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quadrupole shielding and antishielding occurs although
no simple trends are discernible.

In Table IV the sensitivity of the calculated polariza-
bilities and shielding factors to the choice of zeroth-order
Hartree-Fock function is demonstrated. This sensi-
tivity is most pronounced in the negative ions (note
the Cl values), although some of the inert gas functions
give substantial disparity in the results. The energy of
the outermost orbital and the total energy of a given
atom or ion is listed to exhibit the relationships of the
polarizabilities and shielding factors to these quantities.
Polarizability effects are primarily dependent upon the

outermost regions of an atomic-charge distribution and,
therefore, constitute a sensitive test of the relative
accuracy of zeroth-order functions as is evident from
Table IV.

It should be noted that the calculated values for 0,24

and F24 are quite large in some cases and, therefore, for
Geld strengths attainable in the laboratory (10' V/cm
and higher), the quadrupole moments induced in S-
state atoms and ions are of the same order of magnitude
as permanent molecular quadrupole moments. The
method discussed by Buckingham' should, therefore, be
quite feasible for measuring these parameters.
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Electron excitation cross sections of the transitions between the three spin multiplets J=0, 1, 2, of the
L(Is)'(2s)'(2p)'g'P ground state of the neutral oxygen atom have been calculated by using the continuous-
state Hartree-Fock formulation for electron energies of 500—10000'K. Partial-wave analysis is performed
in a coupled representation characteristic of the total angular momentum of the entire system. The scatter-
ing equations are further simplified by neglecting the coupling between the different partial waves of the in-
cident electron. Under an exact-resonance approximation, the scattering equations for the s wave can be
completely decoupled and the solutions obtained by numerical iteration. The p-wave manifold consists of
three sets of simultaneous equations. Exact solutions (close-coupling) are obtained for selected scattering
equations and are compared with the corresponding collision strengths calculated by a modi6ed distorted-
wave treatment to examine the validity of the latter approximate method. Final collision strengths for the
p wave are evaluated from appropriate combinations of the close-coupling and weak-coupling schemes.
Partial cross sections for the d wave are found to be of minor importance and may be obtained with the
Born approximation. Corrections for the energy differences between atomic states are found to be small.
The calculated cross sections are somewhat larger than the values estimated by Gershberg and provide evi-
dence for the importance of the role of neutral oxygen atoms in the cooling of the interstellar media.

I. INTRODUCTION

FORBIDDEN transitions between the spectral terms
of the ground configuration of neutral atomic

oxygen give rise to some of the most prominent lines in
the spectrum of auroras, and the excitation of these
metastable states by electron impact has been a subject
of considerable interest. Yamanouchi, Inui, and
Amemiya' calculated the excitation and de-excitation
cross sections for the 'P, 'D, and '5 terms of the ground
conGguration (1s)'(2s)'(2p)' by the Born-Oppenheimer
approximation, but considered only potential distortion
and assumed the free-electron wave functions to be
orthogonal to the bound-state orbitals. Bates et al. ,
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however, later have pointed out that these cross sections
were overestimated by several orders of magnitude.
The errors originated from the incorrect assumptions
of weak distortion and weak coupling and the failure
to consider the orthogonality requirements. To correct
the situation, Seaton' formulated the electron-atom
collision problem in a manner analogous to the Hartree-
Fock method for bound atomic states. Continuous-state
Hartree-Pock equations were obtained by adopting
antisymmetrized basis wave functions in the appro-
priate expansions. The strength of the exchange
coupling for p wave was found to be so great that the
usual weak-coupling approximations could not be relied
upon. By retaining only the strong spherically sym-
metric exchange terms and assuming equal energies for
all three atomic states (exact-resonance approximation),
the scattering equations were uncoupled by transfor-
mation and solved numerically. In later papers,

'M. J. Seaton, Phil. Trans. Roy. Soc. London A245, 469
(X953).
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TABLE I. Composite states for values of l&2. transitions of Or could thus be roughly estimated. With
only order of magnitude accuracy expected, Gershberg
concluded that the contributions to the cooling rate
from neutral oxygen atoms and carbon ions may be of
comparable size. However, the cross sections of neutral
atoms and ions are known to behave quite differently
for low energy, and the approach taken by Gershberg
could result in considerable error at the low tempera-
tures considered. The spin-multiplet spacings are 0,
0.00072, 0.00103 atomic units (a.u.) for the 7=2, 1, 0
components of Or, thus excitation can take place with
very slow electrons. The smaller degree of penetration
of the slow electrons tends to de-emphasize the exchange
effect and consequently causes the potential coupling
to play a more important role. A detailed calculation of
these excitation cross sections is reported in this paper
and the eGects of the different coupling terms on the
cross sections are examined.

II. GENERAL FORMULATIONSeaton4 ' employed a modified type of distorted-wave
method and perturbation techniques to correct for the
coupling terms which had been omitted in the earlier
work.

The 0++ ion (Orrr) with a ground configuration of
(1s)s(2s)s(2P)' has the same set of spectral terms as Or.
Hebb and Menzel' calculated the transition proba-
bilities between the 'I', 'D, and 'S terms using the
Born-Oppenheimer approximation, with the free plane-
wave appropriately replaced by the continuous
Coulomb wave functions. Seaton4 has subsequently
refined these calculations in a manner analogous to the
procedures adopted for Or.

Another interesting process is the electron excitation
of the spin-multiplets of the 'I' state. The cross sections
for these transitions in Orrr were important in deter-
mining the conditions under which the Bowen Quores-
cent mechanism would operate. The calculations by
Hebb and Menzel' were found to overestimate these
cross sections by about an order of magnitude. In
Seaton's improved calculations, 4 ' the distorted-wave
Born-Oppenheimer approximation was used with ex-
change distortion neglected. However, no calculations
of the spin-multiplet transitions of Or have yet been
made.

Recently Gershberg~ has postulated that the excita-
tion of the spin-multiplet components of the 'I' ground
state of Or by electron impact may be an important
cooling mechanism in the Hr regions of interstellar
space. The behaviors of the Orrr cross sections near
threshold were corrected empirically and ratios were
established for associated transitions between the
'I', 'D, 'S states of the ground configurations in Or and,

Orrr. The unknown cross sections for the spin-multiplet

The Hartree-Pock equations for continuous states
developed by Seaton' are used as the starting point in
the formulation. To clarify the notation, a brief resume
of Seaton's development is given here. Hartree atomic
units are used throughout the work.

Consider an electron moving in the field of a neutral
atom of nuclear charge Z with E electrons. Let us
denote the incident electron by i and the totality of the
E atomic electrons by i '. The Hamiltonian of the
(N+1)-electron system may be written as

H=H~+H(s ')+ Q 1/r;;,
1'~1,2'g&

where

N+1

(2)

The wave functions of the isolated atom are denoted
by/„(i '), i.e.,

To solve the Schrodinger equation for the (N+1)-
electron problem,

(8—E)@(1,2, ,N,N+1) =0,

we shall perform the usual expansion

O'=P M4 (s)P (i ')

where M is the antisymmetrizing operator. Upon
multiplying Eq. (4) by 1t *(1 ') and integrating over
all coordinates except those of electron 1, we obtain

(6)

4 M. $. Seaton, Proc. Roy. Soc. (London) A218, 400 (1953).
5 M. J. Seaton, Proc. Roy. Soc. (London) A231, 37 {1955}.
'M. H. Hebb and D.iH. Menzel, Astrophys. J. 92, 408 (1940). LII& rIr s]y (1)~R. E. Gershberg, Izv. Krymsk. Astro6z. Observ. 36, 324

(1961).
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(7)

The notation appearing in these equations implies that
the integration is to be performed over all coordinates
except those of electron i. The functions V and 5' are
referred to as the potential and exchange integrals,
respectively. Equation (8) can be simplified into either
of two forms:

The total wave function for the system is now ex-
panded as

(13)

The index e now represents the array of quantum
numbers appearing in the left-hand side of Eq. (12).
The differential equations for P„are obtained by
substituting Eq. (13) in the Schrodinger equation in
the standard manner:

Z~tF„(rt)+go ['U„+„(rt)—rt%~o]=0, (14)

where

1 d' l(i+1) Z 1
Z '= gm—

2 dr~ 2r' r 2

i'
X4-(2 ')4-(2)d* ', (10) XX.(1-',8t,yt)«t-', («)

W„„(1)=E f„*(1')[Ht —-', h '+ Q 1/r;t]

Xg'e(2 ')Po(2)d» '. (11)

Although Eqs. (10) and (11)give identical results when
exact wave functions are used, in numerical work a
choice must be made between the two forms, and, as
only approximate wave functions are available, the 6nal
cross sections will vary depending upon the particular
selection. Equations (10) and (11) correspond, respec-
tively, to the well-known "prior" and "post" inter-
actions. In the present calculation, Eq. (10) has been
employed to evaluate the exchange matrix elements.

For the problem of excitation of the J components of
the ground state of Ox by slow electrons, we shall include
only the manifold of the [(1s)'(2s)2(2p)4]'F group in
the summation of Eq. (5). It is customary at this point
to decompose the wave function of the incident electron
into a series of partial waves characterized by l and ms&.

However, since the electron spin plays an important
role in these transitions, it is advantageous to couple 1
with the spin of the incident electron to form j, i.e., to
construct a new set of basis functions C (Ijm„~ 8,&,) from
Ft,~,(8,$;) and the spin functions. In order to simplify
the scattering equations we further couple j with J of
the neutral atom to form the total angular momentum
Jr of the (X+1)-electron system. The basis functions
of this coupled representation are

X(J&,Mz,Jj,L= 1,S=1,l,s= 2)

(JMj m;~ JjJrcVr)gssr(i ')

Table I presents the available composite states with
l=O)i, 2.

XX (2 82 49)[Fo(rs)/rs]«t ' (17)

Again either the post- or prior-interaction may be
selected in the further reduction of Eq. (17).Hereafter,
the subscript 1 will be omitted in Eq. (14) and its
related definitions. In this coupled representation, the
Hamiltonian is diagonal in Jp and Mz and the cross
sections are independent of Mp. The summation in
Eq. (14) therefore includes only those states having
the same value of Jp and Mz as the m state. Hence, a
particular value of J& and Mz may be selected and this
subset of equations may be solved independent of the
remainder of the set.

The wave functions for the bound atomic J states
have been taken as linear combinations of determinantal
functions. Slater gives the llf1,=0, Mg=O function for
'I'; the remainder of the manifold are obtained with
the step-up and step-down operators. Standard vector-
coupling methods yield the wave functions for the
different spin-multiplet states. Procedures for evaluat-
ing Eqs. (16) and (17) in terms of the basic determinants
are given by Condon and Shortley, ~ and Seaton, '
respectively. Equation (13) may be rewritten in the
following form:

4 (tt'
~
1,2, ,1V+1)

=P„MF„(rt'
~
r;)X„(i,8;,y;)/r; (18)

which explicitly indicates the dependence upon the
choice of the initial state e' of the composite system.
The asymptotic form of F„is related to the elements of

8 J.C. Slater, QuunÃum Theory of Atomic Structure II (Mcoraw-
Hill Book Company, Inc., New York, 1960).'E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1963).
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the R matrix as

F„(tt'( r~)-k„-'t'Lsin(k„. r;——',l„,or)5„„.
+R„„cos(k„r;--',l„s.)j. (19)

In actual practice, it is more convenient to match the
solution of E at large r to a combination of Bessel
functions, Jztti. it2&(kr), rather than the above circular
functions; and to describe the asymptotic function in
terms of an amplitude A and a phase shift from the
free-particle solution g. In terms of the T matrix, which
is de6ned as

Clementi, Roothaan, and Yoshimine" are used to
construct the atomic wave functions, and in the
discussion to follow, S~, S2, and I' denote the radial
functions for the (1s), (2s), and (2p) orbitals, respec-
tively. Before proceeding to the scattering equations it
is helpful to introduce the following quantities which
occur in the subsequent equations:

A(A, B)= A (r)B(r)dr,

T= —2iR/(1 —2R), (2o) yt(A, B~ri) =ri-'-' A (r2)B(r2)r2'dr,

the cross section for the J' —+ J transition can be ex-
pressed as +ri r2 A (r2)B(r2)«2, (24)

Q(J' —& J)=e.k' 'Q(J J')/(2J'+1), (21)
where

Q(J',J') =
2 P (2Jr+1) ) T(nJj lJr,nJ'g'1'Jr) ~2 (22)

Rt(A, B,C,D) = A (ri)C(rt)yt(B, D~ ri)dri

is the collision strength and n represents the remainder
of the quantum numbers defining the composite state.

III. SOLUTION OF THE SCATTERING
EQUATIONS

~it(A B)—

B(rt)D(ri)yt(A, C~ ri)dri,

1 d' l(l+1) Z
A (ri) —— +

2 t&g rl-

Q(J,J') =Q i Qt (J,J'), (23)

where Qt(J,J') can be obtained from Eq. (22) and
represents the contribution to the collision strength
from the / partial wave. The methods for solving the
scattering equations associated with l=O, 1, and 2 are
different and must be described separately. The analytic
self-consistent-field (SCF) functions as calculated by

Even with the use of the coupled representation, the
scattering equations in Eq. (14) are still very difncult
to solve. One simplification can be made from the
observation that for collisions between electrons and
neutral atoms, the interaction is of suKciently short
range that only partial cross sections of small l need be
considered. In the present investigation, only contribu-
tions for l ~& 2 have been taken into account. The transi-
tions of interest for Or are optically forbidden; an
expansion of the interaction shows that Al=0, +2.
Generally, any interaction matrix element is dependent
upon the amount of overlap for the wave functions of
the incident and scattered electrons. For small values
of l it is to be expected that the overlap for wave func-
tions with 61=~2 is small compared with that for
which hi=0. For this reason, we will neglect the
coupling between partial waves of different /. When
these approximations are made, the manifold of
Eq. (14) can be decomposed into systems of simul-
taneous equations of manageable sizes. With this
approximation, it is possible to write

XB(ri)dri,

where A, 8, C, and D are radial functions. The notation
is equivalent to that employed by Seaton' and is con-
sistent with the work of Hartree" on atomic calcula-
tions. In the presentation of the 6nal results of the
cross sections, the energies of the incident electrons are
expressed in units of temperature with E=kT.

Z 'F +P„(V „F„rW „)=—O, (25)

'U „=P „L4yo(PP)+2yo(SiSi)+2yo(S2S2)), (26)

r%' „=n„„gi(PF„)P
Ri(SiPPF „)Si R—i(S,PPF„)S2j-

+p „{[yo(StF„)+li„&'&(SiF„))Sr

+b.(S.F.)+l -.&'&(S.F.)3S.&, (»)
"E.Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.

Rev. 127, 1618 (1962)."D. R. Hartree, The Calculation of Atomic Structures Uohn
Wiley 8z Sons, Inc., Neer York, 1957).

1. The s-Wave Collision Strengths

The sets of equations expressing the contributions to
the cross sections from the s waves have a particularly
simple form. From Table I it is seen that coupling occurs
only between states u and b of Jz =

~ and between 1 and
2 of Jy= ~~. In each case we have a set of two simul-
taneous equations of the form
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Tmx.E II. CoeScients in the potential and exchange
matrix elements for s wave (J&fr =Jr).

&&„„&'&(S,F„)=3',u'(S,P„)——
u,

k„'&&,(SiP„)
+4Rp(PsiPP„)+Rp(siSisiP )
+2Ro(susisuF„) —Rp(sisusuF ), (28)

& „„&'&(S,F )=Kuo(suP„) —-'uk„uh(suF„)

+4Rp(PSuPF „)+Rp(SuSusuF„)
+2Rp(sisusiP ) Ro(susis&P ) . (29)

Cq@

u, b

&sS

bb

Puus@

3
-',v2
-,'42

2
3

lt&'& (S;Gu) = & "&(S;Gu) —Ri(S,PPGu) . (34)

When we multiply Eq. (32) on the left by Si and
integrate over the radial variable, we obtain an equation
for 'A&'& (SiGi) which is identical to Eq. (28). Because of
this indeterminacy we may choose to make G~ orthog-
Onal to S~. The same conclusion can be drawn for
X&u&(suGt) A&i&(siGu), and lt&u&(suGu). Accordingly we

can set

~(S,G,)=~(S,G,)=~(S,Gu) =~(SuGu) =0. (35)

'~In the present vrork, the term "exact-resonance" indicates
equal energies for the bound atomic states being considered. This
di8ers from the terminology employed by Seaton (Ref. 3), vrho
includes an omission of the y2 and R2 potential and exchange
terms in the de6nition.

The values of p and a are summarized in Table II. It
should be noted that the coupling is provided by ex-
change alone while the Coulomb potential elements
produce only distortion. Because of the short-range
nature of the coupling, good numerical results can be
achieved with a reasonably low limit on the radial
variable.

As a first approximation we sha, ll neglect the energy
difference between the incident and scattered electrons,
i.e., set k„'=k '= k' because of the small spin-multiplet
splittings. When this exact-resonance approximation"
is made, the scattering equations can be decoupled by
means of the following transformation:

J'r ———',. F,= —v2&siGi+suuGu,

Po —suiGi+v2NuGu j

Jr ——
u
.. Fi= —(+5)NuGi+uueGu,

(31)
Fu =ussG&+ (+5)ss4Gu j

where the constants e are to be selected in order to
provide the proper asymptotic behaviors for Ii. In both
cases (Jr= u, -', ) the differential equations for G are

LZo+4yp(PP)+2yo(sist)+2yp(susu)]Gi
= Qo(s&G&)+X&'& (SiGi)]si

+[go(SuGi)+& "&(SuGi)]Su, (32)

$Z'+4y (PoP)+2y (sosi)i+2y (sos )u]Guu
= [yo(stGu)+l(&'& (SiGu)]s,

+go(suGu)+&&'& (SuGu)]su+yi(PGu)P. (33)

Here &&&'& and &&&u& are as defined by Eqs. (28) and (29)
with the m index omitted, and

1j2
21
22

The expressions for X and K LEqs. (28), (29), (34)] can
be simplified in the following manner. By multiplying
the Hartree-Pock radial differential equations' for S~
and S2 through by G& and by G2 on the left and inte-
grating, we obtain four equa, tions which upon substitu-
tion into Eqs. (28), (29), and (34) give

X&'& {SiGi)=-,'Ri(SiPPGi) y

&&&u& (SuGi) = sRi(SuPPGi),
g &i}(StGu) —

sRi (SiPPGu)
K&'& (SuGu) = —-', Ri(SuPPGu) . (36)

'o D. R. Hartree, Nelmerscal Awafysss (Clarendon Press, Oxford,
England, 1952).

Equations (32) and (33) are solved, by the method. of
Numerov'3 with coupling and exchange terms requiring
numerical iteration. Solutions were initiated by small-
value expressions near the origin; the interval of inte-
gration was increased to O.i a.u. for regions exterior to
the a,tom and the routine continued until the inhuence
of the atom was insignificant relative to free-particle
behavior. A limit of r =50 is sufhcient for s waves. Side
conditions given in Eqs. (35) were imposed after each
step of the iteration with the resulting convergence
rapid enough to provide four figures of accuracy for the
phases after Gve to eight passes. The asymptotic
boundary conditions yield the 6nal s-wave collision
strengths in terms of g~ and g2, the phases of G~ and G2,
respectively. Under exact resonance, the 6nal expres-
sions for these collision strengths are

Q.(1,2) = (10/9) sinu (r&t
—

s&u),

Q. (0,1)= (8/9) sinu(»i —
s&u),

Q, (0,2) =0.
Numerical values of 9, at various electron energies are
summarized in Table III.The collision strengths depend
heavily upon the asymptotic difference in phase between
the G~ and G~ solutions; this difference in phase is
dictated solely by the eGect of exchange terms involving
the G~ and I' functions. These short-range terms are
sensitive to the precise value of G~ interior to the atom,
hence are substantially aGected by short-range distor-
tion and the orthogonal restrictions (with respect to Si
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TABLE III. Collision strengths for s wave. '

Energy
of scattered

electron ('K)

10 000
5000
1000
500

Exact resonance
Q, (1,2) D, (0,1)

0.0084 0.0067
0.0045 0.0036
0.00096 0.00077
0.00048 0.00038

Allowance for
energy differences
n, (1,2) n, (0,1)

0.0085 0.0067
0.0046 0.0037
0.00106 0.00081
0.00058 0.00042

The parameter Qs(0,2) is zero.

and S2) imposed upon the free wave functions. To
examine this point more quantitatively, calculations
were made of the collision strengths ignoring the S~
and S2 exchange terms and the associated orthogonality
conditions. The results exceed those listed in Table III
by over a factor of 5.

The exact-resonance approximation which has been
used to obtain Eqs. (37) can be corrected to allow for
energy differences between the various bound atomic
states with a technique suggested by Seaton. ' If we
introduce a subscript on k' referring to the J=0, 1, 2
specification of the bound atomic state, the suggested

procedure is to solve for G~ and G2 successively with
k =ko, k~, and k~. Approximate expressions for F and Fq

are obtained from a modified version of Eqs. (30) as

+a(~1 ) ~2+161(~1)++2G2(~1 ) )

+b(~0 ) +1G1(~0 )+~2+2G2(~0 ) ~

(38)

Equations (38) are valid solutions if the term on the
right-hand side of Eqs. (32) and (33) are nearly inde-
pendent of small variation of O'. For s waves this k'
independence can be au. 'eved by a suitable normaliza-
tion procedure. ' A similar method would be applicable
for the Jz =2 set of equations. The collision strengths
calculated with allowance for energy differences are
included in Table III. Deviations from the correspond-
ing exact-resonance values should be important only at
the lower end of the energy range being considered, and
this has proved to be generally true.

2. The P-Wave Collision Strengths

For the p waves, there are three values of Jp which
lead to transition between the J=0, 1, 2 levels, namely,
Jr ——2, —,', and -', (Table I). For each block the resulting

TABLE IV. CoeScients in the potential and exchange matrix elements for p wave (Mz =Jp).

mpS
(=m m)

C~C

cqd

c,e

Cqf

fg~e

d,f
e,e

e,f
ff
33
3,4
3,5

3,6
37
4,4
4,5
4,6
4,7
5,5
5,6
5,7
6,6
6,7
77

B,B
B,C
BjD
C,C
C,D
D,D

Pmn

7/50
(3V'5) /50

(3v'10) /50
(2v'5)/25

—1/10
v2/10

0
0
0
0

0
3/25

(+10)/25
—7/50

—(345)/50
2/25

0
—9/50

—(v'5)/5o
0

—(v'10)/25
0
0
0
0
—1/10

—(V'21)/50
(v'14)/50

—1/50
(v'6)/50

0

mv'5

1
av'5

1

1
—1

1
1

2
3

1
—,'V'10

6—sv'5
1
1
1
1

(v'10)/12
-„'v2

7/12
—lv'5

P~n

1
1
0
1
1
0
1
1
0

1
1
1
0
0
0
1
1
1
1
1
1

19/60
(v'5)/20

(v'5)/30

1
XO

2
5

13/75
3/25

(v'10)/75—
—17/150

—(v'5)/5o
4/25

(3V'10)/50
3/50

—(3V'5)/50
7/30

—(v'1o)/150
v2/10

103/300
—(V'5) /100

1

19/100
(3v'21l/100

—(3+14)/50
31/100

(34'6)/50
4/25

&ran

—3/50
—9/50

(3V'10)/50
—3/50
1

10
v2/10
3

XO
2
5

—6/25
0

3/25

—21/125
—3/25
—2/25

—(3+10)/50
—6/25

(v'5)/25
—6/25

3
5
3

—i56/350
—6/25

—29/100
—(v'21)/20

(2V'14)/25
—33/100

—(v'6)/25
—4/25
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coupling are of more signi6cance here and may even
contribute more to the cross sections than the spherical
exchange terms. Hence a consideration of the sym-
metric exchange terms alone is certainly not suKeient
and the treatment of the potential coupling by perturba, -
tion is of doubtful value. Nevertheless, in precise
calculations, the transformations described by Eqs.
(43)—(45) can be effectively used to initiate an iteration
procedure, since they do remove the spherically sym-
metric part of the coupling. For convenience, they are
referred to as the "basic transformations. "

In the follovring analysis, vre shall first adopt the
exRet-I'esonRnce RpproxlIDRtlon. UndeI' the Rssunlptlon
of exact-resonance, selected. scattering equations are
solved "exactly" (close-coupling solution). For com-
parison the collision strengths are also calculated by R

modified distorted-wave treatment, and the validity of
this approximation is examined. Final collision strengths
for p wave are evaluated from appropriate combina-
tions of the close-coupling and vreak-coupling schemes.
Final1y the nonresonance e8eet is taken into account
by the approximate procedure used for s vraves.

reduced radial differential equations may be expressed
RS

z„V„+P.L~..F.—r~..7=0, (39)

& .=p .L4yg(PP)+2yg(S~Si)+2yo(S&g)7
+~.„y,(PP), (40)

~„„=(~„„g„„y,(PF„)+X..(PF.)7
+v -yg(PF-)&P

+-:. t-, (S.F.}S.+y.(S.F-)S.7, («}
X„„(PF„)=P„„t.3., (PF.)—;u.~(PF.)

+3Rg(PPPF „)+2Rg (SgPS gF„)
+ 2Rg (SgPSgF „) ~gRg (P—SgSgF „)

g~R, (PSgSgF„)7+x „Rg(PPPF„). (42)

The values of the various eoeKcients are listed in
Table IV.

It will be shown that the p-wave interaction is the
most signi6cant in estabhshing the total cross sections.
However, these equations are also the most complex,
vrith both exchange and potential coupling of compar-
able magnitude. Before proceeding to the solution of
these equations, it is instructive to consider a special
approximation vrhieh, though not applicable to the
present problem, does furnish a useful starting point
for the mathematical procedure. This approximation
consists of neglecting the energy differences betvreen
the spin-multiplets and also omitting the y2 and E&
terms. Under these assumptions, the scattering equa-
tions can be completely decoupled by means of the
tI'RnsfoI'IDRtlons:

A. Jp= ', Cl-os—o Coup-/geg Solufioes

Ke shall begin vrith the group of equations corre-
sponding to Jp= —,since the "basic transformation" for
this case has the simplest form, i.e., an identity trans-
formation. The scattering equations for F~, Pg, F~ can
be partly decoupled under exact resonance through the
transformation

Fo V2eoGo+ (+——7)noGo,
Fo &2eoGo+v——3eoGo,
Fo V3eoGo+ (+7——)eoGo &2eoGo. —

F,= 2n.G. —(+5)ng—Gg,
Fg 2egG —g+3ngGg, ——
F,=e,G„
Fr —(+5)e G +——3egGg+2egGs',

J 1 ~

(43) The differential equations for Go, Go, and Go are

J 3 Fg
——e4Gg+2 (+5)ngGg,

F4=e2G2,

Eg——3msG3 —%2e5G5,

Fg = —3egGg —2ngGg+ (+5)egGs,
Fy= (+5)egGg+V2egGg+3egGg, (44)

Jp ———,. F;=e;G;, i=8, C, D.

This transformation is an effective method of taking
into account the strong coupling contributed by the
spherical yg(PF} terms. Seaton' has found these
coupling terms to completely dominate the transition
probabilities between the '8, 'D, and '5 terms of the
ground conhguration of Or. Hence, as a zeroth-order
approximation, he made the assumptions of exact
resonance and nonimportance of the asymmetric
potential and exchange terIDs. In later work, 4 a correc-
tion vras made for the omitted coupling terms with
perturbation methods.

This approximation scheme, hovrever, is not appli-
cable to the present problem as the long-range potential

L&'+4yo(PP)+2yg(RSi)+2yo(SgSg) 7Go
= fy, (PG,)+~,(PG,)7P

+gyi(SxGa)Sx+ gyi(SgGo)Sg
—(1/25)yg(PP)Go+ (49/100)yg(PGo)P

+L(9v 21)/1007 («/eo) yg (PGo)»

L&'+4yo(PP)+2yo(Ski)+2yo(SgSg) 7Go
= fyg(PGo)+so(PGo) 7P

+gyi(S&o)Sx+-'gyx(SgGo)Sg

(1/25)yg (PP}Go—(23/100)yg (PGo)—P
—P(3+21)/1007 (eo/eg) yg (PGo)P,

L&'+4yg(PP)+2yo(SxSx)+2yo(SgSg)7Go
= fyg(PGo)+&o(PGa)7P+gy~(S~Gn)Si

+gyi(SgGo)Sg+gyg(PP)Go+ gyg(PGo)P (47)

The A. parameters have the same general form a,s
Eq. (42) with some additional terms which are shown
in Table V. It is found to be possible to impose again
the orthogonality condition betvreen G and P and to
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Tanz, z V. CoeKcients and coupling terms for i4(PG~) parameters.

Parameter

Ag

A.g

~c
h.g

A.1

A3

h.4
h.s

h.gy

h.g
A.~

—3/50
—1/2
—2/5
—3/20

—7/25
—3/10
—3/25
—3/20

—9/20
27/100

—3/5

Coupling terms, A.;—X;
—L(3+5)/50j(nb/np)R&(PPPGb) —p(3+10)/100$(n, /n~)R, (PPPG, )

L (3V'5) /503 (na/nb) Rp (PPPG, )—(V2/20) (n, /nb) Rp (PPPG, )
L(3V 10)/253(nalno)Rp(PPPG )—(V2/5) (nb/n, )Rp(PPPGb)

0
—

L (/10) /20$ (np/ni) Rp (PPPGp) —(7/50) (n&/n&)R& (PPPG4)
I (+10)/257(n4/np)Rp(PPPG4)—(3/25) (ni/n4)R&(PPPG&)+p(3+10)/25$(np/n4)Rp(PPPG&)

0

f(9+—21)/100) (no/no)R p (PPPGc)
L (3+21)/100$ (nn/no) Rp (PPPGs)

0

obtain quick convergence of the numerical iteration by
satisfying this requirement after each iteration. 4 The
numerical procedures for solving these equations be-
come more complex because of the coupling between
Gs and Go. Also the (ns/no) ratio is determined from
the boundary conditions and must be treated by an
additional iteration process since theoretically it is not
known until the Anal G functions have been computed. .
For the p waves the numerical solutions of the differ-
ential equations are carried out to r=200 a.u. The
interaction between the states with total angular
momentum of ~ can lead to J=1~2 transitions only,
and hence will provide a correction to only D„(1,2).
These contributions are included in Table VI.

T(m, n) =4z 'JJ 'tt „'g dr, (49)

vrhere %L „represents the coupling terms, including
both potential and exchange, between the states m
and e. The results of the distorted-wave calculations
with exact resonance are included in Table VI, along
vrith the close-coupling values. The only significant
difference between the two methods appears at the
higher energy limit and the over-all agreement indicates
the applicability of the chosen method of distorted

B. Jr= ss 3fethod o-f—Distorted Waves

Since the functions Fz, Fo, and F& in Eqs. (39)—(42)
are coupled only through the y2 type of potential and
exchange terms but not the yo terms, it should be
possible to obtain accurate collision strengths with a
refined vreak-coupling approximation. A modified ver-
sion of the method of distorted waves will be used. %e
shall introduce the 'g functions which are defined as
the solutions of Fs, Fo, and FD in Eqs. (39)—(42) with
all of the yg coupling and distortion terms omitted, and
which have the asymptotic behavior,

F ip "sin(kr+rt)—
The T-matrix elements are then given by

waves for states which are connected only through
the y2 terms.

TABLE VI. Collision strengths calculated by close coupling
and by distorted wave Jp=-,'.

Exact resonance
energy ('K)

10 000
5000
1000
500

Q„(1,2) =0 (2,1)
Close couphng Distorted @rave

0.0078 0.0069
0.0040 0.0037
0.00081 0.00078
0.00040 0.00039

C. Jz = s Appr—oximate Solltiots

On applying the appropriate "basic transformation"
to the set of scattering equations for Jp ——~, we obtain

L~'+4yo(PP)+2yo(S S )+2y (S& )7G.
= Py p(PG, )+A.(PG.)7P (17/50)ys—(PP)G,

+-;ys(PG.)P+-'syi(SiG. )Si+-',yi(SsG, )Ss
+L(3V'5)/507(nb/a. )ys(PP)Gb

+ L(3+10)/1007 (r4/rr, )ys (PP)G„(50)
Lz'+4yp(PP)+2yp(sist)+2yp(ssss) 7Gb

=Lyp(PGb)+Lb(PGb) 7P+ (1/10)ys(PP)Gb
+sys(PGb)P+-'sy, (StGb)Sj+ syi(SQGb)SQ

P(3/5)/507 —(n,/rb. )y, (PP)G,
+ (V2/20) (e,/rsb)ys(PP)G„(51)

$Z'+ 4y p(PP)+2y p(SiSi)+2y p(SzSs)7G,
= [yo(PG, )+A, (PG,)7P+ ', y (S,G,)S-

+syi(SsG. )Ss+sys(PG, )P
+ L(3+10)/257 (ts,/r4) ys(PP) G,

+( 2/5)(tsb/n, )ys(PP)Gb, (52)

P&'+4y p(PP)+2y p(SiSi)+2y p(SrSs) 7Gs
= —2Ly p(PGs)+&s(PGs)7P+ sys(PP)Ga

+ (1/10)ys(PGs) P
+syt(StGs)St+-'syt(SsGs)Ss. (53)

Here the parameters A are related to X in Eq. (42)
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through Table V. Before proceeding to the exact
solution of these equations, let us consider an approxi-
mate procedure which is based on the method of
distorted waves as used for Jr———',. In Eqs. (39)—(42),
F, is coupled to the other three channels through only
y2 terms; one should be able to treat such coupling
terms by the method of distorted waves. Hence we
shall first solve the set of G equations neglecting the
coupling terms to the F, state. LThis is equivalent to
setting n, =0 in Eqs. (50) and (51).] The resulting
scattering equations then show complete isolation of G,
and G, and G~', the latter two functions can be solved
by a method similar to that described to obtain the
close-coupling solution of the Jy=-,' set with the im-
position of the appropriate orthogonality conditions.
On the other hand, a diBerent type of problem is en-
countered in the evaluation of Ae(PGe) in the Ge
differential equation which is completely decoupled
from the other equations by the "basic transformation. "
By following a procedure equivalent to that described
for G~ in the section pertaining to s wave, it is found
that this parameter is not indeterminant from the
scattering equation. The differential equation for G~
specifies that

Ae(PGe) = —Rp(PPPGe)+(1/20)Rg(PPPGg) . (54)

Also the Hartree-Fock differential equation for the
bound-state P function' yields

&e(PGe)= (3/20)Rg(PPPGe) ——,'(82~+k')&(PGe). (55)

The side condition imposed on G~ is taken to be

~ (Bp„+k')A(PGe) =Ro(PPPGe)+ ,'OR2(PPPGe), (5—6)

and one can no longer make G~ orthogonal to P without
modifying the bound-state P function.

The phase shifts and the R matrix are calculated by
applying the asymptotic boundary conditions to the G
functions and using Eqs. (43). However, at this stage of
the approximation, the R-matrix elements connecting
state "e" with states "c," "d,""f," are indeterminant.
These elements, however, are to be gotten by re-
instating the coupling between F, and the other
channels and treating this coupling by the method of
distorted waves. In other words, the T-matrix elements
related to the "e" states are computed using Eq. (49).
The 'g functions are now taken to be the solutions for
F„Fz, F„and Fy obtained by considering only the
yo(PG) coupling terms in Eqs. (50)—(53); each function
is normalized to the asymptotic behavior demanded
by Eq. (48). Tests confirmed the y2(PF) and y&(PP)
distortion terms to be completely ineffective in this
particular application. It is found that the distorted-
wave integrals corresponding to excitation and de-
excitation do not satisfy the requirement of detailed
balance. The discrepancy is proportional to 6(PGe), is
negligible at energies below 1000'K, and increases to
about 20% at higher energies. The geometric means

between these two sets of collision strengths are chosen
to compute the final cross sections. Since the contribu-
tions of these distorted-wave integrals are found to be
quite small as compared with other contributions to the
total collision strengths, the deviations from detailed
balance constitute only minor errors in our final results.
The final collision strengths are summarized in
Table VII.

TABLE VII. Summary of collision strengths
for P wave under exact resonance.

Exact
resonance

energy ('K)
Contributions to Q~

Jr=g Jr=~
Total

O~

10 000
5000
1000
500

0.072
0.034

- 0.0028
0.0007

0.191 0.0078
0.093 0.0040
0.0081 0.00081
0.0021 0.00040

0.271
0.131
0.0117
0.0032

10 000
5000
1000
500

0.019 0.049
0.008 0.025
0.0003 0.0027
0.000004 0.00092

0.068
0.033
0.0030
0.00092

10 000
5000
1000
500

0.079
0.039
0.0035
0.0008

0.022
0.010
0.0009
0.0002

0.101
0.049
0.0044
0.0010

D. Jr s' ——Cl—ose Cou-pHeg Calculations

To confirm the validity of the approximate method
used in the last section, the set of differential equations
for G„Gq, and. G, in Eqs. (50)—(52) are now solved
simultaneously. (The "basic transformation" always
decouples Ge from the remaining G functions. ) Because
of the particular form of the "basic transformation, " a
difhculty is encountered in the evaluation of the n,
coeKcient from the boundary conditions. For example,
if the initial state were chosen to be one other than "e,"
the absence of a sine term in Eq. (19), at first glance,
seems to imply e,=0 which amounts to an effective de-
coupling of G, from the remainder of the set. The answer
to this paradox is that when "e" is not the initial state,
one should look for a solution of G, which has the
special asymptotic behavior of cos(kr —~2m) rather than
the more general form of sin(kr —~m.)+| cos(kr —~2~).
This can be accomplished as follows: Select an arbitrary
value for e„say e,=e,&'&, in the set of coupled equa-
tions. Choose, for example, F, as the initial channel,
and solve for G, G~, and G,. The n„e~, ands~ coef5-
cients are adjusted to give the correct asymptotic forms
for F„F~,and F~. On the other hand, since e, is chosen
arbitrarily, F, will not have the proper boundary
behavior. The final solutions and coeKcients so ob-
tained are to be denoted by the superscript (1).Another
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arbitrary va, lue e,=N, @& is now selected and the above
routine repeated. The superscript (2) serves to distin-
guish these solutions. The final Ii functions are taken as

F;=qF;&"+(1—q)F;&'&, s=c, d, e, f, (57)

where q is adjusted to reproduce the appropriate
asymptotic form of F„ i.e., to cause the coefhcient of
sin(kr —ster) to vanish. The resulting solutions as given
by Eq. (5'I) are thus uniquely specified and possess the
required asymptotic behaviors.

Detailed calculations were performed using this
scheme for an electron energy of 5000'K, with F,
selected as the initial channel. The results agree very
well with those of the previous approximate method as
is demonstrated by the entries in Table VIII.

J 3

Because of the complexity of the Ave-channel scatter-
ing equations of the Jz = ~ set, we shall use the approxi-
mate method devised for the Jp ———,

' case. On applying
the "basic transformation" and omitting the coupling
terms between E4 and the other four channels, the
following equations result

L2'+4yo (PP)+2yo(stst)+2yo(ssSs)7Gt
=P, (PG,)+~,(PG,))P+-;y, (S,G,)S,

+ syt (SPt)Ss+ (2/25)ys(PP)Gt+s ys(PG1)P
+L(v'10)/20j( / )y (PG)P

+ (7/50) (n,/nt)ys(PP)G4,

LZ'+4yo(PP)+2yo (Stst)+2yo(ssSs) jGs
= [ye(PGs)+~s(PGs) jP+syt(stGs)S,

+'sy& (SsGs)ss+ (3/10)ys(PGs) P
—I:(v'10)/253(n~/ns)Lys(PP)Gt —ys(PGt)P j

—L(+10)/25j(ns/ns)ys(PP)G4,

f 2'+4yo (PP)+ 2yo(s&s&)+ 2yo (SsSs)jGs
= Q()(PGs)+A4(PG4) jP+,'y&(S&G4)s&-

+syt (SsG4)Ss—(7/25)ys (PP)G4+ sys(PG4) P
—(3/25)(n, /n )$y (PP)G —2y (PG )Pj
—$(3+10)/50$(ns/n4) Qs(PP)Go+ye(PGs)P j,

$Z +4yo(PP)+2yo(s]sz)+2yo(ssss) jGs
= —2&o(PGs)+&s(PGs) )P+-'syi(StGs)St

+syt(ssGs)so+ 'ys(PP)G-s+s'oys(PGs)P (58)

Expressions for h. may be found from Eq. (42) and
Table V. Like the case of Jz =-'„61,63, and 64 can be
made orthogonal to P, but the side condition imposed
upon Gs must be ths, t given by Eq. (56).The E-matrix
elements between states, 3, 5, 6, and 7 are obtained by
solving Eqs. (58) and using the transformation Eqs. (44).
The coupling terms connecting state 4 with states 3, 5, 6,
and 7 which were neglected in Eqs. (58) are then em-

ployed in conjunction with the distorted-wave method
(as described for Jr= s) to calculate the contributions
of this state to the total collision strengths. Collision

TAmz VIII. Comparison of approximate and exact |,'close-
coupling) methods (Jr =-'„ initial state =c, energy —5,000'K).

Element under
approximate method~

tang+, ,= —0.055
tangy, ,= —0.037
8 (e,c) = —0.028

Corresponding element
under exact (close-
coupling) method

—0.054—0.036
Z(e,c) = —0.030

os The notation gg, e refers to the phase of G& when Fe is taken to be
initial state.

strengths associated with Jg——~3 calculated under exact
resonance are included in Table VII.

TAax, E IX. Comparison of diferent methods of alluring
for energy differences, Jz=-,'.

a„(1,2)b

Exact resonance Allowance for energy differences
Distorted-wave "Exact" Distorted-wave Seaton'se

('K) approximation method approximation method

5000 0.0037 0.0040 0.0037 0.0041 + 2.6%
1000 0.000/8 0.00081 0.00082 0.00089 +13Fo
500 0 00039 0 00040 0 00042 0 00048 ~28Fo

This value represents the electron energy when the atom is in the
excited (J=1) state.

b The figures tabulated refer only. to contributions from Jp =g.
e Percent of error is the result of the asymmetry of the R matrix.

F. Allowance for Energy Dsf/erences

The portions of the p-wave collision strengths which
are capable of being determined by the distorted-wave
approximation can be corrected for the differences in
energy of the bound states by simply inserting the
proper wave functions with the correct electron energies
into the integral of Eq. (49). Table IX displays a com-
parison of some typical distorted-wave calculations for
the states of Jz =—,

' with the associated results from the
exact-resonance approximation.

The correct treatment of the states which are con-
nected under the strong coupling of the spherically sym-
metric exchange terms poses much more of a problem.
This refers to the portions of the Jz =-,' and 2 sets which
must be handled by solving the coupled differential
equations. Like the case of the s-wave interactions, the
method of Seaton' has been used for this purpose,
although for the p wave the ys(PP) long-range potential
coupling terms show some sensitivity to small variations
in O'. Nevertheless, since the energy diGerences are
small, the Seaton approach should provide an estimate
of the nonresonance effect upon the collision strengths.
Another difhculty with the method is that the R
matrices are no longer synunetric. %e have thus sym-
metrized the E matrices, taking the geometric mean of
the corresponding elements, and have calculated the
maximum error so introduced. This percentage error
has been included with the Anal results, and in all cases
has been within the limits of the over-all accuracy ex-
pected, especially when compared with the Anal value
for the collision strengths.
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TABLE X.P-wave collision strengths with allowance
for energy differences.

Electron
energy'

('K)
Exact

resonance

Q~
Allowance
for energy
differences

Computed
errorb

It is possible to obtain an indication of the accuracy
of the above method by comparing the results so ob-
tained for the Jp= ~5 equations with the corresponding
calculations performed with the distorted-wave approxi-
mation. This comparison is exhibited in Table IX and
the agreement can be viewed as acceptable.

Table X compares the exact-resonance collision
strengths for p wave with similar quantities evaluated
under the methods suggested in this section. It was
found that allowances for energy differences were
insignificant at energies of 5000'K and higher, hence
detailed calculations have been performed only for the
two lower energies presented. As this table well illus-

TABLE XI. Matrix element coefBcients for potential
coupling terms, d wave' (Mr =Jr).

Jp me 8 „=I„
v g P (v'30)/5o

h, p (3+5)/50

g 8,9 (6+21)/175
8,11 (/21)/350
8,12 (+210)/175
10,9 —3/50
10,11 3/25
10,12 (+10)/25

Jz m, e
jv F
E,G
EP
H,F
H, G

H,P
II,III
IV,III

(6/6)/175
(4+35)/175

—(3+21)/175
—(11+6)/350
—(2+35)/175
—(+21)/50
—(9+5)/175

(3/5)/175

Elements connecting the J=0 and J=1 atomic states are zero, and
not included in the listing.

T(m, n) = 2ie r(m, n), (59)

The potential matrix elements of interest are all
proportional to y2(PP). Under the Born approximation,
the T-matrix elements are related to these coupling
elements as

10 000
5000
1000
500

O, (0,2):

10 000
5000
1000
500

n„(0,1):

0.271
0.131
0.0117
0.0032

0.068
0.033
0.0030
0.00092

0.271
0.131
0.0160
0.0055

0.068
0.033
0.0032
0.00104

&1'
4'7o

2'
13 lo

Qg(1,2) = (144/35)
~
r(1,2) ~',

Qg(0, 2)= (64/35)
~
r(0,2) (',

Qg(0, 1)=0. (61)

r(~,e) =m J$/2(k r)y2(PP) Jz'2(k r)rdr. (60)
0

Values of 8 are summarized in Table XI. The
collision strengths for d wave then become

10 000
5000
1000
500

0.101
0.049
0.0044
0.0010

0.101
0.049
0.0044
0.0012

3'Fo
5'Fo

a This value represents the electron energy when the atom is in the
respective excited state.

& This error arises because of the asymmetry of the R matrix.

trates, the corrections for energy differences are not of
major importance.

3. The d-Wave Collision Strengths

The effects of the d-wave interactions can be ascer-
tained quite readily. The electron having an angular
momentum of l =2 does not penetrate substantially
into the atomic force 6eld. It is thus sufhcient to neglect
all of the exchange interaction, to retain only the
potential matrix elements, and to calculate the collision
strengths by adopting the Born approximation. The
validity of the Born approximation for the d waves has
been substantiated by Seaton's calculation of the
transitions between the L-multiplet members of OI.'
The reliability is further strengthened by the fact that
the magnitudes of the required integrals (Eq. (60)
belowj were found to be determined primarily from
regions well removed from the atom.

Detailed balance immediately follows from the sym-
metry of the 8 „coeKcients and the r(m, e) integrals.
Allowance can easily be made for the differences: in
energy between the atomic states, and these re6nements
were included in the numerical work. Final values ob-
tained for these collision strengths are summarized in
Table XII. The results are suKciently small to justify
the validity of the chosen weak-coupling approximation.

TABLE XII. Collision strengths for d wave, Born approximation, +

Energy of
scattered electron

('K)

10 000
5000
1000
500

O, (0 2)

0.00316
0.00159
0.000291
0.000122

Qg(1,2)

0.00708
0.00358
0.000683
0.000307

The parameter Os{0,.1) is zero and does not contribute to the corre
sponding total cross section,

Iv. POLARIZATION INTERACTION

Up to this point we have neglected the effect of
polarization in the excitation process. It has been shown
that the polarization interaction may have a very
pronounced effect on the elastic scattering of slow
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— a I.O

I ~
J

I I ls etc. where

)tp&'&(StGt) =)t&'&(StGt)+ StGtV dr, etc. (64)

IOI

lo

a.&.s
a-~.o

=:a.e'.o /i
" NOPOLAR.

L tsl t t I IIIIIO-~

IOO4 IO COO~I.OOO

aaERGV ('~)
Fro. 1. Values of sin'(rl& —s&) calculated by including the

polarization potential with various choices of the cutoff parameter
u. The solid curves result from the use of Eq. (62) and the dashed
one from Eq. (65).

With the polarization potential included in the scatter-
ing equations for s wave as above, a series of calcula-
tions were performed for selected values of the cutoff
parameter between 5.9 and 1.0 a.u. Under exact reso-
nance the collision strengths for s wave are proportional
to sins(r)s —tft). LSee Eq. (37).j The results for the
latter quantity have been plotted in Fig. 1 to illustrate
its dependence upon the choice of the cutoG parameter.
One notices a high sensitivity of the cross sections to
the value of this cuto6 parameter in the region a&1.5
a.u. , while above this number the variation is not so
severe.

Since the dominant contribution of the polarization
potential appears to originate from regions interior to
the atomic charge cloud, it is interesting to investigate
the role played by the near-field region of the polariza-
tion curve. A set of trial calculations was performed
with the following modified formula:

V~=Eq. (62), r)a
V~=0, r&u.

electrons from neutral atomic oxygen. ' " The treat-
ments of this eBect in collision problems have been
mostly empirical in nature. In this work a polarization
potential of the form

V~= ——',u~r —
4L1—exp( —r/a) s$ (62)

is chosen with n~=5.2 a.u., the experimental polariza-
bility for atomic oxygen, and u is a cutoff parameter. No
correct procedure has yet been established for the
proper selection of this parameter. Garrett and Jackson"
give @~1 a.u. whereas Lenander" found that a cutoft
value of 5.9 a.u. gave results compatible with the
existing experimental data for elastic scattering of slow
electrons by Oz. Lenander essentially treated polariza-
tion as a surface effect only, while Jackson and Garrett
performed a more detailed analysis in terms of polarized
orbitals.

We shall 6rst examine the polarization efI'ect upon
the s waves. If a spherically symmetrical potential such
as Eq. (62) is included in the Hamiltonian, the scatter-
ing equations for s wave will be modified as follows:

[~'+41 (I'I')+~3 o(S S )+&3o(S& )+V'7a
QO(SlG1) +~P"' (StGt) jSt

+Lss(SsGt)+) ~&'&(S,Gt))S„(63)
14 See, for example, L. B.Robinson, Phys. Rev. 105, 922 (1957);

M. M. Klein and K. A. Brueckner, i'. 111, 1115 (1958); P.
Hammerling, W. W. Shine, and B. Kivel, J. Appl. Phys. 28, 760
(195'7); D. R. Bates and H. S. W. Massey, Proc. Roy. Soc.
(London) 4192, 1 (1947).

"W. R. Garrett, and H. T. Jackson, Jr., phys. Rev. (to be
published).

&6 C. J. Lenander, Phys. Rev. 142, 1 (1966).

For u&4.0, the results were practically identical to
those obtained with Eq. (62). Deviations begin near
c=1.5, and for a=1.0 the sects of the inner region are
mell emphasized by the two appropriate curves in
Fig. 1.

Hence, the collision strengths depend rather strongly
on the part of V~ which is inaccurate, but appear to be
insensitive to the far-field region where the polarization
potential is expected to give reliable results. It is
questionable whether one can get meaningful results by
employing an empirical polarization potential based on
the asymptotic behavior of —O.~r . For this reason the
polarization calculations will not be pursued further at
this point. However, Fig. 1 shows that the polarization
interaction, if it should contribute appreciably to the
collision strengths, tends to increase the values of the
latter. The calculated cross sections which neglect
polarization can be regarded as possible lower limits to
the correct magnitudes, and as such are still of consider-
able importance in astrophysical calculations.

V. DISCUSSION AND RESULTS

Table XIII lists the partial collision strengths Q„Q»
and Qg along with the total collision strengths at four
different energies. In the solution of the scattering
equations (14), the two major approximations employed
have been the neglect of the coupling between states of
diferent l and the omission of the atomic states which
are energetically inaccessible. The first assumption has
already been discussed brieQy; in general only minor
corrections are involved. This is speci6cally demonstra-
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TABLE XIII. Total collision strengths for the
spin-multiplet transitions of Ox.

Electron
Tran- energy
sition ('K) Q, Qy

Q
estimated by
Ger shberg's

Qa (Q, +Oy+Qa) methodb

Q(1,2) 10 000 0.0085
5000 0.0046
1000 0.00106
500 0.00058

0.271
0.131
0.0160
0.0055

0.0071
0.0036
0.00068
0.00031

0.287
0.139
0.0177
0.0064

0.138
0.072
0.0043
0.0011

Q(o 2) io ooo
5000
1000
500

0.068
0.033
0.0032
0.00104

0.0032
0.0016
0.00029
0.00012

0.071
0.035
0.0035
0.0012

0.036
0.019
0.0011
0.0003

Q {0,1) 10 000 0.0067 0.101
5000 0.0037 0.049
1000 0.00081 0.0044

500 0.00042 0.0012

0.108
0.053
0.0052
0.0016

0.047
0.023
0.0014
0.0003

This value represents the electron energy when the atom is in the
respective excited state.

b Strictly speaking, these parameters represent the result of averaging
over a Maxwellian distribution at a temperature characteristic of the
tabulated electron energy, and presumably do not correspond directly to
the results of the current calculations. However, the estimated parameters
are only rough approximations, and differences between the two inter-
pretations were found to be well within the order-of-magnitude accuracy
claimed by Gershberg.

ted by a calculation of the s-d wave contribution for
the 'P —'D transition in Om by Seaton. 4 For the present
calculation, the dominating infiuence of the p-wave
interaction should tend to significantly reduce this
expected error.

The energetically inaccessible states of the oxygen
atom which are neglected in this work presumably
manifest themselves as "second-order" sects, e.g., the
polarization interaction. Because of its long-range
nature, the polarization interaction may cause a
signi6cant increase of the cross sections. Our analysis
in the last section, however, indicates that the long-
range portion of the polarization potential is rather
unimportant and the cross sections are greatly affected

by. the magnitude of this potential near the origin.
Instead of introducing an empirical polarization
potential, a more fundamental approach must be used
to ascertain accurately the infiuence of these "second-
order" sects on the F functions near the origin.

It is interesting to compare the present problem with
the one of transitions between the 'I', 'D, and 'S term
levels of OI.' In both cases excitation has been found to
originate primarily from the p-wave interactions; for
this partial-wave component, the states coupled by
spherically symmetric exchange terms could be treated
very eGectively with an exact-resonance approximation
and close-coupling techniques. The strength of this form

of coupling, the cancellation of exchange terms of com-

parable magnitude, and the subsequent sensitivity to
wave-function behavior over a small interval, combined
with the importance of orthogonality considerations
have rendered the usual weak-coupling methods of
limited usefulness for both sets of transitions. How-

ever, while the exchange coupling dominates the longer-

range potential terms for the L-multiplet transitions,
in the current problem these two sects are of about
equal importance. Here the potential terms were
electively handled through an iteration procedure
introduced as a refinement upon the close-coupling
method. For states which display potential coupling
only, the distorted-wave approximation (with a proper
inclusion of exchange distortion and orthogonality
restrictions) give very reliable results. In both cases the
contributions from the s and d waves were found to be
of only minor importance. The former result from ex-

change coupling alone, and were easily evaluated for the
spin-multiplet transitions with a simplified version of
the p-wave close-coupling technique. Born approxima-
tion proved sufBcient for the longer range d-wave
interactions.

Finally, it is interesting to compare our calculated
cross sections with those estimated by Gershberg. In
his paper the rates of energy loss are given, but not the
individual estimated collision strengths. The values of
the latter can be obtained readily by following his
stated procedure of estimation. These "estimated"
collision strengths are included in Table XIII. In all
cases considered, the collision strengths calculated by
solving the scattering equations exceed those estimated

by Gershb erg's method. Therefore assuming the
validity of other phases of the energy-loss calculation,
the present theoretical results substantiate, and perhaps
even strengthen, the conclusion that neutral atomic
oxygen plays an important part in the cooling of the
interstellar media.
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