the structure with the
largest value for this parameter is the most stable one.
Hund compared the Quorite, rutile, and cuprite con-
figurations for different values of p and found that,
for p)6, the Quorite structure is always favored.
Since the values of p are expected to lie in the neigh-
borhood of 8 to 10, in analogy with the case of other
ionic solids, all AX2 compounds should crystallize
with .the georite structure. This prediction agrees
with experiment if A is the larger ion, but with X
as the larger ion the agreement is very poor. Therefore,
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a stability theory for crystals of AX2 compounds which
is based on a Born-Mayer pair potential does not
reAect the observed differentiation in crystal structures
when X is the larger ion of the compound.

Later analyses'' were based, instead, on a more
empirical approach, namely, on the Goldschmidt rules.
In the model underlying these rules, the ions are repre-
sented by rigid spheres; the structure-dependent
parameters are then the Madelung constant M, the
coordination number Z, and the ratio r+/r between
the radii of positive and negative ions. It appears that
the predictions from the Goldschmidt rules agree more
closely with the observed stability relations; this is not
surprising since in these rules the different size of A
and X ions enters as an explicit parameter. For a
detailed discussion of the Goldschmidt rules we refer to
Pauling. 7 Analyses based on these rules were carried
out by Goldschmidt' and Hund' for the three main
categories with 8,4,6,3, and 4,2 coordinations.

For our stability analysis it is of interest to pursue
the predictions from the Goldschmidt rules a little
further. We have therefore extended these considera-
tions by taking into account two different rutile modi-
6cations, denoted by rutile I and rutile II, for which the
crystallographic parameters are (rutile I) c/tt= (ss)'t',
N=te and (rutile II) c/tt=2' 't/(1+2' 't) I=1—2 ' '
Here, c/u is the axial ratio and I is the s coordinate of
the X ion, divided by c. The parameters of all ob-
served rutile structures lie between these two limits.
We also included the (ideal) anatase lattice (c/tt=2,
N=tt, ), as well as the (ideal) cadmium iodide and
cadmium chloride modi6cations; the latter are dehned

by cosn= eo, tt= 4 for cadmium chloride (tx is the rhom-
bohedral angle of the unit cell) and by c/tt= (8/3)'t',
u= 4 for the cadmium iodide lattice. For the Madelung
constants we used values as given in the next section.
The results can be described as follows. When A is the
larger ion of the AX2 compounds, the Quorite structure
has a broad domain of stability, ranging from r~/r =1
(A and X of the same size in the limit) to r~/r =0.163.
Below the latter value, rutile I becomes 6rst competitive
with C1, whereas for the smallest values of this parame-
ter ((0.077) the CS, C9 structures are more stable.
Agreement with experiment is very good for this
category. The C6, C19 configurations are always the
least stable ones, but their stability is certainly under-
estimated because polarization energy is not considered.
When X is the larger ion, we erst find, fluorite stability
(r+/r )0.636), but then rutile II takes over, for the
whole domain until r+/r =0.323 (rutile I behaves
abnormally in that it is always the least stable con-
figuration). Finally, if r+/r &0 323, we find .CS (C9) as
the most stable structure. Agreement with experiment
is very poor for this category, since C6 and C19dominate

5 V. M. Goldschmidt, Z. Tech. Physik 7, 251 (1927).
6 F. Hund, Z. Physik 94, 11 (1935).' L. Pauling, The Nature of the Chemica/ Boed (Cornell Univer-

sity Press, Ithaca, New York, 1960), Chap. 13.

the observed stability relations. Again, it should be
remembered that the stability of C6 and C19 is under-
estimated in the Goldschmidt rules because polariza-
tion energy is not considered, which is particularly im-
portant when X is the larger ion of the compound. Ex-
cept for rutile I, we again Qnd C6 and C19 at the end of
the stability scale. Excluding C6 and C19, we find very
little distinction between structures with the same co-
ordination, since their Madelung constants are practic-
ally equal.

Although the differentiation in stability is con-
siderably more pronounced. on the basis of the Gold-
schmidt rules than in the framework of the Born-
Mayer model, it is apparent that in both models es-
sential structure-sensitive components of the crystal
6eld are missing. One of these is the polarization
energy which increases the stability of the cadmium
iodide and cadmium chloride con6gurations. We will
first give the crystal structures for AX2 compounds and
then analyze the first-order (Madelung) and second-
order (polarization) components of the electrostatic
crystal energy.

II. GAUSSIAN PARAMETERS AND CRYSTAL
STRUCTURES FOR A X2 COMPOUNDS

The analysis of crystal stability for AX2 compounds
presented in this paper is an extension of those given
earlier for stability of rare-gas crystals LIj, solids of
the alklai halides )II], and solids of II-VI and III-V
compounds LIII).The three-ion component of the static
lattice energy is evaluated, as before, in lrst and second
orders of perturbation theory, using free-ion, effective-
electron wave functions of Gaussian type in zeroth
order of approximation and taking into account only
single-exchange interactions between the ions.

The inverse width P of the Gaussian electron-charge
distribution for each ion,

p(r) = (ply'"') ' exp( —p"')

where r is the distance from the effective electron to its
nucleus, can be determined empirically from values of
the diamagnetic susceptibility of the ions, ' taking
the value for the corresponding isoelectronic rare-gas
atom as reference (cf. LII)). A compound AX2 is
characterized. by two Gaussian parameters P and P', one
for the A ion and one for the X ion. We adopt the con-
vention that P denotes the larger, and P' the smaller,
ion of the compound, i.e., P'&~P. The three-ion com-
ponent of the lattice energy, relative to the sum of
non-Coulombic pair interactions, is then completely
determined by the crystal structure, by the dimension-
less parameter PR, where R is the nearest-neighbor dis-
tance in the lattice, and by the parameter y = (P'/P) ' &~1.

In the following Tables I and II we list the values
for the parameters PR and y of AXe compounds, as

C. Kittel, Introdttction to Solid State Physics Qohn Wiley tL
Sons, Inc. , New York, 1957), Chap. 9.
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TAtnIE I. Values for the Gaussian parameters PR (R is the
nearest-neighbor distance in the lattice} and y=(p'/p)' for
crystals of AX2 compounds of which A is the larger ion. All
these compounds crystallize in the fluorite (C1) structure; p
represents the larger ion (A) of the compound.

TABLE II. Values for the Gaussian parameters pR (E is the
nearest-neighbor distance in the lattice) and y= (p'/p)' for cry-
stals of AX2 compounds of which X is the larger ion, and their
crystal structure observed at normaltemperature and pressure.
The parameter p represents the larger ion (X) of the compound.

AX2

Li20
Li2S
Li2Se
Li2Te
Na20
Na, S
Na2Se
Na2Te
K,O

1.200 18.77
1.100 34.14
1.056 41.00
1.003 53.34
1.440 3.75
1.258 6.82
1.197 8.19
1.127 10.65
1.672 1.43

K2S
K2Se
K2Te
Rb20
Rb2S
CaF2
SrF2
BaF2
BaC12

1.424 2.60
1.350 3,13
1.257 4.07
1.751 1.00
1.474 1.82
1.985 1.24
1.668 1.99
1.482 2.88
1.754 1.02

AX2

Cs20
BeFg
MgFg
MgC12
MgBrq
MgI2
CaI2
SrC12
Si02
SiTe2
Ti02

pR

1.470 1.42
1.468 12.28
1.860 2.17
1.417 6.12
1.290 8.30
1.227 10.85
1.327 4.00
1.686 1.42
0.912 15.42
1.077 43.34
1.146 4.18

C19
C8-C9
C4
C19
C6
C6
C6
C1
C8-C9
C6
C4-C5

TiS2
TiSe2
TiTeg
ZrOg
ZrSg
ZrSe2
ZrTe2
Hf02
HfS2
HfSeg

Structure' AX2 pR y Structure'

1.072 7.60 C6
1.016 9.13 C6
0.945 11.90 C6
1.317 2.20 Cl
1.152 4.00 C6
1.082 4.81 C6
0.994 6.26 C6
1.329 1.54 C1
1.143 2.80 C6
1.076 3.37 C6

well as their crystal structures' at normal temperature
and pressure. The data of Table I concern AX2 com-
pounds of which A is the larger ion, whereas the values
of Table II refer to those compounds of which X is
the larger ion. '

III. THE ELECTROSTATIC LATTICE EN'ERGY

In the Born-Mayer model of ionic solids, the ions
interact electrostatically as nonoverlapping charge dis-
tributions. The erst-order electrostatic energy, per
mole of the crystal, is the Madelung energy; the second-
order electrostatic contribution is commonly called
polarization energy. We assume that the effect of the
net ionic charges on crystaL s/ability is rejected essenti-
ally by the different values of these two components for
the different structures. We first analyze the Madelung
energy of the lattices and then proceed to the polariza-
tion contributions.

A. Madelung Constants for AX2 Lattices

Several methods are available in the literature for
calculating the Madelung energy of a given type of
structure and ions which interact electrostatically as
point charges (nonoverlapping charge distributions).
Extensive reviews of these methods and of the results
obtained by different authors for solids of composi-
tion AX, AX2, and for more complicated structures
are given by Waddington" and Tosi"; we refer to
these reviews for a general discussion. Among the
structures occurring for AX2 compounds which we have
speci6ed earlier, the only missing Madelung constant
is that of the (ideal) cadmium chloride lattice. For
cadmium iodide, Waddington reports values determined
by Hund' for different parameters of the axial ratio
c/u and of u, the s coordinate of the position of the
iodide ion, divided by c. For the structure closest to

9 R. W. G. WyckoB, Crystal Structures (Interscience Publishers,
Inc. , New York, 1963), 2nd ed. , Vol. 1.

"Although Hf + is not isoelectronic with a rare-gas atom we
have included Hf compounds in Table II, since the Hf4+ ion also
has a closed 8 electron (s,p) shell.

~' T. C. Waddington, Advan. Inorg. Chem. Radiochem. 1, 157
(1959).

"M. P. Tosi, Solid State Phys. 16, 1 (1964).

aC1=fluorite, C4=rutile, C5=anatase, C6=cadmium iodide, Ca=@-
quartz, C9=P-cristobalite, C19=cadmium chloride.

the ideal one, the Madelung constant reported is 4.71,
differing only slightly from the value of 4.'l2 for rutile
types. The values for cadmium iodide are surprisingly
high, considering the layer type of structure for this
compound, which is expected to result in a lowering of
the Madelung constant as compared with more sym-
metric arrangements of ions with the same coordination,
as in rutile. Indeed, a more recent calculation by John-
son and Templeton" for two common forms of cadmium
iodide yields an average value of 4.38, corresponding
accurately to a value for these two types determined
earlier by Hartmann. '4 Johnson and Templeton ob-
tained a value of 4.489 for the mineral cadmium
chloride, about 2'Po higher than the Madelung constants
for the cadmium iodide structures. The lattice of the
mineral cadmium chloride deviates considerably from
the ideal con6guration, for which the Madelung con-
stant is not available in the literature.

We have calculated the Madelung constants follow-
ing the Bertaut method, "which method was also used
by Johnson and Templeton. Bertaut showed that, in
replacing the ions by spherically symmetric, nonover-
lapping charge distributions, the Madelung constant
of a lattice is obtained as a single, infinite, series which
is absolutely convergent and whose terms are functions
of the reciprocal lattice vectors. The convergence pro-
perties of the Bertaut series for different forms of the
charge distributions, and cutoff errors, were inves-
tigated by Jones and Templeton. " Details of the
Bertaut method will be given below in connection with
the calculation of the polarization energy.

The determination of Madelung constants was
carried out for the ideal lattices (in all cases), using a
charge distribution for the ion at position r;, of the form
o;((r—r„()=a((r—r;))" with p=0, 1, 2, and 3, re-

"Q. C. Johnson and D. H. Templeton, J.Chem. Phys. 34, 2004
(1961)."P.Hartmann, Acta Cryst. 11, 365 (1958)."F.Bertaut, J. Phys. Radium 13, 499 (1952)."R.E. Jones and D. H. Templeton, J. Chem. Phys. 25, 1062
(1956).
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TABLE. III. Values of the Madelung constants, on the basis of
the Bertaut method, for nine ideal structures of A+2X2 ' com-
ponents as defined in the text. The charge distribution of the ion
at position r, is taken as o;=o(~r—r; ~)&, with P =0, 1, 2, and 3,
respectively. .

Structure

fluorite
rutile I
rutile II
anatase
cadmium chloride
cadmium iodide
p-cristobalite
cuprite
p-quartz

5.03947
4.78350
4.76067
4.65310
4.36953
4.36632
4.45506
4.44316
4.40501

5.03881
4.78307
4.76001
4.65243
4.36894
4.36518
4.45345
4.44250
4.40311

5.03879
4.78306
4.76000
4.65242
4.36893
4.36516
4.45342
4.44248
4.40308

5.03884
4.78308
4.76005
4.65247
4.36899
4.36535
4.45372
4.44254
4.40350

spectively; i.e., the same distributions as employed by
Johnson and Templeton. The results are given in Table
III; all values refer to a composition A+'X2 '. The
values for cadmium chloride, cadmium iodide, anatase,
rutile I, and rutile II refer to the ideal structures as
defined in the Sec. I; for the P-quartz lattice c/a=1. 1,
I=0.197. The P-cristobalite structure is the high-
temperature modification defined by KyckoB. ' All
calculations were carried out on an IBM 1620 computer.

From the values of Table III we draw the following
conclusions: (a) different forms for a;(~r—r, ~) yield
very nearly the same values for the Madelung con-
stants; (b) in first approximation, the Madelung con-
stant of a structure is determined by its coordination
and decreases with decreasing coordination. The only
exception is formed by the cadmium iodide and cad-
mium chloride lattices, which have abnormally low
Madelung constants. (c) The values for the Madelung
constants of the ideal cadmium iodide (C6) and cad-
mium chloride (C19) structures are practically ideiitical
(difference of the order of one-tenth of 1%).

Some of the values of Table III can be compared
directly with those given by Johnson and Templeton, "
as they refer to the same structures. These authors
report for fl.uorite a value of 5.03879, for cuprite 4.44249,
and for P-quartz 4.40225. It is of interest to note that
the ideal and mineral forms of cadmium chloride differ
by as much as 2% in their Madelung constants, the
nonideal lattice having the larger value. As a compari-
son, it is found found that the nonideal types of cad-
mium iodide" diGer from the ideal structure by only
0.2 of 1% in Madelung constant. Appa, rently, distor-
tion results in a considerably more negative value for
the Madelung energy oely for the cadmium chloride
lattice.

We observe, also, that the Madelung constant for the
fluorite structure is much larger than for any of the
other lattices; the smallest difference is of the order
of 5% (with rutile I), much larger than that between
82 (cesium chloride) and 81 (sodium chloride), for
example, which amounts to only 1%. In addition, we
note that the Madelung constants of the cadmium
iodide (C6) and cadmium chloride (C19) lattices are

so low that their observed stability must be ascribed
to additional contributions to the electrostatic com-
ponent of the lattice energy (polarization effects).

B. Polarization Energy

As we have'seen above, the Madelung constants for
the C6 (cadmium iodide) and C19 (cadmium chloride)
lattices are low with respect to other configurations of
the same or lower coordination. On the other hand,
these structures are very frequently observed with
solids of AX~ compounds where X is the larger ion.
Apparently, their stability must be enhanced by an
additional, considerable, electrostatic component of the
lattice energy; this component is called "polarization
energy"; it is of second order in perturbation theory.
An estimate of this polarization energy can be ob-
tained by calculating, from a Born-Haber cycle, the
value of the crystal energy for several compounds with
C6 or C19 structure. To a good approximation, it is
found that the crystal energy is 1.05 times the Made-
lung energy. Compared with a Born-Mayer model
without polarization components, this means an increase
of 15 to 20% in lattice energy. This energy increase must
be primarily due to a dipole polarization contribution,
which is of the form —-,'nF, is per X ion, where F,i is the
electric field strength at the X ion due to all the other
charge distributions in the crystal (the field is identic-
ally zero at the site of an A ion). The electrostatic
energy in first order (Madelung energy) is calculated
on the basis of a model of nonasertappirig charge dis-
tributions. For this reason, we cannot use for the
parameter n in the expression ——,'o.F,i' the values of
free ion polarizab-ilities. Instead, we assume only the
same analytical formfor the pola, rization energy and
determine n in the Born-Mayer model, using the Born-
Haber values for the crystal energy of the stable struc-
ture. We will discuss this procedure in more detail later.

For the calculation of the total field strength F,i
at the site of an X ion, we choose the origin of our co-
ordinate system at the site of the ion considered and
denote the position vectors of the other ions by {r;),
their charges by (q;). The charge density p(r), at posi-
tion r is in the point-charge approximation, with V the
volume of the unit cell,

p(r)=p q;&(~r—r, ~)= V—'p F(h) exp( —2irih r),

where the Fourier coefficients (structure factors) p(h)
are given by

F(h)= p(r)exp(2irih r)dsr=giqiexp(2irih ri). (2)

Here, the summation over l extends over all ions of the
unit cell 'of the crystal; h is a general vector of the re-
ciprocal lattice.

Instead of the point charges, Bertaut" introduced
spherical charge distributions o;(~ r r;~ ) centere—d at the
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ion positions r;, each normalized to unity. If we denote
by o (r) the sum P;o;(

~

r—r,
~ ) over these distributions,

then we can develop o(r) again as a Fourier series, with
coeKcients p(h) given by

TABLE IV. Values of the parameter E in the dipole-polarization
energy E~,i= (n—/R4)E for nine different structures of AXs
compounds, with a in units 10 '4 cm', E in L, and E~,i in kcal/
mole; the cation has charge two. The last column gives the sym-
metry properties of the electric Geld components F&, F&, F& along
the axes bI, b2, 13 of the reciprocal lattice.

q (h) = o (r) exp(2s. ih r)d'r.

p'(r)=g q; o(~r r;—~)= p(r u—)Ir(u)d'I

= V 'P F(h)y(h) exp( —27rih r). (3)

The modified charge density function p'(r) can then be
written as

Structure

Quorite
rutile I
rutile II
anatase
cadmium chloride
cadmium iodide
P-cristobalite
cuprite
P-quartz

0
32
67'

425
239|
2419

0
0
8

Field components

FI =F2=F3=0
Fj.=F2, F3=0
FI=F2 Fg=O
F1=F2=0, Fg
Fg=Fg =F3
FI = —F2=0, F3
Fg=Fg=F3=0
F1=F2=Fg=O
FI= —F2, F3=0

The electric fmld strength F,i at the position r=0 of the
selected ion is given, using p (r) as charge density, by

F,i(0) = p'(r) V(1/r)d'r = — $(Vp'(r))/r7d'r,

which, on substituting (3), becomes

27ri
F,i(0) = g F(h) p(h)h Lexp( —2mih r)/r7d'r

U

2i
=—Q F(h) y(h)h/h'

U

where we have used the identity"

)exp( —2rrih r)/r7d'r = 1/s h'.

In combination with the expression (2) for F(h) we
then obtain the following Anal equation for the elec-
tric field strength at the selected site r=0,

2
F,i(0) = ——g Pg qi sin(2mh ri)7q(h)h/h'. (5)

h

In this expression, the summation in l extends over the
unit cell of the crystal and the summation in h over
the reciprocal lattice. The Fourier coeKcients ip(h)
depend, of course, on the analytic form of the distribu-
tion functions o;(~r r;~); in—all cases ip(h) is real,
with the property p( —h) = p(h). It is verified directly
from (5) that jr,i is identically zero if the ion considered
is located at a center of symmetry of the crystal. Values
of q (h), for o; of the form a(~r r;~)& wit—h p=0, 1, 2,
and 3, were calculated by Jones and Templeton";
in our analysis of the polarization energy we have used
the same charge distributions. On the basis of (5) it is
most convenient to calculate the components of F,~ along
the basis vectors bi, bs, bs of the reciprocal lattice for
each structure; we denote these components by Il&,

F2, and F3, respectively.

For all (ideal) structures of AXs compounds the
electric field at the site of an A ion is identically zero,
so that only the polarization energy of X ions remains
to be calculated. The total polarization energy, for one
mole of the compound AX~, can be written in the form

E,i= —(n/E') E, (6)

where 0, is a polarization parameter associated with the
X ion, R is the distance between nearest neighbors in
the lattice, and where the parameter E is a function
only of the type of structure. In Table IV average
values of E(averaged for 'p=1, 2, and 3) are given
for nine different (ideal) structures, with E~,i in kcal/
mole, 0, in units IO " cm', and R in units 10 ' cm.
Also listed are the symmetry properties of the three
components Fj, F2, F3 of the electric field along the
basis vectors of the respective reciprocal lattices. It
is seen from Table IV that the polarization energy in
the cadmium iodide (C6) and cadmium chloride (C19)
structures is much larger than in the other seven con-
figurations. The relative difference between C6 and
C19, for the same nearest-neighbor distance R, is small,
namely, only of the order of 1% and in favor of cad-
mium iodide. As we will see later, this difference is
negligible compared to that between the three-ion
energies in the two structures for relatively small
values of PR. When, on the other hand, PR is larger
than about 1.3, the three-ion energies are very nearly
the same and the 1% higher polarization energy for C6
is overcompensated by a gain in Madelung energy which
the C19 structure can acquire through distortion of the
ideal lattice.

IV. THREE-ION INTERACTION ENERGY

The evaluation of three-ion interactions for solids of
AX2 compounds follows closely the analysis given
in D7, LII7, and LIII7 for rare-gas crystals and ionic
solids of composition AX. We select a central ion a
and consider all triplets (abc) formed by that ion and
two other ions of the crystal. As before, we consider
only isosceles triangles, i.e., b and c are ions from the
same shell around the central ion g. The three-ion
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interactions are determined in 6rst and second orders of
perturbation theory; the zero-order wave function for
the triplet (abc) is (Slater determinant)

+("=L3!(1—~.o ')7 '"det(o.(1)o o(2) o .(3)},
where 1, 2, 3 number the electrons, with one (effective)
electron per ion. The wave function for ion a is

y (r) =p, '~o(r) = (P/s'I') o~o exp( —P'r, o/2),

i.e,, by the positive square root of the charge distribution
(1); the quantity d, o, is a total overlap, defined by

h, o, o= h, oo+h„o+ho, o—2h, oh„ho. ,

in terms of the overlap integrals 6 q, etc., for the
difkrent pairs. The pcrtuIbatlon Hamiltonian H g.

'
can be written as

in terms of the perturbations for the pairs.
We denote by Ej. and E~ the 6rst- and second-

order perturbation energies for the triplet, by E~@~

and E2&'~ the corresponding sums of interactions for
the isolated pairs, and by AEg/Eg(o&= (E&—Eg "&)/E&
and EEo/Eo(o& = (Eo—Eo(o&)/Eo(o& the relative f&rst- and
second. -order three-ion interactions. In view of the
exchange character of the three-ion forces, only tri-
angles of small dimensions need be considered. If the
ions of. the triplet are of the same lund (A or X), then
the following approximate equality holds

gE~/E~ (o)—+Eo/Eo (o)

for all values of the opening 0 of the triangle at the
central ion. If the ions of the triplet are of both types
(A and X), then this equahty ls again valid if the
Gau»ian p~ra~eters P and P' are about equal, i.e.,
for values of y not much larger than 1. If y&&1, then we
consider only triplets of the larger ions, and (7) holds
again. For the total three-ion energy, hE=hE~+EEo,
of thc. trlplct, lclatlvc to thc total pair energy E@~
=E~(o&+Eo(o&, we can then write, in view of (7),

In this- way it is possible to identify E„&0& with the
short-range pair repulsion of the Born-Mayer modeL
On this basis, Eq. (8) for d,E becomes, for each triplet,

gE—(/Er/Eg(o))E (o)(1+E (o)/E (o)) (9)

in which form we use it for the stability analysis.
Consider a central ion and a selected shell of ions

around it. For all triplets with two ions from that shell,
the quantities E,.~&') and. E,«,&') are practically con-
stant, so that we can associate with a given shell certain
values of E„,&'& and of (1+E„„&'&/E„,"&). H the
latter factor is &0 for the shell, which is the case if an
ion from the shell and the central ion attract each other,
then AE for each triplet has the opposite sign from that
of LIE&/E&(o) of the triplet. If an ion from the shell and
the central ion repel each other, then the factor
(1+E.«,(o&/E„,(o&) is &0, so that dE and hE&/E&(o&

have the same sign. Prom the properties of AE~/E&, (o&,

as a function of O~, we see that three-ion interactions
froIn the selected shell in the 6rst case favor the crystal
structure with the largest number of triangles of /urge

opening, in the second case the structure with the largest
number of triangles of small opening .

For the determination of the total three-ion com-
ponent of the static lattice energy of AX2 compounds
we must know the triplet arrangements in the di6crent
structures for a number of shells close to the central ion,
once for A as central ion and once for X at the center
of the triangles. The number of shells which must be
considered depends on PR (E is the nearest-neighbor
distance), on the specific structure, and on y=(P'/P)'.
For y&&i it is suBicient to know the triplets A OA„A„or
XoX„X„(depending on which ion is larger); the sub-
script "0" refers to the central ion, and e numbers the
shell of A ions, or X ions, respectively. We have

TAax, E V. Numbers of ion pairs and of triplets A0XIX~ involving
a central ion A and its 6rst shell of neighbors for the nine ideal
structures of AX2 compounds. The opening of the triangle at the
central ion is denoted by O.

gE/E(o) —gE~/Ez(o) —gEo/Eo (o)

QE—(gE~/E~(o))E(o) (8)

for each (isosceles) triangle and y~1.
It has been found (LI7, LII7) that AE)/E&(o& (or

AEo/Eo(o&), is &0 for values of the opening angle 0
between 60 and approximately 110', and positive for
larger 0. The relative three-ion interactions amount to
about —

20%%uo at 0~=60'; they are generally smaller
at 0= 180' except for the smallest values of PE(&1.1).
For stability calculations it is appropriate to write the
pair energy E(o) in (8) for each triplet as a sum of a
repulsive term E„p~') and an attractive term E,«,~0~,.
E„~~0& combines E~(') and the second-order exchange
interactions for the pairs, whereas E,«, (0) is the long-
range van der Waals component (without exchange).

Structure

fluorite

rutile I

rutile II

anatase

cadmium chloride

cadmium. 1odide

p-cristobalite
cuprite
P-quartz

Number of
Number triplets
of pairs AOXIX~

12
12

2
8
2
3

12
3

12
3

12
3

12
3
6
6
6

cose

+0.3333—0.3333—1.0000
+0.5000

0.0000—0.5000—1.0000
0.0000—1.0000
0.0000—1.0000
0.0000—1.0000
0.0000—1.0000—0.3333—0.3333—0.3333
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. TABLE VI. Numbers of ion pairs and of triplets X0AIAI involv-.
ing a central ion X and its erst shell of neighbors, for the nine
ideal structures of AX2 compounds. The opening of the triangle
at the central ion is denoted by 0+.

Structure

fluorite
rutile I
rutile II

anatase

cadmium chloride
cadm1um lo(4de
p-cristobalite
cuprite
P-quartz,

Number of
Numbers triplets
of pairs X0A IA1

3

2
2
2

cos 0~

—0.3333—0.5000
0.0000—0.7071
0.0000—1.0000
0.0000
0.0000-1.0000-1.0000

-0,9107

analyzed the nine diGerent structures in terms of their
triplet arrangements relevant for the three-ion crystal
energy, as a function of PR and of y. Detailed results
will not be given here, but it is of interest to consider in
advance a few iHustrative examples from which certain
conclusions can already be drawn.

Suppose first that PR is relatively large and y small,
i.e., that the Grst shell of ions around a central ion gives
an essential contribution to the three-ion energy. The
corresponding triplets can be of the form (AoXiXi)
or of the form (XOAiAi); in the 6rst case, an A ion is
at the center of the triplets and in the second case X
ls thc ccntI'al ion. In Tables V and VI we list thcsc
triplets for the nine diferent lattice types.

Upon inspection of the tables it appears that the
arrangement of AOXiXi triplets in fluorite (C1) is the
same as in cesium chloride (82); in rutile II (C4),
anatase (CS), cadmium iodide (C6), and cadmium
chloride (C19) the same as in sodium chloride (81);
in rutile I (C4) the arrangement is only slightly different
from that in J31 and. in the structures with 4,2-coordina-
tion (C3, CS, C9) we have sphalerite (83), wurtzite

(84) arrangements. In other words, the effect of these
triplets on stability is the same as in the lattice types
for AX compounds, analyzed in LIIj and [IIIj, where
wc found that these triplets favor the 82 coniguration.
Therefore, the Quorite structure is the most stable one
for AXq compounds (large PR, small 7), and at large
values of PR no other triangles with A as the central ion
need be considered. The XOAiAi triplets (Table VI)
are much less important in number; therefore, we expect
qualitatively that three-ion interactions at large values
of PR will stabilize the fluorite structure. When PR
decreases, y increases and, consequently, the im-
portance of AOXiXi (XOAiAi) triplets diminishes, just
as in the transition from 82 to 8j stability. The dif-
ference here is that, if A is the larger ion, then Vin-
creases more slowly than for AX composition, resisting
a lowering of the coordination for solids of these AX~
compounds. In addition, the Madclung energy of the
Buorite lattice is relatively much larger than that of

the other configurations; this difference is never over-
taken, even for the smallest values of PR, if A is the
larger ion.

As a second example, we discuss qualitatively the
relatiM stability of the cadmium iodide (C6) and cad-
mium chloride (C19) structures. As we found before,
these two lattices are practically identical with respect
to their electrostatic energies; also the non-Coulombic
repulsions are very nearly the same. These structures
are frequently observed with AXg compounds where X
is the larger ion and where y is relatively large. As a
consequence, we must primarily consider triplets
XoX„X„and determine the effect of these three-ion
interactions on stability.

The X ions in these two structures have close-Packed
conpggratjons, as the atoms in rare-gas crystals:
hexagonal close-packed in C6, face-centered cubic in
C19. We found in [Ij for rare-gas crystals that only
differences in three-atom energies between the shells
of nearest neighbors have to be considered, in view of
the large values of PR for these soms (&~2). For ionic
solids these diBerences are negligible on the energy scale
of their cohesive energies. In addition, the PR values
are now much smaller, so that we cannot limit ourselves
to the erst shell of X ions.

The important shells for stability appear to be (as
shown in a later section) the fourth shell of X ions
in C6 and the third shell of X ious in C19, both at a dis-
tance 6'~'E. from the .central ion. These shells give rise
to a negative 6rst-order three-ion energy hE~, con-
siderably more negative in C19 than in C6 at small
values of PR((1.3). As these shells are clearly in the
attractive Geld of the central ion, their weighting factors
are &0, and the resulting three-ion energy is repulsive,
morc repulsive in C19 than in C6. Consequently, the C6
(cadmium iodide). structure is the more stable of the
two at small values of PR, in agreement with experi-
ment. For values of PR) 1.3 these critical shells are less
important, and stability shifts towards the C19 lattice
probably because distortion of this lattice results in a
lower Madelung energy.

E,g=EM+Er. ,+ P AE(abc)+E„i,
o&b&c

(10)

where EM stands for the Madclung energy, Ep., for
total non-Coulombic pair repulsion, AE(abc) for the
(first- plus second-order) three-ion interaction of the

V. CRYSTAL STABILITY OP AX, COMPOUNDS

%e now present the results of the stability analysis
for solids of AX~ compounds, comparing the static
lattice energies of the nine (ideal) structures defined
earHer. Each solid is characterized by the Gaussian
parameters y= (P'/P)' and PR (P represents the larger
ion), and by the type of ion (A or X) associated with P.

The static lattice energy E,» for each structure and
for one mole of the compound AX~ is written as
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triplet (abc), and E„~ for the (dipole) polarization
energy (—n/R4)E of the lattice.

We compare the static lattice energies for the nine
structures at the observed value R of the nearest-
neighbor distance in the stable structure. Let n~ denote
the pair repulsion between nearest neighbors at the
equlibrium distance R. The pair repulsion between
more distant ions is calculated relative to that between
nearest neighbors by assuming that this ratio is equal
to that for 6rst-order interactions between Gaussian
distributions of charge. Since these interactions are
V-dependent, we thereby take into account the diferent
size of 2 and X ions. The total pair repulsion E~., of
(10) can in this way be expressed as a function of n&,

for each structure.
Also the three-ion energy hE of (10) can be written

as a function of 0,~ and of the lattice considered. To see
this, we note that in each term AE(abc) there again
occurs, according to (9),the non-Coulombic pair repulsion

E„~ '. For each triplet, therefore, this term can be
related to the pair repulsion n~ between nearest
neighbors. By determining the values of the parameter
(1+E.~~,"'/E...&'&) of (9) for each different shell (as
speciffed later), we express the total three-ion energy
for each lattice as a function of n&.

The values for this nearest-neighbor repulsion nj,
at the observed equilibrium separation R, are deter-
mined from information on the stable structure, on the
basis of the following considerations. We distinguish
between two possibilities: (a) for the stable structure
the polarization parameter E is sero or eegligiMy
sntal/, i.e., E~,& may be omitted from (10) for this
particular structure; (b) E for the stable structure is
large (C6 or C19). Category (a) comprises all compounds
where 3 is the larger ion, since here the stable structure
is always C1. Certain compounds where X is the larger
ion also belong in this class, namely (Table II) the
oxides of Si, Ti, Zr, and Hf, as well as SrCl~. For this
category we can, in principle, rot determine the stability
of C6 and C19 with respect to the other structures, since
no reliable estimates of E,.i can be made in this case
(except if A is the larger ion and y is large). For both
categories (a) and (b) we make a further distinction,
according to whether or not the static lattice energy of
the stable structure is known from a Born-Haber cycle
(determined from thermochemical data and electron
affinities).

We now have to consider four di8erent possibilities:
(al) E„,~ 0; Born Haber values know-n. We sub-

stitute the Born-Haber value for the static lattice
energy on the left-hand side of (10), which equation is
then solved for 0,~. The values of E,~ for the other
structures (generally, excluding C6 and C19) are
determined at the same value of PR The lattice with
the largest negative E,& is the most stable one at R.
The result is correct if this is just the observed structure.

(aZ) E„.E 0; Born Haber values not k-nown. The
nearest-neighbor pair repulsion ni can in this case not

be determined from (10) in a one-step procedure. We
now adopt validity of the Born-Mayer model with
an effective pair repulsion varying with distance as
R &. The static lattice energy of the observed structure,
at equlibrium distance R, is then given by

E.~= EM(1—1/p) .
Different values for p (between p=7 and p=12) are
then chosen, and the corresponding values of E,~

calculated from (11).With this set of values we obtain,
from (10), a set of values for nq, with which we proceed
as under (a1). This method of determining nq via (11),
for a range of values of p, is also in (ai) preferable to
using the Born-Haber values directly, since, for ex-
ample, the electron af6nities of the ions of 0, S, Se, and
Te are not known with sufhcient accuracy.

(b1) E~.& large; Born Haber o-a)les known. Category
(b) refers to the C6 and C19 structures exclusively. In
this case we cannot determine u~ directly from (10),
since this equation contains E~,& of which we know only
that its contribution to the crystal energy is appreciable.
We therefore extend the Born-Mayer model by also
incorporating E~,~ in the expression for the static
lattice energy (which contains the Madelung energy
and the total effective pair repulsion). Since E~,q varies
with R as R 4, it follows readily that the expression
for the static lattice energy of the stable structure, at
the observed nearest-neighbor distance R, is now

given by

E,~——EM(1—1/p)+f(p —4)/pjEp. ), (12)

where p denotes again the exponent in the dependence
R & of the eBective repulsion on distance.

Using the Born-Haber value for E,~ we obtain, from
(12), E~,~ as a function of p. Then, substituting E~,~

into (10), we determine nq as a function of p, and com-
plete the calculation of E,~ for the remaining eight
structures.

(bZ) E„,~ large; Born Haber zalles -not known Here, .
the unknowns in Eq. (10) are E,&, n&, and Ep, &. We
determine E,& by observing that for several compounds
of category (b1) a relation E,& 1.05EM holds to a good
approximation. This applies for the compounds TiS2,
MgC12, MgBr2, MgI2, and CaI2, from thermochemical
data' and electron amenities we determined Born-
Haber values and obtained for E,~/EM (in order of
the compounds as given above) the values 1.05, 1.04,
1.06, 1.10, and 1.07. The same relation is assumed to
hold for all compounds of class (b2); we then calculate
again E~,q for different values of p and proceed as
before.

It is noted that the relative stability of the C6 and
C19 configurations is not a6ected by an uncertainty
concerning. the values of E~,i, since these values can
be assumed to be practically the same in the two
structures.
"O. Kubaschewski and E.L. Evans, Metallurgica/ Thermochem-

istry (Pergamon Press Ltd. , London, 1956), Chap. 4.
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TABLE VII. Madelung energy EM (kcal/mole), total pair repulsion E, , total three-ion energies for triplets A pXIXI (XpAIA1),
triplets XpX X, ApA A~, and the sum of two-body and three-body energies (all in units of nearest-neighbor repulsion) for CaF2,
Na20, and I i&Se. The last three columns list the difference in energy BE between the corresponding structure and the fluorite con6gura-
tion (m kcal/mole); the values in parentheses refer to pair interactions only.

CaF2,. PR=1.985, y=1.244

Structure

C1
C4-I
C4-II
C5~
C19'
C6
C9
C3

~ ~ ~

—0.0025
0.0027
0.0700
0.0700

~ ~ ~

EM Ep., A 0X]XI+XpA IA I A pA IA I

—706.9 9.3613 —1.4685—671.1 6.7400 —0.3572—668.1 6.0718 —0.4859—655.0 6.1437 —0.4314—626.3 6.2155 —0.7700—625.9 6.2155 —0.7700—624.7 4.0000 0.3724—623.2 4.0000 0.3724

NEO; PR=1.44, y=3.75

X0X&X&

—0.0836
0.2103
0.1433
0.1688
0.1688
0.1690

Ep.r.+~E
7.8092
6.5931
5.7267
5.8838
5.6843
5.6845
4.3724
4.3724

0
22.0(11.0)
15.2( 7.7)
30.1(21.5)
56.7(50.9)
57.0(51.3)
43.3(31.6)
44.8(33.1)

BE

p —9

0
23.6(13.8)
17.9(11.2)
32.5(24.9)
59.2 (54.2)
59.6(54.6)
47.6(37.2)
49.1(38.7)

p= 10

0
24.8(16.0)
19.9(14.0)
34.5(27.6)
61.4(56.8)
61.8(57.2)
51.1(41.7)
52.6(43.2)

Structure Epo1' ~

C1
C4-I
C4-II
C5a
C19a
C6'
C9
C3

—696.8 9.9027—661.6 7.2236—658.5 7.2803—644.5 7.8123—610.8 8.5477—610.4 8.5384—615.8 4.0728—614.4 4.1886

Li2Se; PR=1.056, y=41

—0.6113
0.1225
0.1018
0.0997—0.2944—0.2944
0.5474
0.5474

—0.3157
0.6624
0.6063
0.0140—0.0328—0.0328—0.0012
0.1241

ApXIXI+XpAIAg p ApA A E, , +aE
8.9757
8.0085
7.9884
7.9260
8.2205
8.2112
4.6190
4.8601

p=8
0

25.9(11.7)
28.7(15.2)
42.1(33.9)
78.7(74.1)
79.0(74.4)
38.7(29.7)
42.5(32.1)

BE

p —9

0
27.0(14.3)
29.8(17.8)
43.2(36.0)
79.5(75.4)
79.8(75.7)
43.3(35.4)
46.9(37.7)

p=10
0

27.8(16.4)
30.6(19.8)
44.2(37.6)
80.1(76.4)
80.5(76.8)
47.2(40.0)
50.4(42.2)

Structure

Ci
C4-I
C4-II
C58
C19a
C6'
C9
C3

—643.2—610.6—607.7—594.0—558.1—557.7—568.5—567.1

Ep.r.

62.8067
43.2606
42.0195
46.3850
54.3045
54.3585
9.7382

19.0216

—3.1436—1.3676—1.5820—1.6098—1.9871—1.9871—0.2753—0.2753

—2.8642—4.1798—0.7294
15.5910
12.2363
11.6987
0.1137—2.1545

ApXIXI+XpAIAI Q~ ApAwsAws Ep, +DE
56.7989
37.7132
39.7081
60.3662
64.5537
64.0701
9.5766

16.5918

p=8
0
5.6( 7.6)

11.3( 8.9)
54.2(28.2)
96.1(74.2)
95.8(74.7)
7.9( 6.8)

19.2(20.0)

0
8.6(10.4)

14.0(11.8)
53.7(30.5)
94.9(75.4)
94.6(75.9)
15.3(14.3)
25.5(26.3)

p= 10

0
11.0(12.6)
16.1(14.2)
53.2(32.4)
93.9(76.4)
93.7(76.8)
21.2(20.4)
30.6(31.3)

The polarization energy is not included.

For the presentation of numerical results, we dis-
tinguish between the following three classes of solids:

(I) A is the larger ion (C1 stability);
(II) X is the larger ion; no polarization energy in the

stable structure (C1, C4, C8, and C9 stability);
(III) X is the larger ion; stable structure C6 or C19.

It is of importance to also include in the results the
stability relations obtained on the basis of (non-Coulom-
bic) pair interactions, i.e., by omitting from Eq. (10)
the contribution of three-ion forces to the lattice energy.
This comparison is relevant, since a Born-Mayer type
of pair potential, extended by taking into account the
difference in size between 2 and X ions through the
parameter y, for each compound, is expected to yield
stability relations closely similar to those of the Gold-
schmidt rules.

glass (I). Detailed numerical results are given for
three typical representatives of this class: CaF2
(PE=1.99, y=1.24), NasO (PE=1.44, y=3.75), and
LisSe (PE= 1.06, y= 41). In Table VII we list, for these
three compounds in the nine ideal structures, the Made-

lung energy (in kcal/mole), the total pair repulsion

Es., (in units of nearest-neighbor repulsion), the three-
ion energy for triplets A sX&X& (XsA &A &), triplets
XsX„X„(summed over e), AsA~ (summed over m),
as well as the sum of pair- and three-ion interactions.
The summations over e and m extend up to values
of PR„, PE of about 3.4 (for larger values three-ion
energies are negligible. ) The last three columns of
the table give, in kcal/mole, the difference in lattice
energy bE between the structure considered and the
stable C1 con6guration, for values p = 8, 9, and 10 of the
exponent p in the Born-Mayer effective pair repulsion
R ".A positive value means that C1 is the most stable
structure. The weighting factors (1+Es~t, '/E„s ' )
for the different shells are the same as those used in the
analysis of alkali halide crystals and of solids of II-VI
and. III-V compounds (a two-step function with values
0.5, 0.25 for shells in the repulsive part of the pair
potential, and a value —1 for shells in the attractive part
of the pair potential). We also list in the last three
columns, in parentheses, the difference in lattice energy
between the corresponding structure and C1, calculated
on the basis of Pair imieructions alone.
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TAurz VIII. Madelung energy EM (kcal/mole), total pair repulsion Ep, , total (6rst- plus second-order) three-ion energies for triplets
&a%Xi (XOA id i), XOX~X~, aud sum of two-body aud three-body energies (a11 iu units of nearest-neighbor repulsion), for Srclm, Zrom,
and H&02. The last three columns list the difference in energy BE between the corresponding structure and the Auorit|."con6gumtion
(in kcal/mole); values in parentheses refer to pair interactions only.

Structure

Ci
C4-I
C4-II
C58
C198
C6'
C9
C3

—553.7—525.7
5234 1—511.3—480.2—479.7

—488.2

Zrom, pg=

Ep.'
12.7335
9.2947
8.1073
8.3046
8.3404
8.3293
4.2638
4.5275

1317 v=22

SrClg, PE=1.686, y=1.416

—2.9293—1.1169—1.4427—1.4320—1.8795—1.8795
0.0329
0.0329

—0.5572
1.8368
1.4096
1.5345
1.5345
1.5407
0.0820
0.4172

ApXIXI+XpAIAI Q„XpX„X„ E,+BE
9.2470

10.0146
8.0742
8.4071
7.9954
7.9905
4.3787
4.9776

0
33.7( 9.3)
21.8{ 5.8)
36.1(18.9)
64.1(50.1)
64,6(50.0)
27.9(18.9}
33.5(21.3)

BE

p —9

0
33.1(11.4)
22.8( 8.6)
36.8(21,6)
65.2 (52.8)
65.6(52.7)
31.9(24,1)
37.1(26.3)

p= 10

0
32.6(13.0)
23.6(10.9)
37.4(23.7)
66.0(54.9)
66.5(54.8)
35.1(28.2)
39.9(30.3)

Structure

Ci
'

C4-I
C4-II
C58
C19
C68
C9
C3

Structure

Cl
C4-I
C4-II
C58
C198
C6'
{ 9
C3

—3020—2867—2853—2789—2619—2616—2669
-2663

-3048—2893—2879—2814—2643—2640
-2694—2687

Hf02,- pE.=1.329,

18.5105
13.7291
12.3500
12.7734
12.7372
12.7372
5.3450
6.8645

y = 1.54

Epe ro

15.7285
12.0835
10.6854
11.1756
10.0651
11.1791
4 2969
6.0688

—4.3908—1.9059—1.4073—3.7042—3.0443—3.0443—1.3266—1,3266

—2.5829—2.2248—1.7287—1.7294—1.7294—1.6982—0.0364—0.4269

11.5386
9.5984
9.2140
7.3389
7.9635
7.9947
3.9820
5.1110

ApXIXI+XpA IA I Q„XpX„X„
—3.8828—1.4812—0.7598—1.9950.—2.8248 '

—2.8248—0.0749—0.0749

—1.8183—1.5720—1.2141-1.2172
112172—1.1967—0.0274—0.2967

Ep., +DE
10.0274
9.0303
8.7115
7.9634
7.0231
7.1567 .

5.6972

A pXIXI+XpAIAI Q„XpX„X Ep, +DE p=8

91(57)
92( 42)
95(116}

287(286)
291(289)
105( 83)
149(121)

p=8

115( 66)
117( 46)
153(122}
288(289)
296(294)
131( 76)
194(125)

p=9
0
98( 68)

101( 56}
111(129)
300(299)
304(302)
132(113)
172(148)

BE
p=9

120( 75)
123{ 59)
162(134)
300(302)
308(307)
156(107)
212(151)

p=10
0

104( 76)
108( 68)
123(140)
310(310)
314(313)
154(137)
191(169)

p=10

123( 83}
127( 70)
169(144)
311(312}
318(317)
175(132)
227(I'?2)

a The polarization energy is not included.

The values in Table VII for the structures C5
(anatase), C6 (cadmium iodide), and C19 (cadmium
chloride) were calculated without taking polarization
energy into account. Since the electric 6eM at the site of
the larger ion (A) is identically zero for this class of
solids, polarization contributions from the smaller ion
(X) are small. It is seen from the table that the fluorite
structure is indeed always the most stable one, both on
the basis of pair interactions and when three-ion energy
is taken into account.

Class (II). In this class we find the compounds Zr02„
Hf02, SrC12 (Cl stability); MgF2, TiO, (C4 stability);
and Sio~, BeF2 (C8, C9 stability). The range of PR
values extends from 1.86 (MgF2) to 0.91 (Si02); the
y values extend from 2.17 to j.5.4.

Ke 6rst give the results for Srcll, ZrO~, and Hf02
(C& s«»hty). In Table VIII we list, for these three
compounds, the same quantities as in Table VII; the
values in parentheses in the last three columns refer
again to a pair potential only (Madelung energy plus
sum of non-Coulombic, y-dependent pair repulsions).

%e see from the table, that, for all three compounds,
three-ion interactions decrease CI s/ability, in particular

with respect to C3, C4, and C9, compared with the
results based on pair interactions alone; this extra
stability arises from triplets AOXiXi (XOAiAi) and

XOXiXi. The effect of three-ion interactions is, there-
fore, to resist a lowering of the coordination number as
long as y is relatively small. In the case of alkali halides,
on the other hand, the y values are much larger for com-
parable values of PE; for this category of ionic solids
the B1 structure (coordination 6) is, consequently, more
stable than 82 (coordination 8). Although we have
not taken account of polarization energy for the struc-
tures C6, C19, (and C5), it is seen from the table that the
Quorite con6guration is more stable than these struct-
ures by a large margin; this di6'erence cannot be over-
taken by polarization effects.

Next, we discuss MgF2 (PE=1.86, y=2.1't) and
Tiom (pR=1.15, y=4.18), for which the observed
stable structure is C4 (rutile type). Here, we have the
unusual phenomenon that a structure is stable in two
widely sePaiated domains of PR values, for similar values
of y. In view of this peculiarity, the stability analysis
requires a more precise consideration of the influence
of three-ion interactions than for the solids discussed
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TABLE IX. Total pair repulsion Bp,, and 6rst-order three-ion
energies AEI for triplets ApXIX1 (XpAIAI) XpXIX1, and XpX2X2,
for MgF2 in the structures Ci, C4-I, C4-II, and C9. The quantities
pRI and pR2 denote the dimensionless distances from the first
two shells of X ions in these structures to the central ion (Xp).

TAnLE X. Energy differences B(C9-C4) between the cristobalite
and rutile-II structures, and B(C1-C4) between the fluorite and
rutile-II structure (in kcai/mole), for MgFo as a function of weight-
ing factors (Si,S2) for the first few shells of X ions, and of the
exponent p=8, 9, and 10 of the effective Born-Mayer pair re-
pulsion. The sets Si,S2 are defined in the text.

MgF2,' pR =1.86,

Structure Ep.,
C1 15.2954
C4-I 10.4600
C4-II 8.3755
C9 4.1884

%=2 17
ApXIXI

+XpA IA1 pRI XpXIXI

-7.7452 2.15 —2.5418—3.5578 2.63 —2.2306—3.5130 2.63 —1.7428—0.5050 3.04 —0.077i

pR2 XpX2Xg

3.04 —0.3545
2.94 0.0023
3.22 0.00015

MgF2

pair interactions
set Si
set S2

e(c9-c4)
p=8 p=9 p=10

2.1 7.7 12.0
12.7 17.1 20.6
0 5.9 10.5

36.4
22.1—5.3

27.2 20.2
14.6 8.5—9.8 —13.4

e(CI-C4)
p=8 p=9 p=10

so far. The principal structures to be compared for
stability appear to be C1, C4-I, C4-II, and C9; with
respect to these four configurations the remaining
structures are found to be of much lower stability.

In Table IX we list, for the structures C1, C4-I,
C4-II, and C9 of the compound MgF2, the total pair
repulsion Ev., and the first order three--ion energies
AEi for triplets AoXiXi (XoAiAi), XoXiXi, and
XpX2X2. The corresponding dimensionless distances
PRi and PRs for the first two shells of X ions are also
given. First we note that three-ion interactions arising
from triplets ApXiXi (XpAiAi) are attractive in all four
configurations (since the weighting factor for the shell
of nearest neighbors is positive) and that they favor the
fluorite structure.

The three-ion energy resulting from triplets XpX&X&
has a very sensitive effect on crystal stability. The 6rst
shell of X ions is in C1 at distance PRi ——2.15, in C4-I,
II at distance 2.62, and in C9 at distance 3.04. The
weighting factor for this shell in C9 is certainly nega-
tive; we take it as —1, in accordance with the procedure
adopted for all other ionic solids considered previously.
To estimate the weighting factor for this shell in the
Quorite and rutile structures, we note that the Quorine
ion is isoelectronic with neon. The separation for zero
potential between neon atoms is approximately 3P '
(2.85 A), that between argon atoms 2.15P ' (3.45 A).
Consequently, we estimate this distance to be ap-
proximately 2.6p ' for fluorine ions, by linear extrapola-
tion on the basis of the p values for neon, fluorine, and
argon. The weighting factor for the 6rst shell of X
ions in rutile is then zero, in fluorite positive (taken as
0.25), and in cristobalite negative (taken as —1). To
investigate stability as a function of weighting factors,
we choose also a value of zero at 2.15, and —1 at 2.62
and 3.04 (set S2); the set 0.25, 0, and —1, selected above
on the basis of P values, is denoted by S1. In Table
X the energy differences 8(C9-C4) and b(C1-C4)
between C9 and C4 and between C1 and C4
are given, 6rst for pair interactions alone, and then for
the two sets S1, S2 of weighting factors defined above.
The three columns refer, respectively, to values p= 8,
9, and 10 of the exponent p in the effective Born-
Mayer pair repulsion. The symbol C4 stands for the
structure C4-II; its parent configuration C4-I is ex-

eluded on the basis of higher pair repulsions (see Table
IX). From the table we see, first of all, that pair inter
actioes account correctly for the observed rutile stability
of MgF2, although stability with respect to C9 is low
for p=8. Upon including three-ion interactions, the
stability relations shift markedly with different choices
of weighting factors for the erst shell of X ions. For the
most probable set (S1), the rutile stability is reproduced,
both with respect to C1 and C9, whereby we observe
that the rutile stability relative to C9 is coeside~abLy

higher than on the basis of pair interactions alone
On the other hand, displacing the erst X shell

towards the attractive part of the pair potential (set
S2) results immediately in stability of the fluorite
configuration; also the stability of rutile with respect
to cristobalite is then greatly reduced. These results
indicate that the rltiLe lattice cue be stabLe oeLy ie a
narrow range of PR, y valles Upon in. creasing PR, the
Quorite structure becomes more stable, primarily
because the three-ion contribution from triplets XpXyX]
is then quenched and stability is decided by triplets
ApXiXi (XpAiAi). On the other hand, if we decrease

PR, retaining small values of y((2), then the C1
structure is again more stable, as in the case of Zr02.
Finally, upon increasing y while decreasing PR, the
stability shifts towards the cristobalite (quartz) con-
figuration, as is illustrated in BeFs (see below).

A very diferent situation is encountered in the
stability analysis of the compound TiOs (PR=1.15,
y=4.2), observed as a distorted rutile type and also
as a distorted anatase structure. As for MgF2, we first
present the total pair repulsion, together with the first
order three-ion energies for triplets AoXiXi (XpAiAi),
XoXiXi, and XpX X (m~&2). Since PR is here con-
siderably smaller than for solid MgF&, several more
shells of X ions must be considered for stability; we
have calculated the three-ion energies for XoX„X
triplets with ms= 2, 3, , 10. The results are given in
Table XI, for Ti02 in the structures C1, C4-I, C4-II,
and C9. First we note that, as with MgF2, three-ion
interactions from triplets ApXiXi (XpAiAi) are attrac-
tive in all configurations considered; they favor the
fluorite structure. Three-ion energy from the erst shell
of X ions favors the rutile-I lattice; this gain in energy
is, however, not preserved upon considering more distant
shells. Qualitatively, it can already be seen that, al-
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TABLE XL Total pair repulsion Ea, and erst-order three-ion energies DER for triplets AsX&X& (XsA&A&), XOX&X&, and XsX X
with m=2, 3, , 10, for Ti02 in the structures C1, C4-I, C4-II, and C9. The quantity pR denotes the dimensionless distance from the
mth shell to the central ion Xo. All energies are in units of nearest-neighbor repulsion.

Ti02, pR=1.146, y=4.18
Structure E,., A0XIXI+XoA]A1 pRI XoXIXI pR2 XoX2X2 pR3 XoXOXg pR4 XoX4X4 pR5 XoX5X5

Ci 33.1229 —11.2058 1.32
C4-I 24.4328 —5.5064 1.62
C4-II 22.2468 —5.0158 1.62
C9 23.0521 —1.7834 1.87

—11.2079—13.0703—8.4122
0.0989

1.87
3.81
1.98
3.24

—4.5089
0.3320
0.1924—0.1660

2.29 —1.4540 2.65 —0.0688
1.98 0.2018 2.29 0.0689
2.29 0.0287 2.56 —0.0440

2.96 —2.9366
2.43 —0.0427
2.77 —0.0103

Structure pR5

C1 3.24
C4-I 2.56
C4-II 2.81

XoXSX6

—0.8793—2.0694—1.2776
2.69
2.99

XoX7X7

—0.0269—0.5681

pR8

3.03
3.21

XoX8X8

—0.0019—0.0272
3.14
3.24

XoXgXg

—0.0359
0.0000

pR1o

3.24

XpXIoX10

—0.5665

TABLE XII.Energy difference b(C9-C4) between the cristobalite
and rutile-I structures, and B(Ci-C4) between the fluorite and
rutile-I structures (in kcal/mole), for Ti02 as a function of weight-
ing factors (S1',S2',S3') for shells of X ions (dered in the text)
and of the exponent p=8, 9, and 10 of the Born-Mayer effective
pair potential.

Ti02
s(C9-C4) a(C1-C4)

p=8 p=9 p=i0 P=8 p=9 p=i0
pair interactions
set Si'
set S2'
set S3'

—52.5 —21.2—21.9 5.9—21.8 6.1—31.7 —27.5

3.8
28.2
28.4
20.4

—29.2—71.2—62.4—66.5

—45.6—83.0—75.1—78.8

—58.7—92.4—85.3—88.6

though the packing of X shells in rutile I is very com-
pact, the resulting three-ion energy does not favor the
rutile structure by an appreciable margin.

To select the weighting factors for the X shells, we
have to know the separation for zero pair potential
between oxygen ions. Remembering that this distance,
in units P, is 3.0 for neon, 2.6 for fluorine ions, and
2.15 for argon, we choose a probable value of 2.4P '
for the distance for zero pair potential between oxygen
ions. Shells with PR values )2.4 are weighted by a
factor —1 or —1.5, those for which PR (2.4 by a
factor 0.25 or 0.5. In total, we selected the following sets
of weighting factors:

S1'. 0.5 if PR„(2.4; —1 if PR & 2.4;
$2': 0.5 if PR (2; 0.25 for 2(PR (2.4 and —1 if

PR )2.4;
S3'. 0.5 if PR„(2.4; —1.5 if PR &2.4.

In Table XII we list the energy difference 5(C9-C4)
between the P-cristobalite and rutile structures (C4
denotes C4-I; no signi6cant difference exists between
C4-I and C4-II), and the difference b(C1-C4) between
the Quorite and rutile structures, for the three above
sets S1', S2', and $3' of weighting factors for X shells.
Also given are the values of these differences obtained
on the basis of pair interactions only. The results are
quite remarkable already on a two-body basis, since it
is seen from the table that the rutile structure is eever

stable: for P=9 and 10, fluorite is the most stable
structure, whereas for p=8, cristobalite is stable both
with respect to rutile and to Quorite. Upon including
three-ion forces, the Quorite structure ~s a&mays the

stable one for p=8, 9, and 10, removing the ambiguity in
stability with respect to p. We have also found that the
anatase structure is always less stable than rutile, both
with pair interactions alone and including three-ion
forces. The observed distortions of the real rutile or
anatase lattice of Ti02 cannot overcome such large
differences in energy, since the Madelung constants of
the distorted structures differ from those of the ideal
lattices only by approximately 1%%u~.

rs Apparently, the
Ti4+ ion, although isoelectronic with argon, caeeot be

consi dered only on the basis of closed shell elect-ron

configurations
The last two compounds of this class to be discussed

are SiOs (PR=0.91, y=15.4) and BeFs (PR=1.47,
p= 12.3), which exhibit C8, C9 stability. Only structures
with 4,2-coordination must be compared for stability
of these compounds, since those with higher coordina-
tion are ruled out on the basis of pair repulsions alone.
In the following Table XIII we list, for Si02 in the
structures P-cristobalite (C9), P-quartz (C8), and cuprite

(C3), the same quantities as in Tables IX and XI.
From the table we note that the pair repulsion is
lowest in C9, somewhat larger in CS, and very much
larger in C3. Triplets AsXtXt (XsAtAr) give, because
of the same coordination, identical three-ion energies
in the three structures. On the other hand, the 6rst X
shell in C9 develops much stronger repulsion than in

C8; in C3 this three-ion energy is large and negative,
because this shell in C3 has the same arrangement
as the second shell of X ions in fluorite (C1). A decisive

difference between C8 and C9 arises from three-ion
interactions of triplets XsXsXs, this second X shell is in
the rePulsive part of the pair potential for C8 (PRs= 2.11)
and the resulting three-ion energy is attractive, whereas
in the structure C9 this shell is already in the attractive

part of the pair potential (PRs=2.58), resulting in
repulsive three-ion energy in this case. In addition,

' K. Sahl, Acta Cryst. 19, 1027 (1965).
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Tanxz XIII. Total pair repulsion Es., and 6rst-order three-ion energies hE& for triplets A pXgXj (XpAyAy)& XpXzXy, and XpX X,„,
with m=2, 3, ~ ~, 8, for Si02 in the structures 4eII-cristobalite (C9), P-quartz (CS), and cuprite (C3). The quantity PE denotes the
dimensionless distance from the mth shell of X ions to the central ion X0. All energies are in units of nearest-neighbor repulsion.

Si02, PE=0.912, y= 15.42
Structure Ep., A0XIXI+X0AgAI pgI

C9 30.6028 —2.7942 1.49
CS 35.2847 —2.7942 1.49
C3 62.8430 —2.7942 1.49

3.9723
0.9776—31.4022

2.58
2.11
2.11

X0X2Xg

—4.6925—3.6825-1.8961

2.98
2.29
2.58

—0.2866—0.7522—25.4788
2.35
2.98

X0X4X4

—1.6189—0.2890

Structure XoXOX5

—0.0641

X0XSX6

0.0014

X0XVX7

—0.5763

X0X8XS

—0.0910

TAaLE XIV. Energy differences b(CS-C9) between the P-quartz
and P-cristobalite structures, and B(C3-C9) between the cuprite
and p-cristobalite structures (in kcal/mole), for Si02 as a function
of weighting factors (Si',82',S3') for shells of X ions (de6ned in
the text) and of the exponent values p= 8, 9, and 10 of the Born-
Mayer effective pair potential. Values of these differences on the
basis of pair interactions alone are also given.

Si02

pair interactions
set Si'
set 52'
set 53'

b(CS-C9)
p=8 p=9 p=10
122.7—13.6

6.4—36.1

112.8
703

10.5—27.3

105
203

13.7—20.3

S(C3-C9)
p=8 p=9 p=10
511 455 411
462 412 372
469 418 377
561 500 451

shells m= 3 and 4 in C8 also develop attractive three-ion
energy. Consequently, we see that the di6erence in
three-ion interactions between CS and C9 tends to corn-

pensate for the lower pair repulsion in C9. Using the
same sets 51', 52', 53' of weighting factors as defined
in the arlalysis of Ti02 stability, we obtain the results
given in Table XIV for the differences in energy
b(C8-C9) between the P-quartz and P-cristobalite con-
figurations, and 8(C3-C9) between the cuprite and P-
cristobalite structures. First we observe that the cuprite
structure is completely ruled out for stability, both for
pair interactions and including three-ion forces. Further,
the cristobali te conIiguration is considerably more
stable than quartz on the basis of pair interactions alone

(by about 3% of the total crystal energy). However,
Ipon including three ion forces, -Seir digcrencc in
spahi/i' disappears This re.sult is qualitatively in-
dependent of the set of weighting factors chosen, i.e.,
stability of either structure is essentially determined by
the symmetry properties of three-ion interactions and

by the sign of the weighting factors for a few important
shells of X ions. On the basis of the above results, we

expect SiO2 to exhibit both C8 ied CP stability, in
striking agreement with experiment. Secondary e6ects,
such as lattice distortions, will in each particular case
decide stablllty of olle, ol another, of such con6guratlons,

Finally, we consider crystal stability of BeF2. In
view of the relatively large value of PR compared to
SiOs (1.47 compared to 0.91), pair energies are practi-
cally identical in CS and C9. In addition, three-ion
energies from triplets ApX&X& (XpA&At) as well as

XOX~X~ are the same in CS and C9; further shells give
no contribution to the crystal energy. The Madelung
energy favors C9 over C8 by 11 kcal/mole; all energy
differences are of this order of magnitude, i.e., only
secondary effects, such as distortions, can stabilize
either lattice.

glass (III). The AXs compounds which crystallize
in the C6 or C19 structure are: (C6) MgBrs, MgIs,
CaI~, SiTe~, TiS2, TiSe2, TiTe2,.ZrS2, ZrSe2, ZrTe2., HfS2,
HfSes and (C19) CssO, MgClg. Further, we note from
Table II that the PR values for compounds with the C6
configuration lie between 0.95 and 1.33, and that C19
stability occurs only in a narrow range of PR values,
namely, between 1.4 and 1.5.

The comparison of static lattice energies of the nine
different ideal structures, for compounds of this class,
is carried out including polarization contributions, i.e.,
on the basis of Eq. (10) 111chldtng Ep,&. For the stable
structure of each compound, Eq. (12}then applies, and
E~,i can be determined as a function of the parameter

p in the Born-Mayer effective pair repulsion, as we dis-
cussed in Sec. IV.

The principal task for the stability analysis of this
class of compounds appears to be the explanation of the
observed relative stability of the C6 (cadmium iodide)
and C19 (cadmium chloride) configurations. In an
earlier section we have already outlined this relative
stability on a qualitative basis; we will now give the
numerical results. Before doing this, we note that Ti
compounds have also been included as members of this
class (C6 stability), although from the analysis of TiOs
stability we concluded that the Ti'+ ion cannot be
considered only on the basis of closed-shell configura-
tions. The justification is that we find the C6 structure
for these compounds with large X ions to be consider-
ably more stable than C4 (rutile), CS (anatase), or
any structure with 8,4 or 6,3 coordination. Con-
sequently, such additional components of the crystal
energy (stabilizing C4 for TiOs) are unlikely to be of
importance here.

For the analysis of C6, C19 relative stability we select
ZrSes (PE= 1.08, y=4.8) as an example. In Table XV
we list for this compound the total pair repulsion E~.,
and the /rsvp-order three-ion energies AEq for triplets
ApXrXr (XpAtAt) and XpX„X„,with n=1, 2, , 6,
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TABLE XV. Total pair repulsion Ep, , and fIrst-order three-ion energies AEI for triplets AOXIX1 (XOAIAI) and XOXeXn ~ith ~= 1, 2
~ ~ ~, 6, for ZrSe2 in the C6 and C19 con6gurations. The dimensionless distances pR„, from the nth shell of X ions to the central ion Xo,
are also given. All energies are in units of nearest-neighbor repulsion.

ZrSe2, pR=1.082 y=4.81
StruCture Ep, AOXIXI+XpA 1A1 PR1

C19 28.1227 —7.084 1.53
C6 28.1227 —7.084 1.53

XOXIX1

—11.2707—11.2494
2.16
2.16

XpX2X2

—0.6070—0.7662
2.65
2.50

XpX3XI

—8.3143
0.0137

pR4

3.06
2.65

XOX4X4

—0.0813—5.5832

Structure

C6 2.93

XOX5X5

—1.3777 3.06

XoX6X6

—0.0178

together with the dimensionless distances PR„ from the
tsth shell of X ions to the central ion Xo. We conclude
from the table that no appreciable differences between
C6 and C19 arise from pair repulsions or from three-
ion energies of triplets AOX&Xy (XOAyAg) XpXgXf,
and XvX2X2. However, shells at PR„=2.65, i.e., the

third X shell in C19 and the fourth X shell in C6, generate
significantly dQ'erent three ion contri-butions to the crystal
energy. Since these shells are in the

attractive

part of the
pair potential, their weighting factor (1+E,~~, &'&/

E„v"&) is negative, and the total (6rst- plus second-
order) three-ion energy is repulsive, more repulsive in
CZP thueie C6. More distant shells have no appreciable
effect on crystal stability. We conclude, therefore, that
for these values of pR the cadmium i odide (C6) conagura-
tion is the more stable one, in agreement with experi-
ment. When PR increases to about 1.4, then the above
shells are at PR 3.6 and their three-ion contribution
has become negligible. For such large values of PR
(MgC12, Cs20) the lattice energy of the ideal C6 and
C19 structures is practically the same (except for a
small difference in polarization energy of 1% in favor
of C6). Distortion of the C19 lattice, resulting in an
increase of the Madelung constant, "can then account
for the observed C19 stability.

Finally, we give in Table XVI the complete results
for the stability comparison between the nine ideal
structures, selecting as typical examples ZrSe2, MgI2,
and MgC12. The quantities listed are the same as those
of Tables VII and VIII; in the last three columns 8E
denotes again the difference in energy between the
structure considered and the stable one (in kcal/mole).
The values in parentheses refer to the difference 8E
obtained on the basis of pair interactions only. We note
from the table that a model of pair repulsions between
the ions, extended to account for polarization contribu-
tions and for the different size of A and X ions (param-
eter y), accounts correctly for observed stability rela-
tions. Of course, no distinction can be made on the basis
of pair interactions between the stability of C6 and C19.

VI. SUMMARY AND DISCUSSION OF RESULTS

In this paper we have analyzed crystal stability of
AX2 compounds on the basis of pair interactions and of
three-ion exchange forces in first and second orders of

perturbation theory. The three-ion component of the
interaction energy for each triplet of ions was calculated
on the basis of effective, one-electron, charge distribu-
tions of Gaussian form for the ions, taking into account
only single-exchange terms in the interaction energy.
For a discussion of double exchange, and of the con-
tribution from nonisosceles triangles of ion configura-
tions we refer to LIIj; the analysis given previously
appears to apply equally well for AX2 compounds.
The static lattice energies of each compound in nine
different (ideal) structures were compared for the
obsemed value of the nearest-neighbor distance in the
stable structure.

Further, polarization contributions to the crystal
energy were taken to be of the form —(o/R')E, where

E is a characteristic lattice constant, R the nearest-
neighbor distance, and where o. is an effective polariza-
bility of the X ion; values of n can be determined, in
the framework of the Born-Mayer model, as a function
of the exponent p in the Born-Mayer effective pair
potential R &. The C6 (cadmium iodide) and C19
(cadmium chloride) lattices exhibit by far the largest
value of E, so that polarization is of importance only
in these layer structures. The calculation of E values
for the nine different structures, as well as that of their
Madelung constants, was carried out on the basis of the
Bertaut method.

For all compounds considered, the stability results
obtained upon including three-ion interactions were
compared with those resulting from a pair-potential
assumption only (however including polarization
effects, which have appreciable Coulombic three-ion
components). The pair potential is of the Born-Mayer
type, extended to take into account the difference in
size between A and X ions Lthrough the parameter
y= (P'/P)', where P' and P are the Gaussian parameters
for A and X ions]. This extended pair potential was
found to yield stability results which are very close to
the predictions based on the Goldschmidt rules, and
which in some cases agree better with experiment. An
example is Zr02. on the basis of ionic radii the predicted
crystal structure is rutile, ~ whereas on the basis of
y-dependent pair repulsions we find Quorite as the
stable lattice, in agreement with experiment.

The stability results for AX2 compounds of which A
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TABLE XVI. Madelung energy EM (kcal/mole}, total pair repulsion E~, , three-ion energies from triplets AOX&X& (XOATA&} and
XOX X, summed over n, together with the sum of pair repulsions and total three-ion interactions (all in units of nearest-neighbor
repulsion), for ZrSe2, MgI2, and MgC12 in nine diferent (ideal) configurations. In the last three columns the energy difterence BE (kcal/
mole) is given, for values p =6, 8, and 10 of the exponent p in the Born-Mayer eBective pair repulsion. The numbers in parentheses refer
to pair interactions only.

ZrSe2, pR=1.082, y=4.81

Structure Epr

C1
C4-I
C4-II
C5
C19
C6
C9
C3

—2509 40.0453—2382 29.7180—2370 27.12/2—2316 28.1220—2176 28.1227—2174 28.1227—2218 9.2088—2212 15.4285

MgI2, pR=1.227, y=10.85

—5.7800—2.8702—2.6463
302177—3.5420—3.5420—0.9639—0.9639

—2.8902—3.2819—2.0065
2.6086
2.6086
1.1487
0.5294

-0.9979

31.7351
23.5659
22.4744
27.5129
27.1893
25.7294
8.7743

13.4667

APXIX1+XPA 1A1 ge X0XnXe Ep.r.+~E p=6

so2(96o)
664(781)
641(717)
692(635)

0
45( o)

349(338)
507(528)

BE
p=s

57s(7o2)
498(590)
482(542)
531(4S5)

0
35( o)

287(278)
412(429)

p=10

444(54s)
398(475)
3s7(437)
433(396)

0
29( o)

250(243)
355(369)

Structure

Ci
C4-I
C4-II
C5
C19
C6
C9
C3

—571.4—542.3—539.8—527.6—495.4—495.0—505.0
-503.8

MgC12, pR=

72.)077
51.7958
45.9129
47.8910
47.9448
47.9448
13.3798
23.4539

1.417, y=6.12

—7.9910—4.0735—4.0034—3.9831—3.9850—3.9850—1.3262—1.3262

—10.7425—12.8355—8.6304—2.6371—2.6371—4.8454
0.0946—2.7479

Ep.r. A pXIX1+XpA 1A 1 +vs XpXvsXvs E, , +aE
53.3742
34.8868
33.2791
41.2708
41.3227
39.1144
11.9590
19.3798

p=6

2O5(339)
147(286)
141(251)
155(221)
10( 0)
0

73(143)
11O(1S9)

p=8

148(269)
11O(236)
io6(2o7)
118(182)

8( 0)
0

6o(13o)
9O(166)

p=10

115(227)
88(206)
85(180)
97(159}
6.6(0)

0
53(122)
77(152)

Structure

Ci
C4-I
C4-II
C5
C19
C6
C9
C3

—658.7—625.3—622.2—608.1
571~ 1—570.6—582.2—580.7

38.1744
26.6846
22.9696
23.9297
23.9410
23.9410
7.3575

10.7716

—6.8741
,
—3.4500

3.3727—3.3142—3.3281—3.3281—0.9986—0.9986

—2.0005
3.0724-—2.58/9—1.5424

-2.5424—2.4835
0.5910
4.6108

APXIXI+X0A1AI P XPX X Ep., +DE

29.2998
20.1622
17.0090
18.0731
18.0705
18.1294
6.9499

14.3838

. p=6

296(29O}
219(218)
is4(is7)
167(167)

0
0

102( 84)
193(117)

p=8

219(214)
166(165)
139(142)
128(128)

0
0

83( 7o)
155( 96)

p=10

172(169)
134(133)
112(114)
104(104)

0
0

72( 61)
133( 83)

is the larger ion, are very simple. We find fluorite (C1)
stability with the Born-Mayer model, Goldschmidt
rules, y-dependent pair repulsions, and also upon in-
cluding three-ion forces (Table VII). The three-ion
energy for solids of these compounds, relative to the
total pair repulsion, is of the order of 15% (attractive)
for CaFs, 5% (repulsive) for NasO, and 12% (attractive)
for Li2Se, all in the stable fluorite structure.

For AX2 compounds with larger X ions we reproduce
Ci stability for Srcl2, Zr02, and Hf02 on the basis of
pair repulsions and also when three-ion interactions are
included (Table VIII). In the latter case, the fluorite
stability is approximately twice as large as with pair
interactions alone. The three-ion energy in Quorite
amounts, relative to the total pair repulsion, to 23%
(attractive) for SrCIs and 35% (attractive) for ZrOs
and Hf02.

Of particrdar importance are the stability results for
the compounds MgF2 and TiO2, observed in the C4
(rutile) type of lattice. These compounds have widely
different PR values (1.86 and 1.15, respectively),
whereas their y values are small and of the same order.
Between these two values of PR we observed C1 and

C8, C9 stability (ZrOs and BeFs). Pair interactions
predict rutile as the stable structure for MgF2, with a
small stability margin with respect to cristobalite.
Three-ion forces increase the stability of rutile relative
to cristobalite; they show that the rutile con6guration
can be stable only ie u marrow range of PR, y valles
(Tables IX and X).

The situation is quite diferent for Ti02 stability
(Tables XI and XII). Although the Goldschmidt rules
do predict rutile stability (ratio r+/r between the radii
of the ions is 0.55 for TiOs and 0.60 for MgFs), we find
that the smaller value of PR for TiOs causes further shells
to contribute to the pair repulsion with a central ion.
As a consequence, rutile stability is ruled out already
on the basis of pair interactions; the stable structure is
fluorite or cristobulite, depending upon the value of the
parameter p in the effective Born-Mayer pair repulsion.
When we include three-ion interactions, then this
ambiguity its stability is removed: filorite is the stable
structure for TiOs for all values of p considered (8, 9,
10 and higher). Consequently, rutile stability of TiOs
can be due only to an additional attractive component
of the crystal energy which carrot be derived from paii. -
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or three-ion interactions between closed shells of elec-
trons. The origin of this stability must be related to the
known different valency states of Ti, possibly involving
Ti-Ti interactions via the oxygen ion.

For solids of the compounds Si02 and BeF2 the PR
values are again rather different (0.91 and 1.47),
whereas the y values are large and of the same order
(15.4 and 12.3, respectively). In view of the large values
of y, only structures with 4,2-coordination have to be
compared. If we consider, first, pair interactions only,
then the cuprite (C3) configuration is excluded for
stability because of large pair repulsion. Further, for
BeF2, there is no significant difference between the
cristobalite (C9) and quartz (C8) structures. Upon
including three-ioe interactions, we find that for BeF2
(large values of PR) this component is practically the
same in the two structures. On the other hand, at snza/l

values of PR (Si02), pair repulsions in C8 are larger
than in C9; also the Madelung energy favors cristobalite.
Accordingly, on the basis of pair interactions, Si02
should be considerably more stable in the cristobalite
than in the quartz configuration. (by approximately
100 kcal/mole). Three ion interact-ious play a very im
portal/ role for stability of SiO, : all triplets XOX X
in C9 develop repulsiee three-ion energy, whereas on the
contrary, several shells in the quartz structure generate
atlractiee three-ion interactions (Table XIII). As a
result, the sum of non-Coulombic pair- and three-ion
interactions favors the quarts configuration (Table
XIV), compensating for the difference in Madelung
energy between C8 and C9. Due to this important
e6'ect of three-ion interactions, we find that CS and C9
are eery nearly Of equal stability, in agreement with
experiment.

It has often been supposed that the stability of the
quartz configuration arises from partial col,lerjt bond-

ing, "on the basis of the observation that the opening
angle of the triplet 0-Si-0 in quartz is less than 180',
which is not favorable on a purely electrostatic basis.
Indeed, the Madelung constant of C8 is 1%%u~ smaller
than that of C9; also pair repulsion in C8 is larger
than in C9. On the other hand, strongly repulsiee three

ion irIteractiorIs, involving triplets XpX„X„of/ike ions,

' See, e.g., R. C. Evans, An Introduction to Crystal Chemistry
(Cambridge University Press, New York, 1952), Chap. VII.

are found in the C9 configuration, whereas these three-
ion repulsions are completely qlerIched in C8 because
of symmetry properties of three-ion interactions
(Table XIII).

Finally, the relative stability of the C6 (cadmium
iodide) and C19 (cadmium chloride) structures, for
values of PR(1.3, was found to arise entirely from the
difference in three-iorI, energy between these lattices.
The shells of X ions which determine stability are the
third shell in C19 and the fourth shell in C6, both at
distance O'"R from the central X ion. Corresponding
triplets XpX„X„develop repulsive three-ion energy,
more repulsive in C19 than in C6. This dÃerence
stabilizes C6 at small PR, since sll other contributions
to the crystal energy are very nearly the same. For
PR values larger than about 1.4, the contribution from
these shells to the three-ion energy is negligible. Ac-

cordingly, the crystal energy for the two structures is
then practically the same, and the observed C19 stability
for MgC12 and Cs~O (PR between 1.4 and 1.5) must
be due to secondary effects (distortion of the C19
lattice" ) .

A certain number of AX2 compounds has been
omitted from this stability analysis, because their
crystal structures show too large deviations from an
ideal lattice (e.g., CaC12, BaC12). Several intermediate
configurations may be constructed by combining two
sublattices of ioris in the stoichiometric ratio 1:2; for
some of these combinations electrostatic effects may
often cause a lowering of the crystal energy with re-
spect to an ideal structure. A typical example is the
so-called PbC12 (C22) lattice, for which the coordina-
tion number is not well defined (between 6 and 8 for
an A ion). The purpose of this paper was to investigate
whether general stability relations for AX2 compounds
can be interpreted on the basis of pair- and three-ion
interactions, taking as possible configurations nine
ideal lattice types. An extension of this analysis to dis-

torted and intermediate types of structures is not ex-

pected to introduce essentially diferent aspects of
the stability problem for AX2 compounds.
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