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The Toyozawa theory of the elecironic polaron and the related Haken-Schottky theory of the optical
dielectric function are applied to the alkali and silver halides and to the rare-gas solids. It is found that for
most of these crystals the above dynamical theories reduce to a static limit. This in turn indicates that
calculations of polarization effects based on the classical approach of Mott and Littleton will be valid.
Such calculations are carried out in this paper. It is found that the self-energies due to the interaction of
“bare” electrons or holes with the polarization field may be as large as several eV. Furthermore, because of
the “inertialess” nature of electronic polarization, these self-energies and other polarization effects must
be taken into account in the calculation of states which may be excited optically. Thus, for example, the
optical band gap of certain alkali or silver halides may be as much as 5 eV smaller than a “good”” one-electron
band-structure calculation would yield. The available experimental data on the values of optical band gaps
are critically reviewed and comparisons are made with the results of band-structure calculations. The
computed r dependence of the optical dielectric function indicates that for small-radius excitations (e.g.,
n=1 excitons in many substances) electronic polarization should not influence the excitation energy in an
important way; the electron and hole are “bare” particles when in the same unit cell. This fact is consistent
with the success of a number of calculations in which polarization has been neglected. It is shown how the
polarization dependence of the binding energies of these excitations can arise from the self-energies of the
conduction electron and the valence-band hole. The use of the effective-mass method for computing binding
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energies is briefly discussed.

I. INTRODUCTION

E examine two basic (and related) questions
which involve many-electron phenomena asso-

ciated with optical absorption in insulating crystals=3:
(1) What is the relationship between an optical band-
to-band energy—that is, the photon energy required to
take an electron from a filled valence band and place it
into an empty conduction band—and the corresponding
energy that one might obtain in an accurate ‘“one-
electron” band-structure calculation? This question is
pertinent in view of recent and current calculations of
rare-gas*~7 and alkali®® and silver'®:!! halide band struc-
tures and comparisons of the results with optical data.
(2) How are the binding energies of small-radius exci-
tations (excitons or excited impurity states) related to
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the dielectric properties of the crystal?’? Here the
binding energy is as usual defined as the difference
between the energy required to place an electron into the
conduction band and that required to create the exci-
tation, from a given ground state.

These problems are closely tied to the problem of the
electronic polaron, that quasiparticle which consists of
an electron or hole together with its associated elec-
tronic polarization.’® Because this polarization is largely
“inertialess” it affects transport properties but little;
however, this same property means that electronic
polarization must in general be included in calculations
of excitations which may be optically created.

Section II contains a discussion of how electronic
polarization manifests itself, both by introducing an
r-dependent optical dielectric function!? into the elec-
tron-hole interaction and by contributing self-energy,
or polarization energy,!® corrections to the one-electron
energies. It is shown that for many insulators
Toyozawa’s'® theory of the electronic polaron reduces
to a static approximation. This indicates that a treat-
ment of polarization energies of the type first given by
Mott and Littleton' should be valid ; we give a tabula-
tion of the static self-energies for a number of insulating
crystals. The Haken-Schottky theory™ of the dielectric
function also reduces to a ‘“‘static” theory. After criti-
cally reviewing the experimental data on optical band
gaps in rare gases and alkali and silver halides, we com-
pare several computed band gaps with experiment.

In Sec. IIT we discuss how these considerations might
affect the binding energies of small-radius excitations.

12 . Haken and W. Schottky, Z. Physik Chem. 16, 218 (1958).

18Y. Toyozawa, Progr. Theoret. Phys. (Kyoto) 12, 422 (1954).

( 4 N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485
1938).
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Use of the effective-mass method for these excitations
in alkali and silver halides and rare gases is discussed.
It is argued that a small-radius approximation for com-
puting excitation energies is reasonably accurate for
n=1 excitons in most of these crystals, although
probably not for the silver halides. It is shown how the
dependence of the binding energy on dielectric proper-
ties can arise from the self-energies of the “free” electron
and hole.

Throughout this paper lattice polarization effects are
neglected. These are not expected to be important in
optical absorption for the systems considered.

II. THE EFFECTS OF CORRELATION: SELF-
ENERGIES AND THE R-DEPENDENT
DIELECTRIC FUNCTION

A. Historical Review

In the usual one-electron calculation, based upon
Hartree-Fock theory, correlation (except as included
in the Pauli principle) is neglected. Conduction-band
electrons and valence-band holes are treated as ‘“‘bare”
particles moving through a sea of electrons and nuclei
which do not respond to their presence, except possibly
to their average position. Clearly this approximation
cannot be correct, in general ; one expects that the extra
charge, especially if it is moving slowly, will polarize its
surroundings to some extent. Just how much, and how
this polarization will affect the electronic states, are
questions which have stimulated much research.

Probably the first calculations of electron and hole
polarization energies were made in the 1930’s in
attempts to interpret certain experimental data, in-
cluding the ultraviolet absorption spectra of the alkali
halides.!> In these calculations the conduction electron
and valence-band hole were treated as static point
charges located on particular ions, and the energy asso-
ciated with the electronic polarization of valence elec-
trons on neighboring ions was calculated by methods of
classical electrostatics, using empirical values of ionic
polarizabilities, dielectric constants, and lattice con-
stants. It was assumed that the frequency of the excited
electron was sufficiently large that the lattice polariza-
tion could not change during the optical transition (the
Franck-Condon principle), but electronic polarization
was assumed to “follow’” perfectly the excited electron.

With such assumptions Klemm!® calculated the
polarization energy of an electron and a hole one
nearest-neighbor distance apart, while Mott and
Littleton* developed a perturbation scheme for calcu-
lating the polarization energy of separated electrons
and holes. The Mott-Littleton results have since been
slightly modified by using both different ionic polariza-
bilities and different approximate methods of solution.
Regardless of their quantitative accuracy, the classical

15 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (The Clarendon Press, Oxford, England, 1948), 2nd ed.,

reprinted by Dover Publications Inc., New York, 1964.
16 W. Klemm, Z. Physik 82, 529 (1933).
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values of electronic polarization energy should serve as
upper limits to the true values, since allowing the extra
particles to move would presumably decrease the mag-
nitude of their polarization energies (in the limit in
which the extra particles move very rapidly, there
should be no response from the core electrons). A con-
venient limiting case for quantum-mechanical treat-
ments is thus afforded.

It seems clear the validity of such a “static approxi-
mation” will be somewhat limited, in general, and a
quantum-mechanical treatment is desirable. In 1954
Toyozawa!® provided the first such treatment.
Toyozawa considered the interaction of an extra par-
ticle (characterized by an effective mass) with the rest
of the electrons, whose excitations were approximated
by one band of virtual excitons of energy E.x. He was
able to formulate the problem so that it resembled the
lattice polaron problem, with the virtual excitons re-
placing the virtual optical phonons and Eex replacing
hw, the longitudinal-optical mode energy. He used
intermediate-coupling theory” and obtained solutions
formally similar to those of the lattice polaron problem.

Haken and Schottky™ in 1958 took the results of
Toyozawa and derived an expression for the interaction
of an electron and a hole via electronic polarization.
Their interaction included both an 7-dependent di-
electric function and self-energy corrections. The form
of the resulting interaction was the same as that de-
rived by Haken!® for lattice polarization. Other calcula-
tions based upon these ideas have been reported by
Weller'®2 and by Hanisch.!8

During this period there appeared a number of
Russian papers®® on band-structure calculations for an
extra valence-band hole or conduction electron in
alkali halides. The Russian workers included correlation
in their calculations in a way which amounted to a re-
fined Mott-Littleton approach. They assumed that the
extra particle does not polarize the ion on which it is
situated but that it interacts with the other ions as a
classical charge distribution. Not surprisingly, the cor-

17 T.-D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953);
M. Gurari, Phil. Mag. 44, 329 (1953); S. V. Tiablikov, Zh.
Eksperim. i1 Teor. Fiz. 22, 325 (1952).

18 H. Haken, in Polarons and Excitons, edited by C. G. Kuper
and G. D. Whitfield (Oliver and Boyd, Edinburgh, 1963), p. 295.

182 W. Weller, Z. Naturforschg. 16a, 401 (1961).

18 G, Hanisch, Phys. Kondens. Materie 4, 297 (1965).

19 T. I. Kucher, Zh. Eksperim. i Teor. Fiz. 34, 394 (1958);
35, 1049 (1958) [English transls.: Soviet Phys.—JETP 7, 274
(1958); 8, 732 (1958)]; T. I. Kucher-and K. B. Tolpygo, Zh.
Eksperim. i Teor. Fiz. 31, 1002 (1956) [English transl.: Soviet
Phys.—JETP 4, 883 (1955)]; T. I. Kucher and K. B. Tolpygo,
Fiz. Tver. Tela 2, 2301 (1960) [English transl.: Soviet Phys.—
Solid State 2, 2052 (1961) ]; K. B. Tolpygo and O. F. Tomasevich,
Fiz. Tver. Tela 2, 3110 (1960) [English transl.: Soviet Phys.—
Solid State 2, 2765 (1960)]; Z. Ya. Evseev and K. B. Tolpygo,
Fiz. Tver. Tela 4, 3644 (1962) [English transl.: Soviet Phys.—
Solid State 4, 2665 (1962)]; Z. Ya. Evseev, Fiz. Tver. Tela 5,
2345 (1963) [English transl.: Soviet Phys.—Solid State 5, 1705
(1964)]; K. B. Tolpygo, in Proceedings of the International Con-
ference on Semiconductor Physics (Publishing House of the
Czechoslovak Academy of Science, Prague, 1961), p. 55.
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rections to one-particle energies which they obtained are
numerically close to those of Mott and Littleton.

The importance of correlation effects in semiconduc-
tors was also recognized. This problem was discussed by
Kohn,? and relevant calculations have been performed
by a number of others.?2 In these calculations the
virtual states of polarization have been taken to be un-
coupled electron-hole states.

In the case of semiconductors the observed break-
down of the effective-mass approximation for the lowest
bound state associated with ionized impurities has led
to investigations into the theory of 7-dependent di-
electric functions.?® In some of the cases which we are
considering (small-radius states in insulators) it has
been assumed that the effective-mass approximation
would not work well, even in zeroth order, and other
types of zeroth-order calculations have been performed.

B. Calculations
1. The Classical Calculation

The basic classical problem is this: Given an extra
point charge located on a particular ion and a set of
polarizable ions, calculate the induced dipole moments
on each ion due to both the extra charge and the in-
duced moments on other ions. An exact solution is im-
possible, but adequate approximations can be made.
Mott and Littleton' used perturbation theory to treat
the problem for ionic crystals, while Rittner, Hutner,
and DuPré?*?7 exactly solved a truncated set of simul-
taneous equations. The problem has also been treated
by Kucher.2®

We have computed the relevant energies in the first
approximation of Mott and Littleton, using the ionic
polarizabilities of both Pauling® and Tessman, Kahn,
and Shockley.? The latter polarizabilities yield smaller
electron self-energies, larger hole self-energies (by =0.1
eV) than the former, but the sum of electron and hole
energies for a given crystal does not differ very much.
These results are all within 0.2 eV of those given by
DuPré et al.

20W. Kohn, in Proceedings of the International Conference on
Semiconductor Physics (Publishing House of the Czechoslovak
Academy of Science, Prague, 1961), p. 15.

21 G. W. Pratt, Jr., Phys. Rev. 118, 462 (1960).

22 D. Penn, Phys. Rev. 128, 2093 (1962).

28 A. Morita, M. Azuma, and H. Nara, J. Phys. Soc. Japan 17,
1570 (1962); Y. Abe, Y. Osaka, and A. Morita, ¢bid. 17, 1576
(1962) ; M. Azuma, 3b2d. 18, 194 (1963); 19, 198 (1964) ; M. Azuma
and K. Shindo, 7bid. 19, 424 (1964).

2¢ M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961);
M. H. Cohen, sbid. 130, 1301 (1963).

25 . Miiller, Solid State Commun. 2, 205 (1964) ; Phys. Letters
14, 299 (1964).

26 . S. Rittner, R. A. Hutner, and F. K. DuPré, J. Chem.
Phys. 17, 198 (1949); R. A. Hutner, E. S. Rittner, and F. K.
Dupré, ibid. 17, 204 (1949).

27 ¥, K. Dupré, R. A. Hutner, and E. S. Rittner, J. Chem. Phys.
18, 379 (1950).

28T, I. Kucher, Zh. Eksperim. i Teor. Fiz. 30, 724 (1956);
[English transl.: Soviet Phys.—JETP 3, 580 (1956)].

29 L. Pauling, Proc. Roy. Soc. (London) Al114, 191 (1927).

¥ J, R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92,
890 (1953).
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TasLE I. Static electronic self-energies and damping parameters
for an extra particle. For ionic crystals, Hye (¢) and Hse (k) indicate
that the particle is situated on a positive or a negative ion, re-
spectively. For the rare gases the self-energies are equal in mag-
nitude and refer to an extra particle on any atom. 2a equals the
lattice constant, while K is the optical dielectric constant. Except
for CsF and the rare gases, the data and the self-energies are
taken from Ref. 27. The damping parameters were computed from
Eq. (10). For the rare gases the dielectric constants were estimated
from the Clausius-Mossotti relation, using polarizabilities tabu-
lated in Ref. 15. See also G. Baldini, Phys. Rev. 128, 1562 (1962).

mpi
Absolute values of pfrim‘étﬁ%s
Data self-energies (eV) (&™)
Substance a(A) Ko Hse(e) He(h) Sum  a, ap

LiF 201 192 292 181 473 072 044
NaF 231 174 213 150 3.63 0.70 049
KF 267 185 175 166 341 0.53 0.5
RDbF 282 193 164 176 340 047 0.51
CsF 300 219 161 214 3.75 042 0.55
LiCl 256 275 314 189 503 0.68 042
NaCl 281 225 243 153 39 0.60 0.38
KCl 314 213 196 142 338 0.51 037
RbCl 327 219 186 148 334 047 0.38
LiBr 274 316 318 191 509 065 0.39
NaBr 298 262 260 161 421 0.58 0.36
KBr 329 233 206 143 349 0.50 0.35
RbBr 343 233 191 144 335 046 035
Lil 300 380 3.17 18 506 0.60 0.36
Nal 323 291 257 157 414 054 033
KI 353 269 218 144 3.62 048 032
RbI 366 263 202 142 344 045 032
AgCl 277 401 312 255 567 058 047
AgBr 288 462 324 249 573 057 044
Ne 218 126 0.68 0.68 136 046 046
Ar 266 167 110 110 220 038 0.38
Kr 292 180 110 110 220 034 034
Xe 304 223 132 132 264 033 033

The self-energies computed by DuPré et al?” are
given in Table I (except for CsF, which we computed
using Mott and Littleton’s first approximation and
Pauling’s polarizabilities). For the ionic crystals the
hole is assumed localized on a negative ion, the electron
on a positive ion. Also tabulated are results which we
have obtained for the rare gases using Mott and
Littleton’s first approximation (for the purposes of this
calculation the rare gases may be considered to be
alkali halides with only one sublattice). In this table,
2q¢ is the lattice constant, K, the optical dielectric
constant.

The sign of these self-energies is such that the hole
energy is raised and the electron energy lowered. Thus
the difference between electron and hole energies is re-
duced by the sum of the absolute values of their self-
energies.

2. Semicontinuum Calculation of F-Center Energies

In the well-known semicontinuum model®#? of the F
center, self-energies and the » dependence of the di-

317, A. Krumhansl and N. Schwartz, Phys. Rev. 89, 1154
(1953) ; see also the discussion by B. S. Gourary and F. J. Adrian,
in Solid State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic Press Inc., New York, 1960), Vol. 10. ’

82 W. Beall Fowler, Phys. Rev. 135, A1725 (1964).
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F16. 1. Evolution of the F-center potential in the semicontinuum
approximation. See text for details.

electric function /kave been taken into account in the
static approximation, although the results have not
generally been expressed in these terms. It seems in-
structive, therefore, to point out where these effects
arise. A possible evolution of the potential in this model
is shown in Fig. 1, where the numbers are pertinent to
NaCl32 1(a) represents a one-electron potential in
which correlation effects have been neglected; there
exists a potential well of depth Ejy, the Madelung
energy, and outside a distance R (the Mott-Littleton
radius, approximately equal to the nearest-neighbor
distance) the potential is —e?/7. The zero of energy is
taken to be the vacuum energy. This is not really
correct, since in the effective-mass approximation the
zero of energy should be the lowest point in the conduc-
tion band; also, correlation has not yet been included.

1(b) represents the sum of the corrections of these
omissions. Inside the potential well these corrections
are zero, while outside their sum is (—¢?/2R) (1—1/K,)
—X+ (¢%/r)(1—1/K,). The first of these terms is the
vacancy self-energy, discussed by Krumhansl and
Schwartz! It is just the Mott-Littleton energy, and for
a vacancy the static approximation is probably quite
good. X is the experimental electron affinity (equal to
=~0.5 eV for NaCl) which automatically takes into
account both the band structure effect and the self-
energy of the electron. Finally, the last term introduces
the optical dielectric constant for 7> R. 1(c) represents
the final potential, in which the zero of energy has been
shifted to the bottom of the conduction band.

It should be noted that the net effect of the correla-
tion plus band structure corrections is quite small for
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values of 7 up to =10 a,. It is not surprising, then, that
the energy difference between fairly localized states,
like the 1s and the 2p, is rather insensitive to these
corrections,? and that different types of calculations
yield similar results for their separation. One should
note, of course, that for large  the correction becomes
substantial, approaching =2 eV in this case.

3. The Theories of Toyozawa and of Haken
and Schottky

We have just seen that for a system in which the
“hole” is fixed (e.g., a vacancy) and for which the elec-
tron affinity is known empirically, it is possible to
account for correlation effects in a fairly satisfactory
way. But in the more general case it is of interest to
know how good or bad the static approximation is. We
thus turn to the result of Haken and Schottky, based
on the electronic polaron theory of Toyozawa.!® Accord-
ing to Haken and Schottky,”* the interaction between
the electron and hole is given by

—¢?
Hi(n)=—+32 |7«?
7 k

eik-r eik~t

-+c.c

X f
WPk 2mF+Eex 12k 2mp*~+ Eox
+Heo(e)+Hoo(h), (1)

where k is the wave vector, Eex the exciton energy (the
polarization is due to virtual excitons), 7 the electron-
hole separation, and m.* and m,* are the effective
masses of the two particles. c.c. stands for complex
conjugate. |vk|? is given by

|7x|*= (Eex)* 47/ VE) (o)) , 2
where V is the crystal volume and /% is given by
a/u=(&/2E«)(1—1/K,). 3)

The two H,. terms represent the self-energies of the
electron and of the hole with respect to the electronic
polarization. These self-energies are just those obtained
by Toyozawa,® and are given by the second term in
Eq. (1), with exp= (¢k-r) replaced by —1.

We evaluate Hr by converting (1/V) 2« into
[1/(2x)*].S d%, and integrate to k=m/a, where 24 is the
lattice constant. We take the same & cutoff® as that
used in the lattice polaron problem, and as we used in a
calculation of lattice polarization effects for the F
center.®? w/a is approximately the Debye wave vector
and is such that the correct number of exciton states is
contained in one exciton band. If we write

Zmi*Eex 1/2
E(.__h ) , @

8 T.-D. Lee and D. Pines, Phys. Rev. 92, 883 (1953); T. D.
Schultz, bid. 116, 526 (1959).
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then H; becomes

H;(r)=———-1—e”(1—I/Ko)1
7 T

/e msinky 1 1
X / l: l]dk[ ! :I )
0 kr 14-£2/v2 14k v;2

(sinkr)/kr introduces the » dependence, while the (—1)
yields the self-energy.

Both parts of the integral depend in a critical way
upon the relative size of v; and w/a. If v, and v, are
much smaller than 7/a, one may replace the limit /e
by « and obtain the Haken and Schottky result

—_p2

¢
H7S(r) = —— (1~ 1/ K[ 1§ (eer o1
r r

x?(l—é)@em). ©

On the other hand, if »; is much larger than w/a (for a
vacancy or impurity v,= ) the term in k?/v2 is negli-
gible and the interaction becomes in the static limit

st(r)=:e—2+%<1—-—1—>

r e s Ko

=rle sing 2¢? 1
X/ ——dx-——-(l—-——) )
0

X a Ko

An exponential fit to the Si integral yields

H:S(r)xj+r(1—l—{—)<1 e_m)_ge_z<1_z ®

r 0 a

This behaves properly as 7 — 0 and as 7 — «; it slightly
underestimates the second term for r=a.

It is interesting to compare the self-energy
—e*(1—1/Ky)(2/a) (the sum of electron and hole
terms) obtained in the static limit of the Haken-
Schottky theory with the Mott-Littleton result,
—E(1—1/Kg)[(1/2R,)+ (1/2Ry)]. If R, and R, the
Mott-Littleton radii,* were both equal to @/2 there
would be complete agreement; actually they generally
turn out to be somewhat larger. It is not surprising
that there is some disagreement since in a sense the
Haken-Schottky theory in this limit is equivalent to a
zero-order static approximation. Presumably the Mott-
Littleton results are somewhat more reliable in this
limit.

We now examine how well either of these limits de-
scribes insulators. As a prototype alkali halide or rare
gas,114% we take a=6ag, E.x=38 V. Forholesin valence

3 See Ref. 32 for a discussion of the eﬁectwe mass in alkali
halides. Recently, M. Mikkor, K. Kanazawa, and F. C. Brown
[Phys. Rev. Letters 15, 489 (1965)] have found that the cyclotron
effective mass for electrons in KBr is about 0. 5, while J. Rama-
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TasLe II. Comparison of the ‘“exact” self-energy factor
v tan ~!(r/a) /v with the static approximation, =/a, and the dy-
namic approximation, #v/2, for various values of v [Eq. 4)].ais
the nearest-neighbor distance in ionic crystals in units of ao, while
v is in units of a¢1.

w/a
w/a m¥  Eex(eV) v m/2 vtan —
9
0.53 4.0 8.0 1.5 2.4 0.51
0.53 1.0 8.0 0.77 1.2 0.47
0.53 0.5 8.0 0.53 0.83 0.42
0.47 0.2 6.3 0.31 0.48 0.31

bands, m* is expected to be large, say ~4. For conduc-
tion electrons m* is expected to be between 0.2 and 1.
The larger values will probably obtain for alkali
fluorides, chlorides, and bromides, and rare gases, while
the smaller values may be pertinent to some alkali
iodides and to the silver halides. We treat KI as a pro-
totype of a small m* case, using a=06.65 ag, Eex=16.3
eV, m*=0.2.

The self-energy integral is proportional to v; tan™
X[ (w/a)/(v;)]. In the static limit this approaches 7/a
while in the dynamic limit it approaches wv;/2. In
Table II we indicate some values computed from the
parameters listed above. For both the electron and the
hole (except for the case m*=0.2) the self-energy factor
is much closer to the static limit (7/a) than to the
dynamic limit (7v;/2), and in fact the dynamic limit
yields a self-energy which is far too large. For m*=0.2
the static and dynamic limits yield the same result,
slightly larger than the “exact” result. The “exact”
self-energy for KI is 1.68 eV ; in the static and dynamic
limits one obtains 2.55 eV, while the result of DuPré
et al. (Table I) is 2.18 eV.

In a similar way, we find that the » dependence of H;
is much closer to the static than the dynamic result, for
large-m* insulators.

It is interesting to note that by the usual criterion
these electronic polarons are rather weakly coupled,
with «, the coupling constant, <1. Lee and Pines®
showed that for strong-coupling polarons a cutoff in the
k integral was necessary; but even for these weak-
coupling polarons such a cutoff is essential. (In fact, our
“static” self-energy is entirely analogous to their strong-
coupling result.) The small value of « is actually some-
what misleading ; since the polaron self-energy (without
the cutoff) is ~—aF.x, the perturbation on the bare-
state energy is quite large. This contrasts with the
lattice polaron in these crystals, where a=35 but the
longitudinal optical phonon energy is several orders of
magnitude smaller than Ee, so the self-energy is only
~—0.1 eV and the cutoff is not necessary.

murti and K. J. Teegarden [Phys. Rev. 145, 698 (1966)] have in-
ferred exciton reduced masses of 0.21 and 0.32 for KI and RbI,
respectively. G. Baldini [Phys. Rev. 128, 1562 (1962)7 has ob-
tained reduced exciton masses of order 0.5 for xenon and krypton.
G. Ascarelli and F. C. Brown [Phys. Rev. Letters 9, 209 (1962)]
used cyclotron resonance and determined the effective mass of
conduction electrons in AgBr to be ~0.2.
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contains a self-energy term plus a dielectrically shielded Coulomb
term, —(1—1/Ko¢)a—1/Ky. (a.u.=atomic units.)

Having used the theory of Haken and Schottky to
obtain the connection between the damping length in
Hr and the self-energy, and having shown that the
static approximation for calculating these quantities is
valid in certain cases, we propose that a reasonable
approach is to write an 7-dependent potential as

2 2 1
Hi(r) =7+7<1—}{—>[1—%(e‘“”—!—e“’h')]
" FHao)+Hah), (9)

compute the self-energies by the Mott-Littleton
method, and determine the o’s by the requirement that
H(r) approach —e*/r as r approaches zero. This yields

Hao())=— (/2) (1— 1/Ko)a. (10)

The damping parameters «; which correspond to the
self-energies Hy(z) are listed in Table 1.

Figure 2 illustrates the behavior of H;(r) [Eq. (9)]
for a model case in which a,=a;=0.2¢¢! and Ko=2.0.
Plotted also are a “bare” Coulomb potential —1/7 and
the sum of the self-energy correction plus a Coulomb
potential with dielectric constant, — (1—1/Ky)
Xa— (1/K¢). One can see how the “exact” potential
approaches the other two for small and large 7, respec-
tively. It is also clear that a fairly good approximation is
obtained by using —1/7 for <o and —1/Kg
—(1—1/Ko)a for r>a™

In general, the » dependence of the dielectric function
will not be the only core correction of importance; for »
small enough that polarization effects become small,
other effects will certainly be important.! The F-center
problem which we have discussed is a good example of a
situation in which the potential energy does zot go as
—¢&/r for small 7.

The connection between a and Hy. pointed out in Eq.
(10) is important, for it helps provide a test of various
theories of 7-dependent dielectric functions. Azuma,®
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for example, has derived such a function for KCl as a
sum of several exponentials. However, his constants are
chosen so that the self-energy vanishes, which, accord-
ing to our arguments, is not correct. In performing a
calculation on solid rare gases, Hermanson® has taken
a to be equal to the Fermi momentum, whose numerical
value is of order 0.5 atomic units (a.u.) for these sub-
stances. This value of « leads to self-energies for electron
plus hole of =~—7.5 eV, three times what a Mott-
Littleton treatment would give (see Table I). Our
arguments indicate that « should be more like 0.2 a.u.
(or 0.33 A7) for these crystals.

C. Omne-Electron and Optical Band Gaps
1. Self-Energy Corrections

We now argue that the numbers in the ‘“sum”

column of Table I represent the approximate self-energy
corrections that should be subtracted from one-electron
energy gaps to obtain optical gaps. This statement
involves several assumptions. The first of these is that
the Mott-Littleton type of approach is a valid one to
use in computing these quantities. We have argued that
this approach is valid, at least for the large-m* sub-
stances. But even for the small-m* substances such as
KT and the silver halides, the numbers listed in Table I
are not expected to overestimate the self-energies by
more than =1 eV. As mentioned earlier, the tabulated
value for KI is only ~0.5 eV larger than the “exact”
dynamical result. Better comparisons must await the
further determination of effective masses for small-m*
substances. For any of these, however, the values given
in Table I are probably not far from correct.

The second of these assumptions is that the states
described above are those which will be directly popu-
lated by the absorption of photons. The omission of any
consideration of lattice polarization indicates that we
are making a strict Franck-Condon approximation, and
that the lattice responds sufficiently slowly that the
excited “electron-only” state is relatively stationary.?
This approximation is common, although it neglects
possible lattice polaron self-energy effects. But the self-
energies of lattice polarons'’ are typically rather small
(=—0.2 eV) in comparison with electronic polaron self-
energies (=—2 eV).

The possibility of effects due to electronic polarization
in the optically excited state seems common to most
theoretical treatments, an example being the semi-
continuum model of the F center.5!*2 The situation here
is that the polarizing electrons can respond so rapidly
to the slowly moving excited electron that the best
stationary state must be one which includes polarization
effects. An amusing if fanciful analogy with the electron-
phonon problem may be made here in terms of the
“electron-exciton” problem (virtual excitons are analo-
gous to virtual phonons). If the electronic polarization
could not “follow” the motion of the excited electron,

35 J. Hermanson, Phys. Rev. 150, 660 (1966).
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Fia. 3. Optical absorption spectrum of Rbl. From 80°K data
by Eby, Teegarden, and Dutton (Ref. 36).

one could have transitions into “bare’ electronic states,
which would then lose energy by creating excitons. One
could draw configuration coordinate diagrams,? speak
of “multi-exciton” transitions, and so forth. There would
in principle also exist a “zero-exciton” transition, in
which the excited electronic state would include the full
electronic polarization. In fact, in real life, the “zero-
exciton’ transition is what is observed in normal optical
absorption.

A third assumption, relevant to ionic crystals, is that
holes spend most of their time on negative ions, while
conduction electrons are situated on positive ions. The
first of these has been widely made and is apparently
rather good for the alkali halides"!®; the latter is
probably not so good. In cases in which these corrections
are being made to calculated bands, neither assumption
has to be made; one may compute the wave-function
amplitude on the two sublattices and take appropriate
linear combinations of the self-energies. This has been
done by the Russian workers,* and our results are con-
sistent with their use of classical polarization energies
in their calculations.

The method outlined in the preceding paragraph
indicates how the self-energies may act to alter the
shapes, as well as the positions, of energy bands. If the
wave function amplitude on particular ions is a function
of k, then so too will be the magnitude of the self-
energy corrections. However, probably in most cases
the rigid-shift effect will dominate changes in band
shape.

There are only a few cases where comparisons can be
made, at present. This is mainly because few band-
structure calculations have been made; on the other
hand, there exist abundant optical data for comparison.
Even analysis of the optical data is not trivial, however,
and we must now discuss the problem of determining
the band gap from optical data.

2. Location of the Optical Band Gap in Insulators

In Fig. 3 we show the experimental absorption spec-
trum of RbI, obtained at 80°K by Eby, Teegarden, and
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Dutton.®® The lowest-energy #=1 exciton lies at 5.8
eV; at a somewhat higher energy there lies a shoulder,
followed by more structure. Similar features are ob-
served in the other alkali halides.?® It has been widely
assumed that this shoulder, which appears in almost all
of the alkali halides, represents the optical band gap.
This assertion was apparently fitst argued convincingly
by Taft and Philipp,*” who observed external photo-
emission which increased rapidly for excitation energies
in this region. At about the same time Fischer and
Hilsch® examined the shoulder region in several alkali
iodides and found that it actually contained one or more
narrow bands. They suggested that these bands repre-
sented #=2 and higher exciton states, leading up to a
series limit which lay 0.1 eV higher in energy than the
edge of the shoulder. Baldini® has repeated their experi-
ment for RbI with similar results.

That higher energy excitons leading to a series limit
should exist in alkali halides is not surprising in view of
their existence in the rare gases,” where they have been
studied exhaustively. In the rare-gas case (especially
xenon) the optical band gaps may be determined quite
precisely in this way.

Further evidence that the series limit lies with the
shoulder has come from photoconductivity studies by
Nakai and Teegarden® and by Huggett and Tee-
garden.” The latter measurements, performed on several
different alkali halides, are consistent with the series
limit inferred from the exciton spectrum of RbI and
show large increases in photoconductivity within the
shoulder in the crystals studied.

Still more recently, Ramamurti and Teegarden® have
measured the excitation spectra of KI and RbI, and by
noting that the excitation spectra have minima at exci-
ton peaks they can infer the positions of z=1, 2, and 3
exciton lines. These results, too, fit a Wannier picture,
with the series limit within the shoulder.

The data just presented all favor strongly the idea
that the optical band gap lies within the shoulder.
The most direct theoretical evidence that this is true
exists for KCl. Wood* pointed out that the existence of
an accurate valence band calculation (that of How-
land*®) and knowledge of the electron affinity could lead
to a determination of the band gap. Howland’s calcula-
tion places the top of the valence band =10.7 eV
below the vacuum; if one subtracts the experimental

3 J. E. Eby, K. J. Teegarden, and D. R. Dutton, Phys. Rev.
116, 1099 (1960).

( 3"5% A. Taft and H. R. Philipp, J. Phys. Chem. Solids 3, 1
1957).

3 F, Fischer and R. Hilsch, Nachr. Akad. Wiss. Gottingen,
II Math.-Physik. K1. 1059, No. 8, 241 (1959); F. Fischer, Z. Physik
160, 194 (1960).

8 G. Baldini (unpublished, quoted in Ref. 42).

“ G, Baldini, Phys. Rev. 128, 1562 (1962).

( 4a Sll) Nakai and K. Teegarden, J. Phys. Chem. Solids 22, 327
1961).

4 G. R. Huggett and K. Teegarden, Phys. Rev. 141, 797 (1966).

4 J. Ramamurti and K. Teegarden, Phys. Rev. 145, 698 (1966).

“ R. F. Wood, Solid State Commun. 4, 39 (1965).

4 1,. P. Howland, Phys. Rev. 109, 1927 (1958).
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electron affinity*® (~0.6 eV) from this he obtains a gap
of 10.1 eV. Further subtracting the hole self-energy of
1.5 eV, we obtain an optical band gap of 8.6 eV, as
compared with the photoconductivity threshold of ~8.9
eV. Agreement is satisfactory.

Similar questions arise in the case of the F center,
where the energy required to excite an electron directly
to the conduction band has generally been assumed to
be in the high-energy tail of the X band. Arguments
similar to those above indicate that this picture is
correct. Semicontinuum calculations, which include
self-energies, place the 2p state before relaxation ~1 eV
below the conduction band® (in NaCl). Photoconduc-
tivity*” increases rapidly in the high-energy tail of the
K bands. A number of arguments of this sort have been
made in detail by Smith and Spinolo,*® who have shown
that a semicontinuum calculation yields an interpreta-
tion of the X band as a superposition of excitations to
many p states leading to a series limit in the high-energy
tail.

In Table III we list exciton energies, optical bandgap
energies, and their difference (the exciton binding
energy) for a number of alkali and silver halides and
rare gases. For RbI, KBr, KCl, and RbCl, values of Eqp
came from Huggett and Teegarden’s 80°K photocon-
ductivity measurements.? Values of E,y and Eex for
RbI and KI inferred from the 10°K data of Ramamurti
and Teegarden® are also listed, as are those obtained at
20°K by Baldini® for the rare-gas solids. For the silver
halides, the listed values of E.,; are only estimates,
based upon analogies with the alkali halides. The values

TABLE III. Experimental values of the lowest #=1 exciton peak

E.x, the optical band gap Eoyt, and their difference Gy, all in eV.
Except where otherwise noted the numbers for the alkali halides
are taken or inferred from the 80°K data of Eby, Teegarden, and
Dutton (Ref. 36). H refers to 80°K data of Huggett and Tee-
garden (Ref. 42), M to room-temperature data of Milgram and
Givens (Ref. 50), F to 78°K data of Fischer and Hilsch (Ref. 53),
and R to 10°K data of Ramamurti and Teegarden (Ref. 43). The
rare gas data at 20°K are taken from Baldini (Ref. 40), while the
silver halide data at 20°K are from Okamoto (Ref. 49).

Crystal Eopt  Eex Gy Crystal  Eopy Eex Gy
LiF 129 ... L . 59F ...
NaF 1065 -+ Nal 6.0 56 04
KF 9.95 KI 6.31E  5.85% 0.46
RbF 945 ... RbI 6362 5.7  0.66
CsF 923 ... 6.268 5.74F 0.52
LiCl 87 88 —0.1 AgCl 5.5 51 04
NaCl 8.75 7.95 0.8 AgBr 465 425 04
KCl 89% 78 1.1
RbCl 8.5# 1.5 1.0
LiBr 78 7.2 0.6 Argon 143 120 23
NaBr 7.8 6.7 1.1 Krypton 11.67 10.17 1.50
KBr 8.07 6.8 1.2 Xenon 928 836 0.92
RbBr 7.8 6.6 12

46 T, Timusk and W. Martienssen, Phys. Rev. 128, 1656 (1962).

47 R. S. Crandall and M. Mikkor, Phys. Rev. 138, A1247 (1965).

8 G. Spinolo and D. Y. Smith, Phys Rev. 140, ‘A2117 (1965);
D. Y. Smith and G. Spinolo, ibid. 140, A2121 (1965)
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of E.x were obtained by Okamoto® at 20°K. E is ob-
tained in most other cases from the 80°K measurements
by Eby, Teegarden, and Dutton,* except for LiF, where
we used the results of Milgram and Givens.® Other
values of E.p are estimated from the positions of
shoulders in the exciton spectra, by analogy with
Huggett and Teegarden’s measurements which show

Eopt to be several tenths of an eV beyond the edge of the
shoulder.

Several points seem worthy of comment. First, LiCl
appears to have a negative exciton binding energy.®
This fact was noted by Phillips,” who suggested that
these transitions involved the point L in the Brillouin
zone. Second, no value of Egp is listed for Lil. This
crystal, like LiCl, is very difficult to work with; it is
hygroscopic and has a hexagonal-close-packed modifi-
cation when formed from evaporation at 20°K. Fischer
and Hilsch’s careful studies® indicate that the spectrum
of fcc LiI differs from those of the other iodides. The
strength of the #=1 exciton line is quite small and it is
superimposed on a continuum-like absorption, with no
apparent shoulder. A similar result was noted by Taft
and Philipp.?” Finally, no numbers are listed for the
optical band gaps in the fluorides; there are no photo-
conductivity data to guide us.

We shall discuss further aspects of the exciton
problem later, and now return to consideration of the
band gap.

3. Comparison with Theory

In KCl an accurate experimental value for the optical
band gap at 80°K is 8.9 eV. Adding the self-energy
correction of 3.4 eV (Table I), we see that a Hartree-
Fock calculation should yield a “one-electron” gap of
12.3 eV. DeCicco?® has used the augmented-plane-wave
(APW) method to compute the KCl band structure,
obtaining a one-electron gap of 6.4 eV, while the
orthogonalized-plane-wave (OPW) calculation of Kahn
and Quelle® yields ~11 eV. Oyama and Miyakawa® have
performed an OPW calculation of the conduction bands
of KCl, consistent with Howland’s® valence bands,
and have obtained a band gap of 9.6 eV.

Scop™ has performed an APW calculation of the band
structure of AgCl and AgBr. He chose the crystal po-
tentials in order to fit the optical band gaps of these
materials. Since his calculation was one-electron in
nature he probably should have aimed at values =5 eV
higher than the direct optical gap. Scop comments that
the shape of the valence bands was rather insensitive
to the variations he made in his crystal potential, so the

49'Y. Okamoto, Nachr. Akad. Wiss. Géttingen, IT Math.-Physik.
Kl. ITa 14, 275 (1956).
© A, Milgram and M. P. Givens, Phys. Rev. 125, 1506 (1962).
51 This result is somewhat uncertain. LiCl is not easy to work
with and it is difficult to obtain reproducible results. [K. Tee-
arden (private communication).]
52 J. C. Phillips, Phys. Rev. 136, A1705 (1964).
8 F, Fischer and R. Hilsch, Z. Physﬂ; 158, 553 (1962).
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results of his calculations might not change very much
if he were to adjust to the larger band gaps.

According to Baldini,® the optical band gap in argon
is 14.3 eV. Adding 2.0 eV of polarization energy, we
obtain a Hartree-Fock gap of 16.3 eV. This is to be
compared with 13.3 eV obtained with the APW method
by Mattheiss,® and 12.4 eV obtained with a combined
tight-binding and OPW method by Knox and Bassani.*
For krypton, Baldini finds a gap of 11.7 eV ; adding 2.3
eV, we obtain a one-electron gap of 14.0 eV. This is to
be compared with the value 11.3 eV calculated by the
author,® who used the combined tight-binding and OPW
methods.

The difficulties in obtaining accurate one-electron
band gaps are exemplified by noticing that the author
also obtained a gap in Kr of 9.5 eV by using a slightly
different exchange potential. This is an example of the
existence of nontrivial corrections! to a given one-
electron calculation which take account of the difference
between model potentials (especially exchange) and
Hartree-Fock potentials. These important corrections
are not really within the scope of this paper, since they
are one-electron in nature. It is, however, important to
recognize their existence and to realize that the sorts of
discrepancies mentioned above between “experimental”
one-electron gaps (i.e., optical gaps minus self-energy
corrections) and calculated one-electron gaps probably
indicate inadequacies in the model potentials used in
the calculations.

One case where model-potential corrections are
probably negligible is in the aforementioned Howland
calculation® of the KCl valence bands, for the simple
reason that Howland used a Hartree-Fock approach
and not a model potential. It is probably no accident
that this is a case which also agrees very well with ex-
periment, when self-energy corrections are made.

Our results may be relevant in helping to resolve some
difficulties which have arisen in the determination of the
optical band gap in SrTiO;. The experimental gap is
about 3 eV, while an ionic model which neglects polari-
zation effects yields about 17 eV. Kahn and Leyen-
decker® attributed this discrepancy to incomplete
ionicity and have obtained agreement with the experi-
mental gap by suitably adjusting the charge on the ions.
Sim4nek and Sroubek? have criticized this analysis and
have proposed that the discrepancy arises partly
because of the neglect of polarization energies. Their
classical calculation indicates that if the band-to-band
transition involves transfer of an electron to a neighbor-
ing ion, the polarization plus electron-hole Coulomb
energy is 13 eV. This removes most of the discrepancy.
We point out here that they have actually “created”
an exciton in transferring the electron only to a neigh-
boring ion; in the process of creating the “free” elec-
tron-hole pair the Coulomb energy will go to zero but

% A, H. Kahn and A. I. Leyendecker, Phys. Rev. 135, A1321

(1964).
5 E. Simének and Z. Sroubek, Phys. Stat. Solidi 8, K47 (1965).
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the polarization energy should increase considerably,
perhaps enough to account for the discrepancy by
itself. At any rate, the polarization energy is clearly
important.

III. EFFECTS OF ELECTRONIC POLARIZATION
ON BINDING ENERGIES

A. The Small-Radius Approximation for Excitations

We have shown that to compute the optical band gap
one must take into account important contributions
arising from electronic polarization. The next question
is how polarization manifests itself in the calculation of
excitation energies of small-radius states such asn=1
excitons. There seems to exist evidence that polarization
effects are small or negligible for such states in many of
the systems we are dealing with here.

This statement is probably not true for small m* sub-
stances, particularly the silver halides, where the com-
bination of small effective mass and large optical di-
electric constant suggests that the #=1 exciton may be
a good effective-mass state.l

With these exceptions in mind, we note that the
damping parameters for the dielectric constants, tabu-
lated in Table I, indicate that for most cases the di-
electric effects become important only as 7 approaches
a nearest-neighbor distance. This implies that a calcu-
lation which neglects polarization and yields a state
whose radius is somewhat smaller than the nearest-
neighbor distance is not likely to be changed very much
when polarization is introduced.

In fact, there have been a number of successful calcu-
lations of such states in various systems in which
polarization effects have been neglected. We mentioned
earlier the case of the F center where Wood’s Hartree-
Fock calculations,’® in which he neglects polarization
have been rather successful in predicting absorption
energies. Gourary and Adrian’s’ earlier point-ion cal-
culations were also successful, and they found that in-
cluding electronic polarization did not substantially
affect the 1s — 2p transition energies. This is also true
for other centers (M, R,---) but it should be empha-
sized that this does not preclude the possibility that
higher excited states of any center may accurately be
described by an effective-mass approximation—in fact,
there is considerable evidence that this is the case, as
shown by Smith and Spinolo.®

Wood has extended his F-center calculations and has
calculated exciton energies and wave functions for
alkali halides.’® He finds that the =1 exciton has an
average radius typically =% of a nearest-neighbor
distance. Earlier calculations have come to somewhat
similar conclusions regarding the radius of the exciton,*

8 R. F. Wood and H. W. Joy, Phys. Rev. 136, A451 (1964).
57 B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957).
%8 R. F. Wood, Phys. Rev. Letters 15, 449 (1965).
ha;!i’c'lsee Ref. 1 for a discussion of exciton models in the alkali
es.
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F1c. 4. Excited states of a hypothetical crystal as electronic
polarization is “turned on.” It is assumed that the =1 exciton
energy does not change, while that of all other excitons does. The
quantities Ecx and Eop are indicated, as is the sum of electron and
hole self-energies.

and it seems reasonable to assume that in alkali halides
the »=1 exciton energy is nearly independent of di-
electric effects. Again, the =2 and greater excitons
may be well described by an effective mass theory.

In the rare gases there have been a number of calcu-
lations based upon small-radius approximations. These
include older calculations performed by Knox® and by
Gold® and newer ones by Sun, Rice, and Jortner,® by
Webber, Rice, and Jortner,® and by Keil and Gold,%
all of which indicate that quite satisfactory n=1 tran-
sition energies® may be obtained by completely neglect-
ing polarization. The effective exciton radius turns out
to be less than one nearest-neighbor distance, which
implies that the approach is self-consistent. The tran-
sition energies in many cases are close to the free-atom
values.

B. Binding Energies from Self-Energies

From the preceding sections of this paper, the follow-
ing prescription for computing exciton binding energies
emerges: Use the best possible Hartree-Fock theory to
compute Ee, neglecting polarization. Then use the
same approach to obtain a one-electron band gap.
Subtract from this band gap the electron and hole self-
energies to obtain E,,, and the binding energy is just
Eot— Eeox. For impurity states the prescription is
similar.

In the absence of any such calculation, it is possible
to discuss qualitatively the behavior of the binding

@ R. S. Knox, J. Phys. Chem. Solids 9, 238, 265 (1959).

61 A, Gold, J. Phys. Chem. Solids 18, 218 (1961); Phys. Rev.
124, 1740 (1961).

%2 H. Sun, S. A. Rice, and J. Jortner, J. Chem. Phys. 41, 3779
(1964).

8 S. Webber, S. A. Rice, and J. Jortner, J. Chem. Phys. 41, 2911
(1964) ; 42, 1907 (1965).

& T, H. Keil and A. Gold, Phys. Rev. 136, A252 (1964).

W. BEALL FOWLER

151

energy. In this approach the dielectric properties of the
medium are introduced not in the exciton energy per se;
rather they enter as self-energies of the conduction elec-
tron and the valence-band hole. This statement is really
in precise accord with our earlier description of the
F-center problem.

The situation is illustrated in Fig. 4. Here are plotted,
side by side, the optically accessible excited states of
the crystal in two approximations, the first neglecting
and the second including electronic polarization. As the
polarization is “turned on” the =1 excitation energy
is assumed constant, while the energies of the higher
states are depressed as shown. In particular, the band
gap is reduced by the sum of electron and hole self-
energies, and the true Eo and Eop are shown.

Elsewhere we describe®® how the venerable transfer
model® may be applied to the problem of obtaining
Eopy— Eex. This model has the virtue of describing the
situation in terms of self-energies, but it is so crude that
it cannot be expected to have very much quantitative
validity. In the next section we shall comment further
on results obtained by this model.

C. The Effective Mass Approximation

It has been common to compute exciton binding
energies by means of an effective mass approximation,
and in view of our rather different approach it is worth
examining briefly the effective-mass results.

In the effective mass approximation®” one obtains

—13.6m*

= e eV, (11)
G, being the binding energy of the nth state, m* the
reduced effective mass, and K, the optical dielectric
constant. (We do not consider here states whose orbit
is so large that a static dielectric constant should be
used; as indicated earlier, a strict Franck-Condon ap-
proximation is made.)

In a number of cases, Eq. (11) agrees rather well with
experiment for n=1 states, but in other cases it does
not (it is generally agreed that it should work well for
n=2 and higher states). Baldini® has found for both
solid xenon and krypton that the =1 exciton line falls
within =0.2 eV of the position predicted by effective-
mass theory (based upon lines of higher #). In the case
of xenon in argon, however, Baldini and Knox®® point
out that the =1 line is 1 eV higher in energy than pre-
dicted by effective-mass theory.

6 W. Beall Fowler, in Proceedings of the Conference on the
Calculation of the Properties of Vacancies and Interstitials,
Washington, D. C., 1966 (to be published).

66 K. L. Wolf and K. F. Herzfield, Handbuch der Physik, edited
by S..Flugge (Springer-Verlag, Berlin, 1928), Vol. 20, Chap. 10,

. 632. :

67 W. Kohn in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5.

68 G. F. Baldini and R. S. Knox, Phys. Rev. Letters 11, 127
(1963). '
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In pure KI and RbI, Ramamurti and Teegarden®
find the »=1 line to be within 0.1 eV of its expected
position. But again, in a mixed-crystal case (I~ in
RbCl) Baldini and Teegarden® find a discrepancy of 1
eV. In the other pure alkali halides such detailed studies
have not been made, but Fischer and Hilsch?®® have
shown that the binding energies of the effective-mass
model [Eq. (11)] can be made to fit the observed values
with reasonable values of the reduced mass.

Finally, in the semicontinuum model of the F' center
(Fig. 1) the computed binding energy of the 2p state in
NaCl before lattice relaxation® is —1.1 eV. Using Eq.
(11) with K¢=2.31, m*=0.6, we obtain the hydrogen-
atom result —0.38 eV. Here the hydrogenic result is
very poor, and in fact we know thata “particle-in-a-box”
model gives a much more accurate transition energy
than a hydrogenic model. The unrelaxed 2p state simply
is not very diffuse.

The question of why a small-radius state should be
successfully treated by effective-mass theory has
recently been studied in detail by Hermanson.?® He has
shown that the effective-mass result is susceptible to at
least three corrections. These arise from the 7 depend-
ence of the dielectric constant, the » dependence of the
effective mass, and the repulsive pseudopotential of the
core. In the case of the =1 exciton in pure xenon and
krypton, these corrections fortuitously cancel each other
rather well (as they apparently do in the case of many
pure rare gases and alkali halides).

In the case of impurities, this delicate balance is
upset; there is a significant change in the repulsive core
potential, but little change in 7*(7) or K (). Hermanson
has confirmed that the increase in core potential is
sufficient to explain the anomalies associated with the
binding energy of the n=1 state of xenon impurities
in argon. No doubt a similar effect occurs for 7~ in RbCl.
In the case of the F center, the situation is opposite
to the other two; there is no core, so the core potential
is much weaker than in the exciton case and the binding
energy is much larger than predicted by effective-mass
theory.

That both the effective mass model and the self-
energies, or transfer, model may give similar results for
binding energies may be seen by the following. In the
effective mass theory, Gy varies as 1/K¢. In the self-
energies model® it varies as [1/a](1/K o+ const), where
a is the nearest-neighbor distance. It happens that K,
is a monotonic and sometimes linear function of @, and
so if one description fits, the other may also. A similar
ambiguity exists in the interpretation of thermal ioniza-
tion energies of excited F centers, as we have shown.

% G. F. Baldini and K. Teegarden (unpublished).
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IV. SUMMARY AND CONCLUSIONS

It has been shown that the Toyozawa theory of the
electronic polaron reduces to a ‘“static” theory for the
alkali halides and rare gases, and that the Haken-
Schottky theory of the optical dielectric function does
the same. The Mott-Littleton-type static self-energies
for valence-band holes and conduction band electrons
were tabulated, and we argued that these numbers
represent corrections to one-electron energy-band gaps
that one should make to obtain optical band gaps. This
was followed by a discussion of the experimental evi-
dence regarding the position of the optical band gap
and a table of “best” values of these gaps. Several calcu-
lated energy gaps were corrected for self-energies and
compared with these values.

The problem of computing the binding energies of
small-radius excitations was then considered. Starting
from the “localized” calculation of exciton energies, we
showed that the dielectric-constant dependence of the
binding energy can arise from self-energies of the ‘““free”
electron and hole. We briefly discussed the successes
and failures of the effective-mass method as applied to
this problem.

There are a number of areas in which further research
would be helpful. On the experimental side, there are
only a few alkali halides for which accurate determina-
tions of optical band gaps and effective masses have
been made. Knowledge of the ionization energies of
excited impurities is likewise limited.

Theoretically, one looks for more and better band-
structure calculations, possibly incorporating the polari-
zation corrections in zeroth order. Further investiga-
tions of the applicability of the static versus dynamic
approximations and possible state dependence of the
self-energy corrections would also be helpful. Ap-
proaches other than the Lee-Low-Pines method should
be investigated for the treatment of the electronic
polaron. Application of our prescription for computing
binding energies to systems other than the F center
should be attempted.
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