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A consistent treatment of point defects in ionic crystals, using the Mott-Littleton description of the
long-range lattice polarization and the short-range interionic potential proposed by Tosi and Fumi, is de-
veloped and applied to an investigation of several defect con6gurations in a few alkali halide crystals. These
are: (a) an isolated vacancy at either lattice site, (b) a substitutional alkali impurity, and (c) the saddle-'
point configuration for motion of both a (positive or negative) host ion and a substitutional alkali impurity
into a vacancy. The results of the calculations are discussed and compared with the available experimental
evidence on ionic conductivity, host-ion and impurity diffusion, and impurity solubility.

I. INTRODUCTION

ATTICE calculations of parameters of point defects
& in ionic crystals, such as their energies of forma-

tion, motion, and association, require a fairly accurate
description of both the interionic potential and the
mechanisms of ionic polarization. The description of
the polarization around defects has generally been pat-
terned after the early treatment of the vacancy given
by Mott and I.ittleton, ' which combines an atomistic
calculation of the relaxation of the first neighbors in
the appropriate effective field with a dielectric theory
description of the long-range polarization. Some refine-
ments of the original model have been investigated for
a single defect' '; relaxation mechanisms such as the
elastic relaxation first introduced by Brauer' and the
deformation dipole relaxation considered by Kurosawa'
have led to increases in the calculated Schottky defect
energy. On the other hand, the short-range ionic inter-
actions are also generally important for the determina-
tion of the ionic displacements around a defect and of
the pertinent relaxation energy, ' and play an essential
role in calculations of the energy of motion of defects. 7

In a number of calculations of motion energies for vari-
ous defects it has been found necessary to adopt a short-
range potential of essentially heuristic character, the
so-called Born-Mayer-Verwey potential. '

The availability of a revised potential based on the
cohesive properties of the perfect crystal' and of more
complete experimental information on basic defect
properties make it worthwhile to re-examine the evalua-
tion of the energy parameters of point defects in these

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

'N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34,
485 (1938).' P. Brauer, Z. Naturforsch. ?a, 372 (1952).'T. Kurosawa, J. Phys. Soc. Japan 13, 153 (1958}.

4 J. R. Hardy, J. Phys. Chem. Solids 15, 39 (1960); 23, 113
(1962).' A. Schols, Phys. Status Solidi 7, 973 (1964).' F. G. Fumi and M. P. Tosi, Discussions Faraday Soc. 23, 92
(1957).

~ R. Guccione, M. P. Tosi, and M. Asdente, J. Phys. Chem.
Solids 10, 162 (1959).' E. J. W. Verwey, Rec. Trav. Chim. 65,~,'521 (1946); E. J. W.
Verwey and J. H. de Boer, Hid. 59, 633 {1940).

9F. G. Fumi and M. P. Tosi, J.Phys. Chem. Solids 25, 31 (1964);
M. P. Tosi and F. G. Fumi, J.Phys. Chem. Solids 25, 45 (1964).
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crystals. From this point of view, we are interested in
considering not only the vacancy, but also alkali im-

purity ions. In the absence of a consistent treatment of
the corrections to the early model the Mott —I ittleton
scheme naturally provides a consistent, first-order
approximation for the treatment of different defect
configurations.

The defect configurations considered in this paper are:
(a) an isolated vacancy at either lattice site, (b) a sub-
stitutional alkali impurity, and (c) the saddle point
con6guration for motion of both a (positive or negative)
host ion and a substitutional alkali impurity into a
vacancy. The energy of the latter configuration is
evaluated relative to the state in which the impurity
and the vacancy are dissociated, so that the result can
be directly related to the activation energy for diffusion
of the impurity. We also present a preliminary estimate
of the energy of interaction between the impurity and
the vacancy. The calculations are carried out for NaCl,
KCl, and RbCl crystals, the impurities being Na+,
K+, and Rb+. The results of the calculations are com-
pared with the available experimental evidence, which
is fairly complete for these systems.

Although there is clearly room for further improve-
ments in the model, particularly in the treatment of
the lattice polarization, the agreement of the theory
with experiment is at least semiquantitative.

II. DESCRIPTION OF THE MODEL AND
NUMERICAL DATA

In past treatments of the energy of formation of a
vacancy, either in the perfect crystal or in the neighbor-
hood of another defect, it has been customary to deter-
mine the equilibrium configuration of the erst-neighbor
ions by a force-balance condition and then to evaluate
the formation energy as the average of the potential
energies at the position of the vacancy before and
after its creation. We follow an alternative approach,
basically analogous to that followed by Kurosawa' for
the vacancy formation, which unifies the treatments of
the isolated defect and of the saddle-point con6gura-
tion. We express the energy of a given defect con-
figuration, relative to the perfect crystal, as the sum
of the energy required to create the defects in the rigid
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lattice and of the relaxation energy. The latter involves
the change in the charge-charge Coulomb and the
short-range interaction energy of the ions upon relaxa-
tion, the interaction energy of the ionic charges and
dipoles with the ionic dipoles, and the "quasi-elastic"
energy of formation of the dipoles. We approximate the
change in the interaction energy of ions further than
first neighbors from the defects, among themselves and
with the first neighbors, by treating the ionic dis-
placements as equivalent to displacement dipoles and

by expanding the short-range energy change to quad-
ratic powers in their displacements. We can also
use the force-equilibrium conditions for the perfect
crystal, in which the electric Geld and the short-range
force on each ion vanish separately, to reduce sums over
the infinite crystal to sums over the inner region. We
have then to minimize the relaxation energy with re-
spect to all the relaxation parameters. The equilibrium
conditions for the first neighbors yield the correct force
balance and the correct dipole in the field of the far
ions; while for the far ions, they allow us to reduce the
energy ut eqmiHbrimm to a linear-function of their re-
laxation parameters. In the actual determination of the
relaxation parameters, instead of minimizing exactly
the relaxation energy which involves the correlated
displacements of all the ions, we adopt the Mott-
Littleton expressions for the relaxation of the ions
further than first neighbors, and minimize numerically
the relaxation energy with respect to the displacements
and the dipoles of the first neighbors.

The advantages of this procedure are that it yields
directly the value of the relaxation energy at equilibrium
and that it can easily be extended to give an atomistic
treatment of further shells of ions around the defects
by an appropriate modification of the last step. We give

below the pertinent formulas in a compact form for an
arbitrary defect configuration. '

We adopt the convention to denote a defect site by a
suffix d, a defect or a near ion by a sufFix k, and a far
ion by a suKx 1. The rigid-lattice energy change in
creating the defects is then written as

U, i=e'/ro(p qdVd+ o p' qdqd /tdd )
dd'

+Z' [o dk(4k) —
o dk(tdk)]

+2 [o dl(tdl) Pdl(tdl)] (1)
dl

Here, qd is the effective charge of a defect" and Vd is the
Madelung potential at the site d; t;; is the vector dis-
tance form the site j to the sitei in the rigid lattice, p;;
is the short-range interaction energy of two ions in the
defect crystal, and gd; is the short-range interaction
energy of the ith ion and the ion replaced by the defect
d. Thus, gd; is zero for an interstitial, while yd; is
zero for a vacancy. The case i =j is excluded from the
primed sums.

The relaxation energy is conveniently divided into
three parts: the change in the interaction energy of
the defects and the near ions among themselves (Ui)
and with the far ions (Ui2), and the energy change
of the far ions (Uk). We denote by gk and vk the dis-

placements and the electronic dipoles in the inner region
and by &M' pd qdtld/tld' and M+' pd qdtld/tld' the
displacement and the (displacement and electronic)
dipole of a positive or negative far ion in the Mott-
Littleton scheme. By carrying out the indicated manipu-
lations of Uio+Uo we find the following expression of
U2 at equilibrium:

Uo= ——,'(e'/ro) [p qdqd (Md. '&dd ++M '&dd.-)+p qd(skgk+ vk) (M~'Tkd++M 'Tkd-)] —p[o ik(rik) —
o ik($ik)]

dd' dk kl

+-',M' 2 siqdtid [SlkO lk (Slk) —tlkO lk (tik)]/tld +sM Q slqd tld'tld'[O ld (tid) O ld (tld)]/tld' ~ (2)
dkL dd'$

Here, s; are the ionic charges, r,,=t;,+$,—g;, s;;=t;;—g;, and si'(p') is the derivative of y(p) with respect to its
argument. The evaluation of the lattice sums 5+ and T+ is discussed in the Appendix. The expression (2) for

U2 is correct to quadratic terms in the relaxation parameters of the far ions, except for the omission of a term, the
interaction energy of the long-range polarization with the undisplaced charges of the defects and their neighbors,
which is cancelled by the same term in U»2.

The expressions of U» and U»2 read:

Ui=(e'/ro)( ', p' sksk —(1/rkk —1/t k)k+p' sk(vk'Pkk /rkk o)+o p'[vk vk 3(vk rkk )(vk'Pkk —)]/rkk'
kk' kk' kk'

+-', ro' p vk'/~k}+s Z' [o kk (rkk) —
o kk (t»)] ~ (3)

k kk'

where ak is the electronic polarizability, and

Ulo= (e'/ro) [—p' sksk (1/$kk. 1/tkk )+p' qdsk(1/—$dk 1/tdk) —p' sk(vk—$kk./$kk')+p' qd(vk $dk/$dk')
kk' dk kk' dk

+p qd(skgk+vk) (Md. 'Tkd++M 'Tkd-)]+p[o kl(rkl) —
o kl(tkl)]. (4)

dk kl

"A detailed derivation of these formulas will be given in an Argonne National Laboratory Report.
"We are measuring charges in units of the elementary charge e, distances and displacements in units of the nearest-neighbor dis-

tance ro, and dipoles in units of ero.
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TABLE I. Parameters of the isolated vacancy. '

NaC1
Positive ion Negative ion

KCl
Positive ion Negative ion Positive ion

RbC1
Negative ion

P

U.el~
Ur)
U,

0.053—0.069—3.28
7.98
4.70

0.068—0.064
~ ~ ~

7.98
4.72

0.077
0.0057—2.84
8.24
5.30

0.078
0.0056

~ ~ ~

8.24
5.27

0.063—0.049—2.78
7.28
4.50

0.073—0.047
~ ~ ~

7.28
4.50

0.072
0.020—2.56
7.40
4 84

0.074
0.020

~ ~ ~

7.40
4.82

0.057—0.045—2.58
7.09
4.52

0.065—0.043
~ ~ ~

7.09
4 49

0.060
0.027—2.45
7.28
4.73

0.065
0.027

~ ~ ~

7.28
4.70

a The two values given in each case pertain to the present procedure and to the customary procedure. Here and in the following tables energies are in ev,
displacements and dipoles in units of ro and of ero, respectively; a negative value for a relaxation parameter denotes an inward-pointing displacement or
dipole.

In the derivation of U12 we have neglected the varia-
tion of the Madelung potential and Geld at the site k
with (s.

The energy Uq+ U» has to be minimized with respect
to (s and vs. The latter equilibrium condition yields,
of course, v& as the product of the polarizability times
the eGective Geld, while the former condition yields the
force-balance condition. The electrostatic force entering
it does not consist merely of the usual charge-times-Geld
term, but contains also a term involving the product of
the ionic dipole with the Geld gradient. In the case of
the isolated vacancy this second term acts on the first
neighbors as an additional restoring force, and should
therefore lead to a reduction in their displacements.
Furthermore, the energy of formation differs somewhat
from the average of the potential energies at its posi-
tion. The numerical consequences of these discrepancies
from the customary procedure will be discussed in
Sec. III.

It remains to specify the short-range potential and
the numerical data used in the calculations. We write
the short-range interaction energy of two ions as

&p;;(r;;) =P;;b exp[(r;+r, r;,rs)/p]—
c /(r rs)' d—/("r rs)s —(5)"

Here, P;;, b, and p are the usual Pauling coefEcients and
the "strength" and "hardness" parameters for the Born
repulsive energy, r; and r; are the ionic radii, and c;;
and dg are the coeKcients of the dipole-dipole and
dipole-quadrupole van der Waals energies. In evaluating
relaxation energies we have truncated the van der
Waals interactions, as well as the Born repulsive in-
teractions, at second-neighbor ions.

We have adopted the values of the repulsive parame-
ters reported by Tosi and Fumi' (Table l, Grst part),
using for the alkali impurities the values of p appro-
priate to their chlorides. For the van der Waals coef-
Gcients we have adopted the values reported by
Mayer, ' using in the impurity-halogen interactions,
the Mayer values appropriate to the pertinent chlorides,
and, in the impurity-alkali host interactions, values
computed from Mayer's primary data by his procedure.
Finally, we have evaluated the Mott-Littleton relaxa-

"J.E. Mayer, J. Chem. Phys. 1, 270 (1933).

tion parameters 3E', M+', and M ' from the electronic
polarizabilities of Tessman et ut. 13 and from the dis-
placement polarizability determined by the short-range
interactions.

TABLE II. Parameters of the substitutional alkali impurity.

Rb+-KCl K+-RbCl K+-NaC1 Na+-KC1 Rb+-NaC1 Na+-RbCl

V

Ure lax

Url
Us

0.018
0.0032

—0.04
0.26
0.22

—0.015
—0.0025
—0.02
—0.12
—0.14

0.037
0.0084

—0.18
1.13
0.95

—0.031
-0.0060
—0.07
—0.40
—0.46

0.061
0.013

—0.62
2.16
1.54

—0.042
-0.0075
—0.11
—0.36
—0.47

"J.R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev.
93, 890 (1933).

III. NUMERICAL RESULTS

A. The Vacancy

We report in Table I the values of the displacement
and the electronic dipole of the first neighbors of a
vacancy, and of the relaxation energy U&+ U»+Us at
equilibrium, as well as the rigid-lattice energy change
Uri and the energy U, required to extract an ion from
the crystal. For comparison, we also give in each case
the corresponding values computed by the customary
procedure. The improved treatment indeed yields
smaller local displacements, as expected, but this
decrease in the local distortion is, of course, partly
compensated by an increase in the local electronic
dipoles. These sects are smaller for the negative-ion
vacancy, chose neighbors carry a small electronic
dipole. The agreement between the values of U,
yielded by the two procedures is satisfactory; the aver-
age potential-energy recipe, by itself, tends to raise
somewhat the energy U, (by 0.1 eV or less).

The foregoing conclusions are somewhat at variance
from those reached by Kurosawa, ' who may have
adopted the same local relaxation in his comparison of
the two procedures. We may also note that, when the
short-range interactions are truncated at Grst-neighbor
ions, the formulas given in Sec. II yield the expression
for the energy of formation of a vacancy at equilib-
rium reported by this author. There are, however, minor
discrepancies in the treatment of the short-range force
on the near ions.
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TABLE III. Parameters of the host-ions migration.

NaCl
Positive ion Negative ion Positive ion

Kcl
Negative ion

Rbcl
Positive ion Negative ion

v1
Pg

Urelax
Ury
U,p

0.083
0.030
0.041—0.055—4.04
9 59
5.55

0.095
0.045—0.0029
0.0042—3.62
9.82
6.20

0.093
0.037
0.027—0.038—3.76

'

9.11
5.35

0.096
0.041—0.010
0.015—3.55-
9.22
5.67

0.101
0.031
0.021—0.034—4.56

10.09
5.53

0.102
0.033—0.012
0.021
4 43

10.15
5.72

B. The Substitutional Imyurity

We report in Table II the values of the parameters
for a substitutional alkali impurity. The quantity U;
is the energy required to replace (or, if its value is
negative, gained in replacing) an alkali ion in its chloride
by the indicated impurity.

The present model involves the neglect of the long-
range lattice distortion around the impurity, which is
of elastic origin. While this approximation is consistent
with our treatment of the other defects, we expect our
values for the local relaxation and for the relaxation
energy to be a6ected by sizable uncertainties, in the light
of the results of Hardy. 4 We may note, however, that the
relaxation energy is only a small part of the energy U;
and is, in fact, generally quite small. Our values of U;,
therefore, can be conldently used as a reliable reference
for the energy of the saddle-point con6guration for
the impurity.

C. The Saddle-Point ConQguration

%he saddle-point condguration for motion of an ion
into a vacancy is chosen, as in Guccione et al. ,7 to be
at the (—',,2,0) point in the unit cell. The displacement
$qV2 and the dipole v|@2 of the two neighbors of the ion
in the saddle-point position lie along the cube-face
diagonal, whereas the other eight neighbors of the three
defects are taken to have equal displacements
and dipoles v2 lying along the cube edge. The parame-
ters of the con6guration for host ions and for alkali
impurities are given in Tables III and IV, respectively.
Here the quantity U,p is the energy increase of the
crystal in the saddle-point conhguration over the
perfect crystal.

We may remark that the values of the displacements

and dipoles reported in Tables I, III, and IV show sug-
gestive regularities. As one expects, the value of
in a given salt increases with the radius of the migrat-
ing ion, and the value of v1 correspondingly decreases.
On the other hand, the ion at the saddle-point position
causes a reduction of the electrostatic force on the
neighbors of the vacancy, and both $2 and v2 (in absolute
magnitude) are smaller than f and v for the isolated
vacancy. As the radius of the migrating ion increases,
this effect becomes more pronounced, since the dis-
placements of the two neighbors of the migrating ion
increase its "eGective charge. "

IV. DISCUSSION

Table V collects the theoretical values for the basic
energy parameters of the positive and the negative-ion
vacancy. The energy of formation of the Schottky
defect EB has been obtained from the results reported in
Table I as Es=U„++U,——,'(U, ~++U,~-), where the
last term is the energy of the perfect crystal per ion
pair. The energies of formation of the two vacancies,
E,+ and E„,have been obtained as 8„+=U.+—

& U, l+,
thereby neglecting the change in polarization energy
associated with placing an ion back irito a vacancy
source. Because of this approximation, the theoretical
values of E, —8„+given in the table are expected to
be overestimates of this quantity in the salts under
consideration, where the negative ion has a larger
polarizability. Finally, the energies of vacancy migration
for the host ions E + and E, have been obtained
from the results reported in Tables I and III as

6—U 6 U +

TABLE V. Energy parameters of the vacancies.

TABLE IV. Parameters of the impurity-ions migration. NaC1 KC1 Rbc1
Theory Experiment Theory Experiment Theory Experiment

$s
V1

VR

Urelax

Ur&

Usp&

NaC1
Rb+

0.169
0.025
0.022

—0.048
-12.69

20.28
7.59

0.134
0.027
0.028

—0.051
—6.86

13.65
6.79

0.040
0.043
0.039

-0.041
-2.52

6.98
4.46

0.125
0.032
0.021

—0.037
—6.24

12.08
5.84

KC1
Na+ Rb+

0.019
0.040
0.039

—0.038
-2 ~ 18

6.44
4.26

0.071
0.035
0.027

—0.035
-2.93

8.02
5.09

Rbcl
Na+ K+

1.94 2.12 +0.06
Ee —Ee+ 0,52d 0.26 ~0.12e
E + 0.85 0.80~0.02a

Em 090 1.06f

2.00
0.28d

0.85
0.83

2.22-2.31a b' 2.10
~ ~ ~ 0.18d

0.59-0.84a & e 1.02
0.95 +0.1e 0.99

& Reference 14.
b P. W. M. Jacobs and J.N. Maycock, Jr., Ref. 15.
e Reference 17.
d Estimated upper limit.
e Reference 18.
& From the activation energy for Cl diffusion in pure NaCl reported by

N. Laurance, Ref. 16, after subtraction of )Es =1.06 eV.
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TABLE. VI. Energy of solution of substitutional alkali impurities.

Theory
Experiment

Rb+—KCl

0.02
0.04'

K+—RbCl

0.06
0 04a

K+-NaCl

0.23
0.24b

Na+—KCl

0.26
0.20b

Rb+-NaCl

0.62

Na+-RbCl

0.45

a From N. Fontell et. a/. , Ref. 23.
b Estimated from the data of W. T. Barrett and W. E. Wallace, Ref. 24.

The table gives also the recent experimental values
available for NaCl and KC1.' " For RbCl, only the
activation energies for ionic conductivity at high tem-
peratures' (2.12 eV) and for the self-diffusion of Rb"
(1.99 eV) have been determined experimentally.
The theoretical value for this energy is 2.07 eV.

The over-all agreement of the theory with experiment
displayed in the table can be considered satisfactory, in
view of the fact that the theory is based on a self-con-
sistent simple model. We note, however, that our values
do not necessarily represent the true migration barriers,
since the migration path may be somewhat different
from the path that we have chosen. ~ More precise in-
formation on the potential at short separations, and im-
provements in the treatment of the lattice polarization,
would be necessary for a meaningful theoretical in-
vestigation of this point.

The repulsive interionic potential used in these cal-
culations differs from those used previously in two
respects. First, its hardness is intermediate between
that of the Born-Mayer potential and that of the Born-
Mayer-Verwey potential in KCl, and actually closer to
the latter in NaCl. The present potential is fully con-
sistent with the ionic-model analysis of the cohesive
properties, in that it fits the experimental values of the
erst and second derivative of the short-range part of
the lattice energy at the equilibrium interionic distance.
We note in this connection that, while the assumption
of a common r " repulsion in the solid and in the
molecule is essential in the ionic-model analysis of
molecular properties given by Verwey and de Boer, '
the r " form derived from this analysis is de6nitely
inconsistent with the compressibility data in the solid
state; for an r " repulsion, these data yield values of e

R. W. Dreyfus and A. S. Nowick, J. Appl. Phys. 33, 473
(1962).

"A. R. Allnatt and P. W. M. Jacobs, Trans. Faraday Soc. 58,
116 (1962); P. W. M. Jacobs and J. N. Maycock, Jr., J. Phys.
Chem. Solids 24, 1693 (1963).

"N. Laurance, Phys. Rev. 120, 57 (1960).' R. G. Fuller, Phys. Rev. 142, 524 (1966).We are indebted to
Dr. Fuller for an unpublished report of his work.

R. Strumane and R. De Batist, Phys. Status Solidi 6, 817
i1964l.' For a complete compilation of the older experimental results
on ionic conductivity and diffusion see R. J. Friauf, S. O. Morgan,
and W. J. Merz, in American Institute of Physics Handbook
(McGraw-Hill Book Company, Inc. , New York, 1963). An ex-
cellent, recent review of the theory of matter transport in solids
has been given by R. E. Howard and A. B. Lidiard, Rept. Progr.
Phys. 27, 161 (1964).

"W. Lehfeldt, Z. Physik 85, 717 (1933)."G. Arai and J. G. Mullen, Phys. Rev. 143, 663 (1966).

TABLE VII. Activation energies for substitutional impurities.

NaC1
K+ Rb+

KCl
Na+ Rb+

RbCl
Na+ K+

E; 1.14 1.35
2.11 2.32

0.42 1.12
1.42 2.12

0.22 0.72
1.27 1.77

' M. P. Tosi, Solid State Phys. 16, 1 (1964).

of about 9 in the salts that we are considering. "There-
fore, the Verwey potential is useful to gauge the sensi-
tivity of defect energies to the probable hardening of
the repulsion at small separations, but cannot be re-
garded as providing a quantitative description of these
effects. Second, the apportionment of the repulsive
contribution to the cohesive energy between the various
ion pairs in each crystal is different from that in the
old potentials. The analysis of the cohesive properties
is not very sensitive to these details, but evidence in
favor of the essential correctness of this change is
afforded by the comparison of the ionic radii with the
apparent sizes of ions in crystals. '

These effects, as well as the improved treatment of the
nearest-neighbors distortion, lead to an increase in
both U. —U,+ and U,~

—U,~+ in such a way that the
theoretical migration barriers for a positive and a nega-
tive ion in the same salt are consistently practically
the same. The increase in the value of U„—U„+is
consistent with the experimental results of Strumane
and De Batist" for NaC1, but, because of the difhculty
mentioned at the beginning of this section, this com-
parison does not provide a stringent test of this aspect
of the theory. The consistent vanishing of E —E +
is a disappointing result; the experiments indicate that
this quantity may be as large as 0.3 eV in both NaC1
and KC1. At any rate, the theoretical analysis indicates
that this difference in migration barriers is associated
with second-order effects and should therefore be rather
small. Perhaps additional diffusion and ionic-transport
number measurements would be desirable to 6rmly
settle this point.

Tables VI and VII present the theoretical values for
the energy parameters of the substitutional alkali im-
purities. The energies of solution per solute molecule
at in6nite dilution, given in Table VI, have been ob-
tained from the results reported in Tables I and II by
the relation' (energy of solution) = U;—(lattice energy
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TABLE VIII. Long-range polarization potentials. Tmr.E IX. Long-range polarization Gelds.

(0,0,0)

(k,k,ol

(oio,o)

6.08458
3.89552
5.49363
3.62205

(k,;,0)

5.49363
3.62205
6.13475
3.71689

(f,t,ol

4.27462
3.24314
5.49363
3.62205

(0,0,0)

(g,y,o)

(1,1,0)

(-1,0,0l~

—1.88284
—0.28342
—1.76170
—0.48797
—1.21992
—0.52557

(0 0 1lb

1.82897
0.25023
1.72724
0.18920
1.12429
0.19349

(1,0,0)'

1.61150
0.31978
0.50885

—0.10755
—0.70711
—0.42757

of solvent)+ (lattice energy of solute). The experimental
values given in the table for the systems KCl—RbCl
and NaC1—KCl have been estimated from the heat of
formation of solid solution versus composition data
reported by I onte11 et al.23 and by Barrett and Wallace, '4

respectively, by an extrapolation to infinite dilution.
The agreement between theory and experiment is
quite good.

The values of the energyE;= U„'—(U;+U„+)of the
saddle-point configuration for the impurity, relative to
a crystal containing a positive-ion vacancy and a sub-
stitutional impurity at in6nite separation, and of the
energy Ed =E;+~~Es, are reported in Table VII.
Barring temperature-dependent correlation effects, E~
represents the activation energy for diffusion of a sub-
stitutional impurity in the intrinsic temperature range.
The agreement of the theoretical values with the recent
experimental values" of the activation energy for dif-
fusion of Rb+ in NaCl (2.11 eV) and in KCl (2.04 eV)
is comparable to the agreement displayed in Table V
for the host-ion migration, although the theoretical
values are somewhat too large, especially in the former
system. No experimental studies of comparable ac-
curacy are available for the diffusion of monovalent
impurities smaller than the host ions.

The values of E;, when compared with the values
of E given in Table V, display clearly a size eftect in
impurity migration. In reality, however, one can expect
size effects in monovalent impurity diffusion of com-
paratively simple interpretation only if the impurity
radius is quite close to the host-ion radius, even if one
assumes a vacancy mechanism. On the one hand, the
"saddlepoint" configuration that we have considered
may actually become a stable associated configuration
for sufGciently small monovalent (or divalent) impuri-
ties, because the Coulomb energy of the crystal is
lowered in this configuration. In this connection, we
should point out that a simple calculation, based on
the present model, of the energy of interaction between
a positive ion vacancy and an alkali impurity con-
strained to sit at the (110)position yields a small repul-
sion, of the order of a few hundredths to a tenth of an
eV, for small impurities and an attraction of the same

~' N. Fontell, V. Hovi, and L. Hyvonen, Ann. Acad. Sci.
Fennicae Ser. AI, No. 65 (1949).

'4 W. T. Barrett and W. E. Wallace, J. Am. Chem. Soc. 76, 366
(1954).

a Component along the L100j direction.
b Component along the I 002 j direction.

order of magnitude for large impurities. On the other
hand, the migration path along the cube-face diagonal
is favored by the Coulomb interactions, but opposed
by the short-range repulsive interactions, with respect
to other paths through the body of the cell, ~ so that
different migration paths may become competitive as
the impurity radius increases. Among the systems
studied in this work, this is very likely to occur for
Rb+ in NaC1, and possibly also for K+ in NaCl. It is
noteworthy that the pre-exponential term in the diffu-
sion coe%cient for Rb+ in NaCl is unaccountably large"
(about an order of magnitude larger than in KCl).
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APPENDIX: EVALUATION OF LATTICE SUMS

The sums Szz+ and T&z+ entering Eqs. (2) and (4)
represent the potential and the Geld (in units of—g~+')
at the kth site due to the dipoles induced by the defect
d in the positive or negative far ions. Thus:

Sgg+ ——P)&+& t)g ttp/(ttg't(g'),

T&z"——P&&+& P«—3A&(Ag'fu) j/(hg hy ),
where the sums are restricted to positive or negative
lons.

We evaluate these sums by direct summation over
shells of ions up to t~~10 and approximate their re-
mainders by the remainders of the sums S«+ and
Tzz+, a method which allows high numerical accuracy. '~

In eGect, the T sums converge fairly rapidly, and for
the isolated-defect configuration our calculation re-
produces the values obtained by Mott and Littleton'
by direct summation over 23 shells.

The values of the sum of interest for the saddle-
point con6guration are collected in Tables VIII and IX.

"H. B.Rosenstock, Phys. Rev. 131, 1111 (1963).
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For each pair of sets of coordinates, we give 6rst the
value of the sum over ions having the same sign as the
migrating ion at the (-,',-'„0)position, and then the value
of the sum over ions of opposite sign. The S sums agree
within 1'Po with those calculated by Guccione et uL'

by the same method, with a direct summation up to
t)~4.

Finally, the evaluation of Eq. (1) for the saddle-
point con6guration involves the evaluation of the

dipole-dipole and dipole-quadrupole van der Waals
potentials of the perfect lattice (excluding the two
vacancies) at the (—'„sr,0) position. The pertinent sums
can be obtained from the sums A, and C, over points
of a simple cubic and of a face-centered-cubic lattice
reported by Jones and Ingham, m for s=6 and s=g,
as —s'(2'tsC, —A,).

"J.E. Jones and A. E. Ingham, Proc. Roy. Soc. (London)
A107i 636 (1925) .
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Lattice Vibration Spectra of GaAs.Pt, Single Crystals*
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The energies of the two-phonon summation bands and the reststrahlen bands have been measured in
GaAs. p, .single crystals. The data were obtained by observing the transmittance and the reQectivity at
300'Q in the region of 400 to 800 cm ~ and 220 to 500 cm ', respectively. Crystals were prepared by open-
tube epitaxial vapor-growth techniques and were not subject to any free-carrier absorption in the near
infrared. The alloys show absorption peaks at frequencies which are only slightly shifted from the transverse
optic To (I') phonons, as well as several optical and acoustical zone-boundary phonons, characteristic of both
Gap and GaAs. The reststrahlen-like band spectra of these alloys are explained by a virtual-crystal model
in which average parabolic potentials are given to the three species of atoms in the lattice. This model does
not require the assumption of gross composition inhomogeneities, which are known to be absent in these
crystals.

I. INTRODUCTION

'HE determination of the vibrational spectra of
disordered systems is a problem that has at-

tracted many workers in the past few years. Dean'
applied mathematical techniques to obtain quanti-
tatively accurate results for the spectra of disordered
diatomic chains. A complete theory of three-dimensional
disordered systems is yet to be developed. The alterna-
tive approach is to study such systems by the experi-
mental method.

Some data have already been reported for a few semi-
conductor binary alloy systems. Oswald' studied a
reststrahlen band in various composition alloys of
InAs, P& „which has a frequency close to that of pure
InP. He found that the wavelength increased very
slightly and the intensity decreased with increasing x.
Since the maximum wavelength of his measurement was
35 p, he could not study any changes associated with a
pure InAs band' of 45 p at large x.

~ This work was supported by the National Aeronautics and
Space Administration Grant NsG-555. A preliminary report was
presented at the Kansas City meeting of the American Physical
Society LBulL Am. Phys. Soc. 10, 369 (1965)j.

t Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey.
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s F. von Oswald, Z. Naturiorsch. 14a, 374 (1959).
~ Q. Picus, E. Burnstein, B.W. Henvis, and M. Hass, J. Phys.
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The infrared spectral absorptances of thin 61ms of
GaAs„Sb1 „have been studied by Potter and Stier-
walt. 4 They found a single peak whose frequency
shif ted continuously with increasing y from that of pure
GaSb to that of pure GaAs. This result is qualitatively
diferent from the type of results presented below.

Finally, the vibrational spectra of Si-Ge alloys have
been studied. Braunstein' found infrared absorption
spectra which indicated the existence of modes asso-
ciated with both pure Ge and pure Si.

In contrast, Logan et a/. ' reported that the composi-
tion dependence of a particular phonon mode, obtained
from a tunneling experiment, was continuous and single-
valued in the alloy. It should be noted that 6rst-order
photon-phonon interaction cannot be observed in Si-Ge
alloys because of their homopolar nature, whereas it can
be observed in diatomic compounds. In addition, the
interpretation of the tunneling experiments in dis-
ordered crystals is somewhat uncertain. It is clear that
more experimental work is needed in this field.

In this work, the interaction of photons with phonons
in GaAs, P&, single crystals was investigated over a

' R F Potter and D. L. Stierwalt, in Proceedsrtgs of the Irtter-
national Conference on The Physics of Semiconductors, Paris, l964'
(Academic Press Inc. , New York, 1965), p. 1111.

~ R. Braunstein, Phys. Rev. 130, 879 (1963).
6 R. A. Logan, J. ,M. Rowell, and F. A. Trumbore, Phys. Rev.

136, A1751 (1964).


