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General expressions for the parabolic effective masses and g factors are obtained in terms of seven un-
determined parameters for a six-band model at the L point of the NaCl lattice. The spin-orbit mixing of bands
is treated explicitly with the result that both longitudinal and transverse components of the momentum are
coupled between bands with L6 symmetry and opposite parity. The six bands of interest are treated in the
free-electron and tight-binding limits. The simpli6ed expressions in the tight-binding limit, which approxi-
mate PbS, give spherical and nondegenerate valence- and conduction-band parameters. In this limit, the
bands at L are similar in detail to certain of the bands at j. in germanium and the III-V compounds. Ex-
pressions, valid over an extended range of k, are also obtained for the nonparabolic effective masses and
g factors. The signs of the g factors are treated in detail in order to resolve the differences which have ap-
peared in the literature.

I. IN'TRODUCTION

HE lead salts are one of the oldest and most
studied families of semiconductors with appli-

cations which include the early crystal detectors, 2

infrared detectors, ' and infrared lasers. 4 Only recently,
however, have the main features of their band structure
been determined. ' This structure offers interesting
contrasts to the corresponding band structures of the
better known III-V compounds. The NaCl lattice of
the lead salts has inversion symmetry in addition to
the symmetry elements of the zinc-blende lattice of
the III-V compounds, so that band extrema occur
strictly at the I', L, and X symmetry points of the
Brillouin zone and the twofold Kramers degeneracy
is preserved at all points in the Brillouin zone. In
contrast to the III-V compounds, which all have four-
fold-degenerate valence bands at F with maxima nearby,
the lead salts have twofold Kramers-degenerate
valence-band maxima at the L point. The twofold-
degenerate conduction-band minima are likewise at
the L point with other energy bands energetically well
separated. The absence of higher degeneracy leads to
considerable simplification in treating physical processes
involving the valence- and conduction-band extrema,
particularly so in the case of PbS, where the bands are
nearly spherical and nearly parabolic.

The one-electron band structure for the lead salts
have been calculated theoretically using the cellular
method (PbS), ' the augmented-plane-wave (APW)
method (PbTe), ' and the pseudopotential method

' For a review of the work prior to 1959 see W. W. Scanlon,
in Solid State Physics, edited by F. Seitz and D. Turnbull
(Academic Press Inc., New York, 1959), Vol. 9, p. 83.

~ L. W. Austin, Proc. IRE 7, 257 (1919).' T. S. Moss, Proc. Phys. Soc. (London) 62B, 741 (1949).
4 J. F. Butler, A. R. Calawa, R. J. Phelan, Jr., T. C. Harman,

A. J.Strauss, and R. H. Rediker, Appl. Phys. Letters 5, 75 (1964).
5 For a summary of the most recent experimental and theoretical

work see the several articles in Proceedings of the International
Conference of Semiconductor Physics, Paris, 1964 (Academic Press
Inc. , New York, 1964).

6D. G. Sell, D. M. Hum, L. Pincherle, D. W. Sciama, and
P. M. Woodward, Proc. Roy. Soc. (London) A217, 71 (1953).

7 J.B.Conklin, Jr, L. E. Johnson, and G. W. Pratt, Jr., Phys.
Rev. 137, A1282 (1965).

(PbS, PbSe, and PbTe). The 6rst calculation is
not in agreement with experiment. The discrepancy
is probably due to the neglect of the relativistic mass-
velocity and Darwin terms which are important for
solids containing the heavier elements, such as lead. '
The other band calculations are useful for establishing
the gross order and spacing of the energy levels at
selected points of the Brillouin zone but for a detailed
description in the vicinity of band extrema it is more
convenient to use k p expressions for the effective mass
and g-factor parameters. These parameters are measured
directly by a variety of experiments.

There have been relatively few serious attempts to
develop k p expressions for the band parameters of the
lead salts.""This is somewhat surprising considering
the usefulness of these parameters to experimentalists.
The problem, however, is not trivial since both the
spin-orbit coupling and the magnetic field must be
included properly in order to develop adequate ex-
pressions. The spin-orbit mixing of levels is of major
importance since, in its absence, only the longitudinal
(or the transverse) component of the momentum is
coupled between a given pair of levels at the L point.
Thus in general highly anisotropic bands would be
expected. The magneto-optical experiments on PbS"
and PbSe" give direct evidence that both components
are coupled between the valence and conduction bands
for these materials. Cuff et cl." suggested that the

P. J. Lin and L. Kleinman, Phys. Rev. 142, 478 (1966).
~ L. E. Johnson, J.B. Conklin, Jr., and G. W. Pratt, Jr., Phys.

Rev. Letters 11,538 (1963);F. Herman, C. D. Kuglin, K. F. Cuff,
and R. L. Kortum, ibid. 11, 541 (1963).

"G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela 3, 2090 (1962)
[English transl. : Soviet Phys. —Solid State 4, 1530 (1963)j and
G. L. Bir and G. E. Pikus, Fiz. Tverd. Tela 4, 2243 (1962)
)English transl. :Soviet Phys. —Solid State 4, 1640 (1963)g."J.O. Dimmock and G. B. Wright, Phys. Rev. 135, A821
(1964)."E.D. Palik, D. L. Mitchell, and J.N. Zemel, Phys. Rev. 135,
A763 (1964)."D.L. Mitchell, E. D. Palik, and J. N. Zemel, in Proceedings
of the International Conference on the Physics of Semiconductors,
Paris, 1964 (Academic Press Inc., New York, 1964), p. 325.

'4 K. F. Cuff, M. R. Ellett, C. D. Kuglin, and L. R. Williams, in
Proceedings of the International Conference on the Physics of
Semiconductors, Paris, 1964 (Academic Press Inc., New York,
1964), p. 677.
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spin-orbit mixing of bands is responsible for the regular
decrease in band anisotropy for the lead-salt sequence
PbTe; PbSe; PbS.

The k y expressions for band parameters developed
by Pikus and Bir' neglect the spin-orbit mixing of
levels and do not include the full set of interacting
bands. Dimmock and Wright" obtained the general
parametrized k p matrix including spin-orbit effects
for the set of six interacting bands which they obtained
in the free-electron limit. (The same bunched set of
levels at the L point were also obtained by the other
band calculations. ' ') In approximating this matrix for
special cases, however, they likewise neglected the
spin-orbit mixing of the symmetry states. In addition,
their basis functions have incorrect spin assignments
so that the derived g factors have incorrect signs. The
same criticisms apply to the fragmentary calculation
of Pratt and Ferreira. "The k p portion of the most
recent work' includes the spin-orbit mixing of levels
but does not include expressions for all relevant bands,
has major terms missing for the transverse g factor,
and has L4,6, basis functions which do not transform as
labeled. In addition, the method of treating the spin-
orbit mixing of bands is not clearly indicated.

None of the existing theory is adequate to treat the
extensive magneto-optical experiments which have been
done on the lead salts.""The present work obtains
general expressions for the transverse and longitudinal
eRective mass and g-factor parameters for the six bands
in terms of 6ve adjustable momentum matrix elements
and two spin-orbit mixing parameters. This reduces
the number of undetermined parameters from the
thirteen used by Dimmock and Wright" to seven with
nonrestrictive approximations. Following Kane, " ex-
pressions for the nonparabolic eRective mass and g-
factor parameters are obtained which are valid over an
extended region of the Brillouin zone. The double-group
basis functions and the sign convention for the g factor
are discussed in some detail since they have been the
source of error in previous published work.

We also give a detailed discussion of the tight binding
limit for bands originating from anion and cation

p orbitals in the fcc lattice. "This model gives direct
physical insight into band properties of the lead salts
such as the occurance of nearly spherical bands with
extrema at the L point. These insights are usually
obscured by the computer band calculations. Our
model, in the limit of large spin-orbit interaction, gives
spherical-band extrema at the L point and thus clari6es
the long-standing puzzle of the origin of nearly spherical
bands in PbS.

"G. W. Pratt, Jr., and L. G. Ferreira, in Proceedings of the
International Conference on the Physics of Semicondlctors, Paris,
lg64 (Academic Press Inc. , New York, 1964), p. 69."K. O. Kane, in Physics of III-V ComPolnds, edited by R. K.
Willardson and A. C. Beer (Academic Press Inc. , New York, to be
published).' D. L. Mitchell and R. F. Wallis, Bull. Am. Phys. Soc. 10,
533 (1965).

II. THE k y PERTURBATION MATRIX

The expansion of the energy levels of a crystal in
the viciruty of a symmetry point in terms of the k y
perturbation has become a standard technique for
determining band parameters in solids and the details
will not be repeated here. Kane" has given a general
review of the k p representation, without magnetic
6elds, discussing the modifications introduced by spin-
orbit (s.o.) coupling, exchange and many-electron
eRects. The magnetic Geld has been included in several
treatments" "which are reviewed and summarized by
Yafet."These treatments are similar in many respects
to the k p treatment, but differ in detail, depending
on the particular representation chosen. We shall follow
the treatment of Yafet" using the Luttinger-Kohn
representation for which the matrix elements are
de6ned in terms of the L-point Bloch functions. These
functions are eigenfunctions of the usual one-electron
Hamiltonian

P=P'/2mp+ V(r)+ Oss/4mp'c') (VV & y) e. (2.1)

Recently, the importance of the relativistic mass-
energy and Darwin terms have been demonstrated for
fundamental band calculations. ' These terms have the
same symmetry as the potential and thus are auto-
matically included in a semi-empirical k p calculation
which presupposes the symmetries and energies of the
interacting bands.

A. Symmetries of Interacting Bands at L

The number of unde6ned matrix elements can be
reduced by selecting basis functions which are eigen-
functions of the Hamiltonian without s.o. interaction
and then diagonalizing the s.o. interaction with this
basis.

If spin-orbit coupling is neglected, then the Bloch
functions at the L point for the Nacl lattice are single-
group (neglecting spin) nondegenerate representations
of the group Ds~ which transform like Lj+, Lg+, or
doubly degenerate representations which transform
like L3+."Since there is inversion symmetry there will

be an even (+) and odd (—) representation for each
class. Dimmock and Wright" derived the symmetries
for the six states in the vicinity of the Fermi level in
the free-electron approximation. These states arise from
Bloch functions of the form exp(ikp r), where kp
=& (e/ap)$&13j and cyclic permutations. Three of

"J.M. Luttinger and W. Kohn, Phys. Rev. 97, 864 (1955).
'P L. M. Roth, Phys. Rev. 118, 1534 (1960); J. Phys. Chem.

Solids 23, 433 (1,962).
~ M. H. Cohen and E. I.Blount, Phil. Mag. 5, 115 (1960).
~'R. Bowers and Y. Yafet, Phys. Rev. 115, 1165 (1959); Y.

Yafet, ibid. 115, 1172 (1959)."Y.Yafet, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1963), Vol. 14, p. 1.

"G.F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Two Point GroNPs (M.I.T. Press, Cam-
bridge, Massachusetts, 1963), p. 58.
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these states are odd and transform like Z(Ls—) or
X+iF(Ls ). The other three are even and transform
like E(Lr+) or Sx+iSr(Ls+).ss The X, F, and Z
coordinate axes are taken in the $112j, $110j, and

L111j crystallographic directions, respectively. The
function E. is invariant under the group of symmetry
operations at L. Sx and Sy transform like X and F
except they do not reverse sign under inversion, '4 i.e.,
Sx transforms like YZ' —ZF' and Sy like ZX' —XZ'.

Pratt et et'.~ '5 and also Lin and Kleinman' arrive at
the same set of symmetry states in the vicinity of the
Fermi level. For PbTe they 6nd that the even states
are valence bands while the odd states are conduction
bands. Furthermore, the six energy levels are clustered
in a 3-eV spread, while the nearest other levels with
nonzero k y matrix elements are about 8 eV removed
so that, for a k y calculation, it is a good approximation
to treat interactions among the six levels exactly and
treat interactions with other levels by perturbation
theory. "

B. Spin-Orbit Coupling

If the spin-orbit interaction is included, then the
single group is no longer adequate to describe the
transformation plopcltlcs of thc Bloch fuQctlons ln R

crystal. The double-group functions which do transform

pmperly, however, may be derived from the single-

group functions by including the spin indices $ and i.
The double-group basis functions derived from the
single-group functions listed above are given in Table I.
The spin indices are

l=l
ply (0)

(Oi (1i
for es in the L1111 crystallographic direction. The
symbols S~ and X+ represent (Sx&iSr)/v2 and

( X&i )F/%, respectively.
The double-group basis functions we have selected

dIffer ln sp1Q ass1gnmcnt from thc double-group bRsls

functions listed by Dimmock and Wright" 2' and Pratt
and Ferreira" who speci6cally have chosen a right-
handed coordinate system. The L4,5 functions differ
from those listed by I.in and Kleinman. s We have
veri6ed our choice by generating the proper character
under the point-gmup rotations at the L point. As an
additional test we note that the two functions Zi and
(X+iF)J, are coupled by the s.o. interaction while Zf
and (X iF)Jar—e not. , Since the s.o. interaction only
couples levels with the same symmetry, the 6rst pair
of functions are acceptable representations for Le-
while the second pair are not. Reversing the spin
assignment of the basis functions has the result (among
others) of reversing the signs of the derived g factors so

~ Reference 23, p. 58.
~' J. G. Dimmock (private communication) has veri6ed our

assignment by an independent calculation. The general k y
matrix in their paper is valid provided the x~ labels are
interchanged.

that the signs given by. Pratt and Ferrcira" are the
reverse of those derived here.

With spin-orbit, the states at L have either Ls+ or
L4,5+ symmetry. " The L6 states are twofold spin-
degenerate states and representations can be found
which are either "spin-up" or "spin-down. "The I4, Lq
states are each singly degenerate states and have both
"spin-up" and "spin-down" components. However,
these two states are Kramers-degenerate so that all
states at the L point have the twofold Kramers de-
generacy. This degeneracy is preserved at all points in
the Brillouin zone for crystals with the NaCI lattice.

In addition to lifting the degeneracy of the Ls+
levels, the spin-orbit coupling also mixes the states
with L6+ syIQmetry which originate from different
single-group states. It is this mixing which allows
coupling of both longitudinal and transverse com-
ponents of the momentum ma, trix elements so that
spherical, or nearly spherical bands may result from
the k os interaction of a single pair of levels at the L
point. It ls also hkcly that such R m1xlng ls also
responsible for the observed feature in bismuth that
the transverse g factor is nearly twice the reciprocal of
the corresponding cyclotron mass ratio, a relation only
expected to be true for k oo interaction between a single
pair of bands. "

The matrix elements of the Hamiltonian at the L
point, including s.o. coupling, are given in Table I
for the even and odd set of states. The nonzem s.o.
matrix elements are obtained by noting that the s.o.
operator can be written X e, where Zg transforms like
5g and Zx+iZy transform like S~~iSy. The s.o.
Hamiltonians given in Table I neglect interactions with
bands not included in the initial set. In the lead salts
the next-nearest states at the L point are about 5 eV
removed'8 while the s.o. energies are of the order of
1 eV or less.

Wlthln this app1 oxlmation thc S.o. HRInlltonlans
for the valence and conduction bands are diagonalized
by thc symmetry functions and energies:

Lsr+p= i(cos8+)El+ (sin8+)S g,

Lst P= (cos8 )Zf+(sing —)X
el =so cos 8+—6y+ sin 8++2'v26s+ srn8+ cos8+,

Lss+P= s(sin8+)Rj, —(cos8 )S
Los P= (sin8-)Z$ —(cos8 )X f,

os+= eo+ sins8+ —ht+ coss8+—2v26s+ sin8+ cos8+,
«+P= (2) '"LS+I—iS-G
«P=(2) "LX+t iX-Q, —

es+= hg+, (2.2)
' The labeling of the double-group states for D~ conforms with

the puhhshed articles but divers with Koster oi al. (Ref. 23}.
The L4+, L&+, and Le+ states correspond to Koster's F&+, I"&+,
and I'4+ states, respectively.

~'In h y treatments which ignore such mixing one of these
contributions to the e6ective mass and g factor is assigned to
interactions with "distant" bands. If not applied properly, such
treatments can lead to incorrect estimates of the momentum
matrix element between a given band and the "distant" band.
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TABLE l. The matrix elements of the Hamiltonian including s.o. are given for the L point in terms of the basis functions: Ls+(L&+)f $—ig'l, iRJ;L, s+(Ls)f i=S f SpJ, ; Ls+=(2) '~sfS+f i—S l7; Ls+=(2) '~sLiS+f —S-l7; Ls (Ls )l', l.=Zf, l; Ls (Ls )f$=X $XpJI
Ls = (2) '~'PX+$ i—X f7, Ls =(2) '~s(iX+l X—l7. The zero-in-energy for the even or for the odd set of levels is taken at the position
of the L3+ or L3 levels neglecting s.o. coupling. The energy so+ or e0 is the position of the L1+ or L2 level with respect to thecorr-
sponding zero. The nonzero matrix elements of the s.o. o]aerator are: (Sr[Zz~Sx) = &—Sx[Zz ~Sr)=its; (F[Zz[X)= —(X[Zz[ Y)
=i&i; &&(Zx(Sx)=(it[Zr(Sr)=its+& &Z(Zx(Y)= —&Z'Zr[X)=its+.

Ls+(Ls, s+) l'

Ls+(Ls, s")l
Ls'(Ls')I
Ls+(Ls")i

Ls+(Li, s+) l'

g0k

0
0

—v2s, +

0
0

Ls~(L&, s+) J,

0
60

wag~
0
0
0

L k(L k)l

0
VZa, +

0
0
0

L 's(L s)l

—V2a+
0
0

0
0

0
0
0
0

0

0
0
0
0
0

where the basis functions and nonzero matrix elements
are given in the caption to Table I. The zero-in-energy
for each set of levels is chosen at the location of the
corresponding L3+ and L3 level before applicati. on of
the spin-orbit interaction. Similarly ~0+ represent the
energies of the corresponding L~+ and L2—levels relative
to these zeros. The L4+, L&+ levels are unmixed by s.o.
and retain the eigenvalues 5~+.

Only the I.;+p functions are listed in Eq. (2.2) for

each Kramers conjugate pair. The other function of
each pair (I;+n) is obtained by applying the time-

reversal operator E=io-„Ko to the given function, "
where Eo is the operator for taking the complex

conjugate. For a general point in the Brillouin zone,

this operation generates a state at —k. However, k
and —k are equivalent at the L point so that Kramers

conjugation generates states of the same k vector just
as at the l' point (k=0). The n, P labels have been
chosen for the mixed "spin-up, ""spin-down" functions

so that they have the same symmetry under time
reversal as the pure spin states l', &, i.e., EP=n,
Zn= —p.

It is worth noting that the spin-orbit coupling mixes
"spin-up" components of the L6+ states which arise
from Lj+ or L~ with the "spin-down" of the L6+

states which arise from L3+ or L3 . The four pairs of
functions which result L6&+ and L62+ may still be
labeled as Kramers conjugate pairs with labels n, P,
although the $, J, labels are no longer adequate. The
relative mixing of the states by the s.o. coupling is

expressed in terms of the parameter 8+, where

is ignored. The s.o. coupling splits the valence bands
into an upper, doubly degenerate level and a lower,
nondegenerate level. The s.o. Hamiltonian given in
Table I is equivalent to the s.o. Hamiltonian for the
valence band in InSb' in the limit A2 ~A» and
eo -+0. At the I point, the p-like bands without
s.o. coupling are split into a doubly degenerate level
and a nondegenerate level (neglecting spin) with an
energy separation eo . The mixing parameter 8 is
zero in this case. If the s.o. coupling is large and positive
then the upper two levels are separated by —,60 and are
removed from the lower level by 3ht—(note that the
s.o. parameter h~ used in this paper is ~~ the value
often employed). The mixing parameter for this case is
given by sine-=1/VS. This second case appears to
apply to the conduction band in PbS and, with an
appropriate order of levels in the valence band, gives
spherical or nearly spherical bandedge parameters.
Thus, in the limit of the crystal-Geld splitting small
compared to the s.o. splitting, the basis functions for
the split-o6 band at L are the same as for the split-oG
band at I' in InSb. '8

TABxz II. Transformation of the coordinate functions under
the rotations Q; and of the spin states f and $ under the corre-
sponding spinor transformations S; '. The operators Qs, Qs, and
Q4(3') generate proper rotations of 180' about the stated crystal
axis. The operators Qs and Qs(2Cs) generate rotations of 120'
about the $1117axis. The phase parameter so=exp(i2 /3)sr

S~-1 Sa-1 S4-1 S~
—1 Se-1

QsL1107 Qs/1017 Qs)0117 Qs(1117+ QsL1117

tan28+= 2~2hz+(so++Br+) '. (23)

It is instructive to consider the weak and strong s.o.
coupling limits for the odd states which are assumed to
originate from three degenerate p-like states in the tight

binding limit. The twofold spin degeneracy is neglected

in this discussion since it is present for all states at I'

and L. In germanium and III-V compounds these are

the triply degenerate valence bands at I', if s.o. coupling

g
X+
R
S

p

-z
—X

R
—S+
wp
&ck

-Z
-AX

R
—co*S+

~cd
+Cd&

-Z
—co*X

R
—AS+
%cop
+co+a

g
cd+
R

eu~S

%40+42

%cop

"E.O. Kane, J.Phys. Chem. Solids 1, 249 (1957).

Z
co+X+

R
AS
WMCL

wco+p
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Tanzs III.The matrix elements (L;+
~
r. m ) L; )are listed for the s.o. mixed functions de6ned by Eqs. (2.2).The s.o. mixing parameters S+

are de6ned in Eq. (2.3) and the momentum matrix elements I';; are de6ned in Eq. (2.4). The K+ represent (Kx+iKr)/~.

Eel+a
Iel+P
Lee+p
Lee+a
L4+p
Le+a

Iel+a
Lel. p
Lee+p
Lee+a
L4+p
Le+a

+ f(cos8+ cos8 )Pll+(sin8+ sin8 )Pal)Kg
+f(cos8+ sin8 }Pie—(sin8+ cos8 }PeQK+
+f(cos8+ cosH )Pal+(sin8+ sin8 )Ple)K+-{(cos8+ sln8 )Pel —(sln8+ cos8 )Pll]Kg
+f(cos8 )Pal/~-i(sin8 )P22 JK
-if(COSH-)»I/A+i(»n8-)»23K

Lee a
+f(cosH+ sln8 )Pll —(sln8+ cos8 )PeljKg-f(cos8+ cosH }Pie+(sin8+ sin8 )Pel |K+
+f{cos8+sin8 )Pel —(sin8+ co88 )Ple]K+
1f(cos8+ cos8 )Pml+(sin8+ sin8-) Pll|Kg
+f(sinH )Pel/~+i(cos8 )PeejK
-if (sinH-) Pel/~-i(COSH )P22]K

+f(cos8+ sin8-) Ple —(sin8+ cos8 )PeQK
+f(cos8+ co88 )Pll+(81118+sin8 )Pel ]Kg
+f(cos8+ sin8 }Pal-(8'in&+ cos8 )PI@Kg
+f{co88+cos8 }Pel+(81n8+ slnH )PlejK
—if (cos8 )Pel/~-i(sinH )Pea/K+
+f(cos8 Pel/~+i(sinH )Pee/K+

I.4 p
+f (cos8+)Ple/~ —i{sin8+}Pee']K+
+fi(cos8+}Ple/~2+(sinH+} P22)K
+if (sin8+) Pie/~+i(COSH+) P22)K
+f (sin8+}Ple/~+i(COSH+}Pee)K+

0
—iPeIKg

-f(cos8+ cos8 )Ple+(sin8+ sin8 )Pal]K—f (co88 sln8 )Pll —(Sln8+ co88 )PeljKg-f(cos8+ cos8 )Pel+(sin8+ sin8 )PI@Kg
+f{co88+sin8 )Pel -(8in8+ co88 )PlejK—if(sin8 )Pel/~+i(COSH )Pee/K~
+f(sinH )Pel/~-i(COSH )Pea']K+

Le a
+fi(cos8+) Ple/~ - (sinH+) Pre)K+
+f(cos8+)Ple/~+i(sin8+) Pie)K
+f (sin8+) Ple/~2 —i(cos8+)P22jK
+if (sin8+) Ple/~2 —i(cosH+) Pn']K+

+iPelK g
0

The case described here- corresponds to the tight-
binding limit for odd bands at L which originate from
the lead p orbitals (see Sec. III 8).Lin and Kleinman'
arrive at a different composition for the lowest conduc-
tion band in PbS. Their composition for the conduction
band corresponds to a mixing parameter sine-=g's
which would require an appreciable crystal Geld

splitting eo .

C. Symmetry-Allowed er Matrix Elements

The energies of the bands in the vicinity of the L
point can be expressed in terms of the matrix elements
of the perturbation x ~ evaluated at L. The operator
er is the operator y+rrxVV(b/4esecs) and x is the
wave vector relative to L."The x m matrix elements for
the s.o. mixed. double-group states can be reduced to
sums of the symmetry allowed ~ matrix elements for
the single-group states L~+, L2+, and L3+. The pro-
cedure has the advantage of reducing the number of
undetermined m matrix elements to a minimum and also
of expressing them in a form suitable for further
reduction in limiting approximations.

The nonzero matrix elements of + may be obtained
directly from the tables of coupling coeScients for the
single-group states of DO~23 by noting that m g transforms
like Ls and s.~——(rrxairrr)/V2 transform like Lsg .
The nonzero matrix elements are (Lr+

~
Ls ( Ls-),

«r'ILs+ ILs+ »(Ls++*ILs ILs+ ) (Ls+'*ILs+ ILs»
and (Ls~+*jLs~ ~Lsp ). Since er is an odd operator,
only states with opposite parity are coupled.

Alternatively, the nonzero matrix elements can be
obtained from the transformation properties of the
basis functions E, S~, Z, and S~ under the symmetry
operations of the group D3~. These are listed in Table
II for the pertinent coordinate transformations Qs, Qs,
and Q4(3Cs), which are rotations of 180' about the
$110j, L101), and t 011$ axes, respectively, and for Qs
and Qs(2Cs), which are rotations of 120' about the
L111j axis. The transformation properties of the spin
states t' and t, under the corresponding operations
S~ ', which generate the double group, are also given.

The nonzero +. matrix elements for the functions
listed in Table II are

(Z(sz[Z)= -iEtt,
(R)xg(Xp)= —a'„,

(S~e(xg(X~)=+Est,
(Sg'(x~[Z)= +Est,

(Sg'j or+ ] Xp) =WNZss,

(2.4)

where the constants I';; are real if m is a purely imagi-
nary operator.

E. Effective Masses and g Factors

The energy levels for a crystal in the vicinity of the
L point are obtained by diagonalizing the x ~ matrix
derived from Table III. The procedure for doing this
in the presence of a magnetic Geld is detailed by Vafet. 22

The eBect of the magnetic Geld is included by adding
to the wave vector x the Lorentz term (e/hc)A(iV'„),
where the magnetic Geld part of the vector potential A
is considered to be a function of the operator i V'„. With
this substitution, the energy levels to lowest order in
the x m perturbation for a specific band n are deter-

D. The x ~ Perturbation Matrix

The x ~ ma, trix elements between the s.o. mixed
states listed in Eq. (2.2) are given in Table III in terms
of the Gve symlnetry-allow'ed e matrix elements given
by Eq. (2.4). Table III has been constructed so that
all parameters are real. It is to be noted that Table III
is not the full x ~ perturbation matrix, which is 12&(12,
although the full matrix may be constructed from the
elements given here. The set of matrix elements is a
speciGc representation of the -general set presented by
Dimmock and Wright. "'~ Instead of thirteen general
parameters, we have particularized the set in terms
of Gve momentum matrix elements and two s.o. mixing
coeKcients. This reduction is due to the neglect of s.o.
interactions with other bands not included in the initial
set.
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mined by the 2)(2 operator equation"

(e,p I
s'(kp) Im, p'&(m, p'I s'(kp)

I e,p&E...;(K)=E„(k,)S,,, + P P 1+2 KP
21Sp trp p p [E (kp) —E (kp)]mp

2mp s&s sos p"

2("o I 7r'(kp)(m~p"&(mp"
I &'(kp)

I Ny'&»pp' p ga8&
+ Q X;(e,p I

o'I pp, p'&, (2.5)
[E„(kp)—E„(kp) jmp 2

where E„(kp) are the energies of the bands at the 1.
point, p and p' label the two Kramers-degenerate states
for each band, i and j are Cartesian labels X, I', Z, s is
eH/Ac, I=x+ (e/hc)A(iV', ), X, are the direction cosines
of the magnetic Geld with respect to the Cartesian
axes i, 0.' are the Cartesian components of the spin
operator, mp and gp are the free-electron mass and g
factor, respectively, e;;& is the Levi-Civita or permu-
tation index, and m' are the Cartesian components of
the momentum matrix element evaluated at the L point.

The effective masses and g factors, for a given
band rs, may be obtained directly from Eq. (2.5)
in the parabolic approximation, i.e., IE„(v)—E„(kp)(« I

E (kp) E(kp) I
for—all bands m. Nonparabolic

sects arising from the x ~ interaction between a
single pair of levels may be treated in a simple manner
and are considered in a later section. The transverse
and longitudinal reciprocal mass ratios (mp/m„' ') for
a given band e are given directly by the sum inside
curly brackets which appears in the second term of
Eq. (2.5). (The magnetic field is taken equal to zero. )
The interband matrix elements which appear in the
sum were obtained from Eq. (2.4). The results are
tabulated in Table IV in terms of the undetermined
matrix elements and mixing coeKcients de6ned pre-
viously. No restriction has been placed on the relative
ordering of the energy levels. Thus a negative sign for
the energy difference E„—E results in a negative
contribution to the "electronic" effective mass (or a
positive contribution to a "hole" mass).

With a nonzero magnetic Geld, the Kramers de-
generacy is lifted by the last two terms appearing in
Eq. (2.5). The magnitude of the g factor, for a given
band, is speci6ed by the di6erence in energy between
the two levels. The sign of the g factor, however, is not
uniquely defined and must be established by convention
since the "spin-up" or "spin-down" directions are not
uniquely speci6ed for the s.o. mixed states.

1.Sign Coeveipti ops for g Foe&or

The sign of the g factor, for states which have only
twofold Kramers-degeneracy in the absence of s.o.
interaction, may be determined by requiring the g
factor to approach the "free-electron" value of +2 in
the limit of zero s.o. interaction. This convention is
adequate for the L&&+ levels but is not appropriate
for the L6~+ or L4,~+ levels which have higher than
twofold degeneracy in the absence of s.o. interaction.

An alternative convention specifies the sign of the g
factor in terms of the sense of the circularly polarized
radiation absorbed in spin-resonance transitions. ~ The
magnetic-dipole matrix element for "free-electron"
spin resonance is proportional to (l'I a+I i), where
o~——(o.x+ior)/2 for a magnetic field in the +Z
direction and where the f state lies to higher energy.
The plus or minus signs refer to left- or right-circularly
polarized radiation, respectively. All other matrix
elements of o~ for f, $ states are zero so that the "up"
state and "down" state are uniquely specified. Similarly,
the mixed-spin states with Kramers labels n or P can
be given an unique "up" or "down" designation if only
a single-matrix element of 0-+ is nonzero. The sign of
the g factor is then positive if the 1' state lies to higher
energy. This second convention gives the same sign
for the L6~+ levels in the limit of weak s.o. interaction
as the Grst convention. In the limit of strong s.o.
interaction [i.e., h))p in Zq. (2.3)j this second con-
vention also uniquely specifies the "up" and "down"
states for the L6~+ levels. In anticipation of the results
of the next section, which give a "spherical approxi-
mation" for valence- and conduction-band edges at
the L point, we have chosen the sign convention
according to the weak s.o. limit for the even (+) states
and strong s.o. limit for the odd (—) states. The
formulas for the longitudinal and transverse g factors
for the several bands are listed in Table IV. The sign
of the g factor for the L4,~+ levels has been left un-
determined since it is not uniquely de6ned in either
of the two s.o. limits.

There are some questions in the literature concerning
the signs of the g factors in the lead salts. ' ' ' The signs
have been determined experimentally for PbS" by
observing the inQuence of band population on the
interband Landau transitions. The same signs have
been suggested for PbSe" since the sign of the inter-
band Faraday rotation is the same. This assignment
of signs, negative for valence band and positive for
the conduction band, for the longitudinal g factor is
the same as that given by the equations in Table IV
which were derived using the sign convention described
above.

In fact, the sign and magnitude of the contribution
to the longitudinal g factor from the interaction between
a valence band with L6+ symmetry and a conduction
band with L6+ synunetry are both given by g...'
=2mp/m„, ,' where m„' for electrons is negative. This
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TAsx,E IV. The general expressions for the longitudinal and transverse effective masses are given under the heading "effective mass"
for the six I.-point states defined in the text. The states are identified by the energy labels defined in Eqs. (2.2).The expressions for the
longitudinal and transverse g factors are given under the heading "g factor. "The algebraic signs given refer to electronic states, i.e.,
the valence-band masses are negative. The sign convention for the g factors is described in the text.

Effective Mass

2[(cosg+ sing }PI3—(sing+ cosg )P»]' 2[(cosg+ cosg )PI3+ (sing+ sing )P»]' 4[(coast+)PI33/2+ (sin38+)P333]
+ +

61 gl 61 —62 61

4[(cosg+ cosg )Pll+ (sing+ sin8 )P31]' 4[(cosg+ sing )Pll —(sing+ cosg )P317'
+

61 —61 61 62

2[(cosg+ cosg )P31+(sing+sing )P13]3 2[(cosg+ sine )P31—(sing+ cosg )P13]3 4[(sin38+)PI3/2+(cos 8+)P333]
+ +

62

mQ —1+
mgl+ 2mQ

mQ
=1+

mg j+ 2mp

mQ 1—1+
mg2+' 2mp

mp 1—1+
mg2+ 2mp

mQ 1
=1+

m4, g+ 2mp

mQ 1
=1+

m4, 5+ 2mQ

mp
=1+

mgl-' 2mp

mp 1
=1+

mgl 2m p

mp 1
-=1+

mg2 2mQ

mQ 1
-=1+

mg2 2mQ

mp 1—1+
m4, $2mp

mQ
=1+

m4 $2mQ

62 61 62 63

4[(cosg sing )P» —(sing cosg )Pll] 4[(cosg cos8 )P31+(slllg+ s1118 )Pll]3
+

62 61 —62

4[(cos'8 )P333/2+(sin'8 )P333] 4[(sin'8 )P313/2+(cos'8 )P3337-+
63 —61 63

4I'212

63 63

2[(cosg+ sing )P13—(sin8+ cosg )P31]' 2[(cosg+ cosg )P33+(sing+sing )PI3]' 4[(cos'8 )P313/2+(sin'8 )P33']
+ +

61 &2 61 63

63 62

4&212

63 —63

(g Factor)
1 4[(cosg+ sine )P13—(sing+ cose )P33]3 4[(cosg+ cose )PI3+ (sing+ sing )P31]'

+
61 —61

8[(cos'8+)PI33/2+ (sin'8+) P333]
1

ggl+ =2(cos 8+—sin 8+)+
2mQ

1 3
1 442[(cosg+ sin8 )P13—(sing+ cos8 )P31][(cosg+cosg )Pll+(sing+ sing )P31]

—61

4lt2[(cosg+ cosg )P13+(sing" sin8 )P31][(cos8+sin8 )Pll —(sin8+ cos8 )P31]

61 —62

4[(cos8+ cos8 )P33+(sing+ sing )PI3]3 4[(cosg+ sin8 }P31—(sin8+ cos8 )P13]'
+

ggl+' ——2 cos28+—
2mQ

g33+I=2 (sin'8+ —cos'8+) +
2mQ 62 8261

8[(sin'8+)P133/2+ (cos'8+)P3337

62 63
1 4lt2[(cosg+ cosg )P31+(sing+ sing )P137[(cosg+ sin8 )P31—(sing+ cosg )Pll]

4&2[(cosg+ sing )P31—(sin8+ cos8 )P13][(cos8+cosg )P31+(sin8+ sing )Pll]

gg2+t'= —2 sin28+—
2mQ

4[(cose+ cosg )Pll+ (sillg+ sille )P3,]' 4[(cose+ sille )P31—(sil18+ cose )PII]'
+

61 —62

2[(cos8+cosg )P13+(sin8+sin8 )P31]' +2[(cosg+sin8 )P31 (sing+ cos8 )PI3]' 4[(sins& )P313/2+(cos'8 )P333]
+ +

62 —61 &2 —&2 —63+

4[(cosg+ sing )Pll —(sing+ cosg }P31]' 4[(cosg+ cosg )P31+(sing+ sing )P»]3
+

&2 61 62 —62

4[(cos38+)PI33/2+ (sin38 )P333] 4[(sinsg+)P133/2+ (cossg+)P333]
+ 7

4 [(cos8 )P /@2+33( i g3)sPn33]' [(sing )P31/K2 —3(cosg )P33]'
lg4, 3+'I= 2+— +

mQ 61 —62

g4, 5+'=o,

62 62
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TABLE IV. (oorstsrsled)

(g Factor)
1 4L(coso+ sing )P» —(sine+ cose )Psi] 4$(cose+ coso )Psr+(sino+ sin8 )P»]'

+ge1 t 2(cos g —sin2g )+
2mQ &1 &2

8$(cos'8 )Psrs/2+(sins8 )Psss]

61 &3
1 442t (cose+ sin8 )P» —(sin8+ coso )P»]$(cos8+ coso )Pqr+ (sin8+ sin8 )Psr]

g61 '=+2 cos2g +
2mp 61 —61

gp2 '=2(sin g —cos g )+
2mQ 62 62

8$(sin'8 )Psrs/2+(cos'8 )P»s])

e2 —e3
1 4v2L(coso+ coso )Pis+ (sin8+ sin8 )P&r]L(cos8 sino )P» —(sino+ coso )Psr]

gp2
' ———2 sin2g +

2mp 62 —61

4v2((cos8+ sin8 )Psr —(sin8+ cos8 )P»]((coso+ coso )Ps&+(sino+ sin8 )Prr]
]

t&2 —~2
4 ((cos8+)P~I/v2+t(sin8+)P2s]' L(sine+)P&s/V2 —t(cos8+)Pss]'

fg4, s-'I= 2+— +
mp a3 t3 62

g4. 3 '=o

4v2$(coso+ cos8 )Ps&+(sino+ sino )P»]L(coso+ sin8 )P» —(sin8+ cos8 )Pn]

Cl 62

1 4t (coso+cos8 )P»+(sin8+sin8 )Ps~]' 4$(cos8+sin8 )P&r—(sin8+cos8 )P»]s
+

follows since the L6+ states transform like states with
total angular momentum" ~~ so that the nonzero matrix
elements of mx and vr are given by (C'tsjs+) V—'@)&0
and (C'"

)
s

~
V '")=0." If this selection rule is

inserted into Eq. (2.5), then the energy of the C'" state
is above the C '" state, i.e., the conduction g factor is
positive. "

It is worth treating the g factors for the L62 and

L4,~+ levels in detail, both to illustrate the procedure
for obtaining g factors from Eq. (2.5), and to illustrate
certain differences between the L6+ levels and the
L4,~+ Kramers-degenerate pairs of levels.

Z. g Factors for Lss- Levels

With a magnetic Geld in the +Z direction, the 2&&2
matrix Eq. (2.5) for the Lss levels has the form

EE.-(K)+(P&/2)g 'j
Es, , sp

—(K) =
0

!

0

t:Ess (K)—(P&/2)gss 'g&
(2 6)

where the upper-left diagonal term is the matrix
element for the Lss n state and Ess (K) represents the
operator equation for the orbital Landau levels given
by the first two terms of Eq. (2.5). It is possible to
solve this operator equation and obtain the energies
of the equally spaced, orbital Landau levels. "This is
not necessary, however, since the g factor can be
determined directly from the energy difference between
the Kramers pair. The full expression for g62

' is given
in Table IV.

In the strong s.o. limit Lss n= (Z$+42X+i)/V3 and

"E.Feenberg and G. E. Pake, Notes ol the Quantum Theory of
Angular momentum (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1953), p. 35.

"The essential features of this calculation are due to J. 0.
. . Dimmock (private communication).

Lss P= (Zl, —V2X f)/V3. The only nonzero matrix ele-
ment of o+——(ox+sor)/2 is (Lss n)o+(Lss P) which, by
the convention stated previously, established L62-0,
as the "up" state. Therefore the correct equation for
the longitudinal g factor for the L62 level is given, in
magnitude and sign, by the sum of terms listed in
Table IV.

With a magnetic Geld in the +X direction, the g-
factor terms appear in the off-diagonal positions. The
sign of the g factor for the transverse Geld was obtained
by the procedure of diagonalizing the 2)(2 matrix by
the linear combinations Lss p'= (Lss

—n+Lss p)/V2 and
Lss n —(Lss n —Lss P)/V2. The only nonzero matrix
element of o+= (o.r+so z)/2 for these states is
(Lss n')o+ILss-P'). This sPecifies the "uP" state and
thus the sign of the transverse g factor. It is worth



ENERGY-BAND PARAM ETERS FOR Pb SALTS

Doting that all terms in the expression for g62
' are real.

The above treatment also applies to the L62+ and Lej+
levels. Therefore the total g factors for these levels are
just the algebraic sums of the contributions from the
other levels with opposite parity.

3. g Factors for L4,p+ LeeeLs

With the magnetic field in the +Z direction, the
2)&2 matrix Eq. (2.5) for the L4, p+ level has the form

(2.7)

This differs from Eq. (2.6) for the Lpi+ levels since

gp, p+' (defined in Table IV) is complex. The magnitude
of the g factor is given by the magnitude of the sum
listed in Table IV; however, the g factor is not the
algebraic sum of contributions from each of the inter-
acting levels, as is the case for the L6~+ and L62+ levels,
except under conditions of weak s.o. mixing (sin8 =0).
The L4,~+ levels also di6er from the L6~+ and Leg+

levels in the form of the transverse g factor. This is
zero for the L4,~+ levels since both the interband and
"free-electron" contributions to the transverse g factor
vanish. The interband contributions vanish because
the L4, &+ levels are not coupled to any other level by
both transverse and longitudinal momentum matrix
elements. The "free-electron" contribution vanishes
because all matrix elements of O.x and 0-~ are zero for
the L4,5+ levels. The Cohen-Blount result, however,
applies to all levels. The contribution to the inverse
eftective mass-ratio perpendicular to the 6eld by the
interaction with a given level is just half the contri-
bution to the g factor parallel to the 6eld by interaction
with the same level. This general property of pair-wise
interacting, Kramers-degenerate levels provides a useful
check of the over-all results of a complex x m calculation.

Lin and Kleinman give expressions for the tangential

g factors for the valence and conduction bands of the
lead. salts which do not coritairi interband contributions.
If s.o. razing of levels is appreciable, as in the lead
salts, then both x' and x' are rionzero between levels
with L& symmetry. Thus the ic m contributions to the
tangential g factor do not vanish and are, in fact,
:given in magnitude by the Cohen-Blount" result

(g [ =2pipp/(rN m )'IP.

III. BAND PARAMETERS IN. LIMITING
APPROXIMATIONS

The equations for the band, parameters listed in
Table IV are valid for any combination of energies and
ordering of the six bands at the L point provided that
the energy separation with respect to other levels. is
large compared to the spread in energy of the six levels
considered. In principle, it is possible to determine the
order and energies of the bands (relative to the band;gap

energy) in terms of measured effective masses and g
factors for all the bands. These twenty-four band
parameters are completely determined by the 6ve ~
matrix elements listed in Eq. (2.4) and the seven
energies F.„pp+, hi+, and Ap+. [The relations between
this set of undetermined, parameters and the set used
in Table IV are given in Eq. (2.3) and in Table I.j In
practice, it is more feasible to determine energy sepa-
rations and relative order of the bands by other methods,
insofar as possible, and use the measured band parame-
ters to test the consistency of the assignments and
calculate the unknown momentum matrix elements.
The number of these unknown matrix elements can be
further reduced by going to one of the limiting approxi-
mations which relates the set of levels in the real crystal
to a more highly degenerate set of levels in a counter-
part crystal with higher syrrunetry. This procedure for
determining the parentage of the states has already
been invoked in Sec. II 8, where the eigenfunctions of
the Hamiltonian [Eq. (2.1)j were related to the parent
functions obtained by neglecting the s.o. term. Proceed-
ing further in the reduction of Eq. (2.1), the potential
V(r) may be altered judiciously to yield simplified
solutions and the perturbed V(r) then treated in a
manner analogous to the s.o. term.

The pp matrix elements listed in Eq. (2.4) are defined
in terms of the single-group symmetry functions, i.e.,
the s.o. mixing of the states is neglected. The relativistic
contributions to ~ are negligible for all semiconductors
so far considered; in PbTe they contribute less than
1%.ip The limiting approximations, discussed below,
introduce relations among the p matrix elements. The
"internal" s.o. contribution to the m matrix element has
been neglected. The s.o. mixing of the levels, how'ever,
is taken into account in the calculation of the band
parameters.

A. Free-.E1ectron Ayyroximation

In this approximation, the potential V(r) is taken to
be constant. The Bloch functions are then plane waves
with wave vectors given by the points of the reciprocal
lattice. The six plane-wave functions exp[ik; r$
[where k;=+(p/ap)[1131 and cyclic permutations]
are d,egenerate. "The L-point symmetry functions can
be expressed as linear combinations of these plane-wave
functions and the corresponding momentum-matrix
elements can thus be expressed in terms of a single
matrix element for the plane-wave states. Dirrunock
and Wright" have calculated, these matrix elements in
the limit of weak s.o. interaction [Eqs. (3) and (4)j.
The correspondence between their elements n, P, etc.,
and our matrix elements P~~, P~e, etc., was obtained by
equating the k p terms given in Table V of Dimmock
and Wright" with the corresponding terms given in
Table III of this work. The results are listed in Table V
in terms of the single matrix element Po which is left
as an undetermined parameter. The magnitude of Pp



590 D. L. MITCHELL AND R. F. %ALLIS

COIO) orbitals centered on the lattice sites of the crystal. "
The Bloch functions can be written in the form

p,lg) 4;(k,r) =g P P e'""'+'a'fa,"alp &(r—r~—ra) 1, (3.1)j l y

-p,lg&

CHOS COIO) LI [0)

can be estimated from the relation Ea hrr/aaVS——, where

a() is the lattice constant. " The number of e matrix
elements is reduced from 6ve to one in this approxi-
mation. Although the "free-electron" limit gives the
correct set of symmetry states at I., it does not ade-

quately approximate the lead salts inasmuch as it
predicts bands of the order 8 eV wide" along the h.

axis while the values calculated by more sophisticated
techniques are of the order of 3 eV.' ' This suggests that
some form of tight-binding approximation would

provide a better starting approximation.

B. Tight-Binding Approximation

ln the tight-binding approximation the Bloch
functions are chosen as linear combinations of atomic

TABLE V. The er matrix elements given by Eqs. (2.4) are
calculated in a "free-electron" and taro "tight-binding" approxi-
mations described in the text. The nonzero matrix elements for
the tight-binding cases (a& and (b) are shown schematically in
Fig. 1.In terms of these matrix elements case (b) corresponds to

P '=+(«*'Ip*I ~* &+ «'I paI v'&)

Pa'=fthm &«*sl p*l v* & (s' sl pa I s'a')—»
where E is a normalizing factor. Case (a) corresponds to the
neglect of the second term in the above expressions.

P11
P18
P81
PR1
P22

Free-electron
limit

Pp

Pp
2V2Pp

Tight-binding
limit
(a)

Pa
Pa
+a
Pa
P /vl—

Tight-binding
limit
(b)

Pa
P,'
Pe'
Pe—Ps'/v2

-pyle&

FIG. 1. Schematic representation of the four nonzero mo-
mentum matrix elements for the nearest-neighbor interaction of a
cp,s cation p orbital located at the lattice site L000]aa/2 with the
appropriate y;a p orbital located at one of the adjacent anion
sites. The tight-binding approximation case (a) includes only the
contributions of the form (sJ'I p, I s,~) while case (b) includes
contributions of the form (s,s I p„I s„~) as well. At the P point a
contribution such as that from the orbital located on the L100]oa/2
lattice site is cancelled by the contribution from the orbital located
on the L100]aa/2 lattice site. At the I, point, the phase factor
difFers by (—1) for alternate atomic layers in the (111)direction
so that the contributions from inverse lattice sites are additive.

where the yp(r —r&—ra) are suitably orthogonalized
atomic wave functions" positioned on the lattice sites
a+ra. Here r~ are the translation vectors of the lattice
and r~ are the position vectors of the atoms of diGerent
land within the unit cell. The expansion coefBcients
are represented by ag&. The upper three valence bands
and lower three conduction bands in the lead salts are
relatively Qat along the A. axis,"and are quite well
separated in energy from other bands. A natural
choice for the tight-binding origin of these six bands is
the three spin-degenerate p orbitals associated with the
anion sites (S, Se, or Te) and. the three p orbitals
associated with the cation sites (Pb). A pair of lower
valence bands, not considered here, would then be
associated with the anion and cation s orbitals.

An interesting feature of the bands formed from
anion and cation p orbitals in the NaC1 lattice is that
the two sets are decoupled at the L point, i.e., neglecting
relativistic eGects, the valence bands can be expressed
in terms of p orbitals associated with one of the sub-
lattices and the conduction bands with p orbitals on
the other sublattice. Referred to a common origin,
one set of bands at I.is even and the other set odd, so
that the interband matrix elements of the momentum y
are allowed. At I', on the other hand, the p orbitals on
the sublattices are not decoupled. Furthermore, both
the valence bands and the conduction bands derived
from these p orbitals are odd so that the corresponding
interband y matrix elements are zero.

The nonzero matrix elements of the Hamiltonian
for the simple cubic lattice have been obtained by
Slater and Koster" in the tight-binding approximation
for 6rst- and second-nearest-neighbor interactions. The
corresponding matrix elements for the NaCl lattice can
be selected from their listing and utilized to form
appropriate linear combinations of orbitals for various
points in the Brillouin zone. This restriction to nearest-
and next-nearest-neighbor overlap is not necessary in
the present case since the appropriate combinations of
anion and cation p orbitals at the I' point and I.point
can be simply obtained by symmetry alone (see
Appendix).

The matrix elements of the momentum y can be re-
duced to terms of the form + e-'~a' fp,e(r—r ))
&(p;( q»e(r)), where, as before, s, j, and k are Cartesian
labels. The symmetry-aOovred matrix elements are
shown schematically in Fig. 1 for the special case of
nearest-neighbor interactions only. The only matrix
elements which are expected to survive in the extreme
tight-binding limit are those of the form

(lpga'(r

—ra) (

Xp, ~ fp,e(r)), where ra is the displacement of a nearest-

n J. C. Sister and 0. F. Koster, Phys. Rev. 94, 1498 (1954).
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neighbor sulfur site relative to a lead site. In this
approximation, the m matrix elements defined by Eq.
(2.4) can be readily evaluated in terms of the tight-
binding functions of the Appendix. These matrix
elements are listed as case (a) in Table V in terms of the
single parameter I',. Another useful approximation is
obtained by including matrix elements of the form
(q&, (Nr ro—) ~ p„~ y„~(r)). The corresponding matrix ele-
ments are listed in Table V as tight-binding case (b).

C. Spherical Approximation

The limiting approximations developed in the pre-
ceding sections allow considerable simplification of the
equations for the g factors and effective masses listed
in Table IV. The "nearly-free-electron" approximation
and the "extreme tight-binding" approximation case
(a) reduce the number of undetermined parameters
to a single-momentum matrix element, provided the
energies of the levels are determined. The "nearly-free-
electron" approximation, however, does not appear
appropriate for the lead salts, although it may apply
to other materials. The "tight-binding" approximations
(a) and (b) appear to be more satisfactory starting
points for the lead salts. These approximations lead
to spherical eGective masses and g factors for the L6I+
and L62 levels under conditions which are appropriate
for PbS. The observed g factors and effective masses
of the valence and conduction bands are likewise nearly
spherical for PbS.'2 '4

The nearly spherical valence and conduction bands
in PbS have, in the past, led to the mistaken assignment
of the F point for the band extrema. This was a natural
mistake since, if the spin-orbit mixing of bands of the
same symmetry is ignored, then the k y coupling
between any pair of bands at the L point is either
longitudinal or transverse but not both. Spherical bands
at L are therefore unlikely, without large spin-orbit
interaction, since the longitudinal interaction with one
band would have to be balanced by the transverse
interaction with at least one other band lying at another
energy. To have just such a balance for both the
valence band and conduction band would thus appear
to be an extreme coincidence. When s.o. mixing of
bands is included, however, both the longitudinal and
transverse momentum matrix elements are coupled
between bands with L6 symmetry and opposite parity.

The odd (—) levels at L in PbS are p like around the
lead site and s or d like around the sulfur site. ' " In
the tight-binding limit, these bands originate from the
lead p orbitals. Large s.o. mixing of these levels is
expected since the s.o. splitting of the 6p levels in atomic
lead is quite large (1.4 eV)."The s.o. splitting in the
crystal depends on the relative contributions from the
lead core and from the sulfur core and is reduced
somewhat since the s.o. contribution from the sulfur is

"F.Herman and S. Skillman, Atomic Structure Calculutiogs
(Prentice-Hall, Inc., Englewood Cliffs, Near Jersey, 1963).

4) X. P,"
g =g =go'1

l 3(h.+1)2msE,

X , (3.2)
2moEo

1 4 X,+1—y) P,"
ge =go = go

3 3 X,+1 ~2moEo

where 'A, is the ratio of the energy separation between
Le,~- and L6~ to the energy gap E,.Similarly, ), is the
ratio of the valence-band splitting L63+—Leg+ to B,

small. Dimmock and Wright" give an estimate of
0.96 eV for s.o. splitting in the crystal assuming the
electrons spend 40% of the time on the lead atom and
60% on the sulfur atom. This proportion holds fairly
well for the covalent III-V compounds but is not
expected to be too accurate for the ionic lead salts.
In the tight-binding limit the s.o. splitting of the
conduction band at L would be the same as for atomic
lead. (1.4 eV).

The even (+) states at L are s- or d-like around the
lead site and p like around the sulfur site. In the tight-
binding limit these bands originate from the sulfur p
orbitals. The s.o. splittings of the lead d orbitals and
sulfur p orbitals are both of the order of 0.06 eV and are
thus negligible. The Lo+(L~) level may have s-like
and/or d-like character around the lead atom. Strong s
character would a6ect the energy of this level but would
not necessarily introduce strong mixing with the d-like

Lo+(Lo) level.
The identification of the odd states as conduction

levels and even states as valence levels, without
specifying the internal ordering, follows the previous
work. ' ' "This assignment is supported for PbS by the
fact that the L62- level lies lower in energy than the
Log L4,o pairs of levels for lead p orbitals. The s.o.
splitting has the same sign as in the valence band of
germanium and the III-V compounds. This leaves the
L6j+ level as the valence band with the closely spaced
L6&+, L4, t.+ pair of levels at some lower energy. Also, Le
syrrnnetry with opposite parity is specified for the
valence- and conduction-band edges in order to have
nearly spherical eGective masses.

With this ordering of levels, the g factors and effective
masses in the spherical approximation were calculated
from the equations listed in Table IV with the matrix
elements given by case (b) in Table V. For the valence
(Loq+) and conduction (Loo ) bands we obtain

4th, +3) P."
(m. ')—'=(m. ') '=(mo) '

3 (X,+1~2moEo
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and y is the ratio of the parameters F,"/Fq". In the
extreme tight-binding limit case (a) this ratio is 1. It is
worth noting that the contributions to the effective
masses and g factors from the valence —conduction-band
interaction are spherical in this approximation. The
contributions from the more distant bands are likewise
spherical. Lin and Kleinmans obtained a diferent
composition for the conduction band and a different
set of matrix elements which give a spherical valence-
conduction-band effective-mass contribution. The con-
tributions from the higher bands, however, are not
spherical. Their quoted g factors are highly non-
spherical since the interband contributions to 'the
tangential g factor were neglected.

As might be expected, the equation for the effective
masses and g factors of the s-like valence band are the
same, in the tight-binding limit, as for the s-like
conduction band at F in germanium. " The corre-
spondence with Eqs. (A4) of Ref. 33 is obtained by the
substitution hg= —Eg(1+X,) and A=X,E„which
relate the ordering of bands to that given here.

D. Nonparabo1icity

The parabolic approximation to the band parameters
is only valid over a range of energies into a given band
which is small compared to the energy interval to the
riearest band with allowed x.y interaction. The range of
validity may be extended by expanding the energies
in powers of the wave vector x; however, this method

also fails when the x y energy for any pair of bands
exceeds their energy separation at kg.

An alternative procedure has been used by Kane"
to further extend the range of validity in the absence
of an external magnetic Geld. The solution proceeds
in two stages. First the h p interaction between
"weakly" interacting bands is removed by a pertur-
bation treatment such as the power series expansion
in x. The resulting Hamiltonian with renormalized
matrix elements is then solved exactly. This procedure
has very deGnite advantages since it is still valid in the
range where the series expansion in x diverges. Also,
the number of "strongly" interacting bands is usually
quite small; e.g., in the lead salts the k p energies for
all bands of the initial set, except the valence-conduc-
tion band pair, are less than the corresponding energy
gaps throughout most of the zone. Only the remaining
pair of renormalized bands needs to be treated in
detail.

The eigenfunctions for the Hamiltonian [Eq. (2.5)7
in the presence of a magnetic Geld are products of the
Koch functions times harmonic-oscillator functions
F ." The raising and lowering operators acting on
the oscillator functions are obtained from the commu-
tator relation [K;,K;7=ise;;&X"." The quantities are
de6ned in Sec. IIE. For a magnetic Geld in the Z
direction, K~——(Ex+iKr)/V2; K+F „=[(n+1)s7'IgF +r,'

and K F =(ns)'"F„r. The valence-conduction-band
Hamiltonian with renormalized parameters is given by
the matrix

Cl/2P

Cs/2P

Eg pH—+(n+-')K& '+g '
2

'
2

I/ &/2P

[Eg(n+1)hrg„, ']'~'

C-&/2P P'1/2P

ha*[Eg/2ns„, '7'"

P'I/2P

[E (n+1)h(o '7'~'

hc,[E,/2m„. '7'"

Eg, p&+ (n+ )h(j) g
l

2
' "2

hlr, [Eg/2nz„'7'~'

hlr. [Eg/2tn. .'7'~'

E PZ—+(n+-')hgg '—
g

'
2

'
2

[E,(n+1)h-.,grim

[Eg(n+1) hg'g7'"

Eg PB——+ (n+xa)hing '+g '
2

'
2

(3 3)

where C+'/' and V+'/' represent the renormalized
conduction- and valence-band functions with the
"weak" interactions removed to lowest order. The longi-
tudinal cyclotron energies are given by h~'= 2'(gn') ',
where the masses for the barred energies are given by
the equations in Table IV with the valence-conduction
band term deleted. Similarly, the barred g factors are
obtained from Table IV with the valence-conduction

gm L.M. Roth, B.Lax, and S.Zwerdling, Phys. Rev. 114,90 (1N9).

term deleted. The energy A~„,' is obtained arith the
mass term given by the valence-conduction band inter-
action. For convenience, the zero-in-energy has been
taken at the middle of the energy gap.

The energies of the levels at ~,=0 are obtained by
diagonalizing the decoupling 2)&2 matrix equations

Eo„~———,
' I (n+-,') (AFAR, '+h(o„')a [(g.'—g„')PH/2+ hing, '7)
+ (E /2)'"{[Eg/2+ (n+-', ) (hogg' —hNy') 7

~[(g.'+g')P&/2 h. '7}'", —
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[(tÃ ') '—(m ') '$

[1+2(n+-', ) (h&o, '—h(o„')/E 7'l2

1
G,'= — (g, '—g„')+2(m, '/mo) '

2

(3.5)

with similar equations for the valence band. In Kqs.
(3.4) and (3.5), the lower case unbarred and barred
parameters are the values determined in the parabolic
approximation, with and without the valence-conduc-
tion band term. It is to be recalled that the signs refer
to electronic states, i.e., m, ' is generally negative. Thus
the energy ratio responsible for the nonparabolicity is
the ratio of the sum of Landau energies in valence and
conduction band to half the gap. The expressions for
the nonparabolic parameters reduce to the parabolic
form in the low-field limit.

IV. CONCLUSIONS

The k p and s.o. interactions among a set of six
levels at the L point for the NaCl lattice have been
treated in detail. The set chosen is obtained from anion
and cation p orbitals in the tight-binding limit and is
the same set adopted in the previous work. The double-

group basis functions derived here, however, diBer
from those published previously. We have verified our
choice by group theory and also by obtaining a corre-
spondence, in the limit of large s.o. interaction, with
the basis functions for bands at the F point derived
from P orbitals in the group IV elements and III-V
compounds. In some of the published work, the spin
assignments in the basis functions were reversed which
leads to incorrect signs for the g factors. We discuss the
sign convention for the g factor in order to resolve any
ambiguity in sign and to provide a test for future work.

The s.o. coupling in the lead salts is large which leads

Ev-+= I{(~+5) (h~.'+h .')+[(P.'—g.')0H/2 —h~. ']}
—(Eg/2)'12{ [Eg/2+ (e+-', ) (h(o, '—hs)„')j

w[(g, '+g, ')pH/2 h(d—,'])'I', (3.4)

where the energy labels refer to the eth Landau level
for the ~~ state of the conduction and valence band.
In the process of regrouping terms within the
square root we have neglected quantities of the order

[(n+,') (h-co, ' K—& ')/E, f'.
The low-field nonparabolic effective masses M;

and g factors G; may be obtained from Eqs. (3.4) in
simplified form by defining the effective mass in terms
of the Landau spacing dE„/dn and the g factor in terms
of the energy difference (E„+ E„).—

1
(3E ') '= — (m, ') '+(m ')—'

2

to appreciable mixing of levels with the same double-

group symmetry. This in turn allows both the longi-
tudinal and transverse coupling of the m matrix element
between levels with J-6+ and 1«synonetry so that
spherical, or nearly spherical bands may result from
the k ~ interaction of a single pair of levels. The general
k m matrix elements, among the set of six levels, were
obtained in terms of two mixing parameters and five
momentum matrix elements. The general expressions
for the parabolic effective masses and g factors for the
six bands were then obtained in terms of these parame-
ters. Expressions for the nonparabolic eGective mass
and g-factor parameters, valid over an extended range,
were obtained under the approximation, appropriate
for the lead salts, that all bands except one interact
weakly with the band of interest. These results extend
and correct prior work and provide a basis for detailed
interpretation of the magneto-optical experiments on
the lead salts.

The tight-binding limit for bands derived from anion
and cation p orbitals was investigated in detail since
this model gives direct insight into the physical origin
of nearly spherical valence- and conduction-band
extrema at the I point of the Brillouin zone. These
features of the band structure of PbS, which have
been a puzzle in the past, follow naturally from the
model. In this model for PbS, the nonzero k.p pertur-
bation between the valence and conduction bands at
the I. point leads to relative maxima for the valence
bands and relative minima for the conduction bands.
At the P point, on the other hand, the k y perturbation
is zero. The spherical conduction and valence bands
result from the large s.o. mixing of the conduction
bands derived from lead p orbitals. In the large s.o.
limit, these bands are similar in detail to the valence
bands at F in germanium and InSb. The valence band
of PbS at the I point corresponds to the conduction
band of InSb at the I' point and the conduction band
of PbS at I corresponds to the split-oG valence band
of InSb at I'.

APPENDIX: TIGHT-BINDING MOMENTUM
MATRIX ELEMENTS

A. Selection Rules at F
We choose for a basis the Bloch functions

e'(k r) =P e'" "y (r—r,), (A1)
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where the label p refers separately to either a sum of
orbitals associated with the anion sublattice sites
located by the position vectors r or to the sum of
another set of orbitals located at the cation sites rp.
The functions y;&(r—r~) are p orbitals which transform
like xL100), yf0107, and s/001) about the lattice site
rp. At the F point (k=0), 4; (O,r), and%';~(O, r) likewise
transform like x, y, s(F4 ) since the phase factor in the
sum is zero. The diagonal matrix elements of the
Hamiltonian (neglecting s.o.) with respect to the
4'; (O,r) functions have a single value which can be
represented by the parameter Eo . Similarly, the
diagonal elements for the 4;e(0,r) functions are given
by Epe. The nondiagonal matrix elements (+, (O,r) ~

XH ~Op(O, r)) and (4; (0&r) (H j%;e(O,r)) are zero for
z/ j. These matrix elements can be reduced to terms
of the form (pp; (O,r)(H~Q y; (r r)—) or (y (r)

~

XH(ge y;&(r—re)), where the origin is chosen at one
of the equivalent anion sites. This matrix element goes
into the negative of itself under a coordinate rotation
of m about the i axis. This operation is a member of the
group of I' and therefore the matrix elements are zero.
Thus the only nondiagonal matrix elements of the
Hamiltonian at F are (4'; (O,r)

~
H ~%',~ (O,r) )=Ep e. The

tight-binding valence and conduction bands at F are
therefore given by

X;(F)=sing%; (O,r) —cosy%;e(0,r),
X (F)=cosy%'; (O,r)+sing+, e(0,r),

(A2)

where tan2y = 2Ep e(Ep Ep~) '. Both s—ets of functions
are odd about either the n or P sites so that the matrix
elements of the momentum p are all zero.

3. Selection Rules at I
At the L point the diagonal matrix elements of the

Hamiltonian are given by the parameters E~ and
EJ.&, which can be related to the parameters at F if
only nearest-neighbor or next-nearest-neighbor inter-
actions are considered. The nondiagonal matrix elements
(4'; (k„r) ~H~%;e(kp, r)) vanish. These matrix elements
can be reduced to sums of terms which are equal to
(P e '"p' q; (r—r ) ~H~q;e(r)), wheretheoriginof the
coordinate system is chosen at one of the lead sites rp.
The inversion operator (Jr ~—r) is a member of the
group at L. Applying the inversion operator and also
reversing the sign of the lattice vectors which are
summed over (r —+—r ') the coupling terms can be
rewritten (P e'~'" 'p, (r—r ') ~H~ q, ~(r)) which for-
mally differs from the original only by the multiplica-
tive factor exp(i2kp r '). The position vectors of the
anion sites relative to one of the lead sites can be
written as a lattice vector r~ of the lead sublattice plus
the displacement ro of the anion sublattice relative to
the lead sublattice (r '=r~+rp) since 2kp is a vector of
the reciprocal lattice and r~ a vector of the real lattice
Lexp(i2kp rq) =1).However, exp(i2kp rp) = —1, so that

the matrix element reverses sign under the described
operation and is therefore zero. This result also follows
from the observation that L-point Bloch functions have
a periodicity of twice the lattice spacing in the L111)
direction so that relative to a given lead site, the
orbitals located at &r have opposite sign.

The only nonzero off-diagonal matrix elements of the
Hamiltonian are of the form (0;"(kp,r) ~H~@;~(kp,r))
which are equal, apart from a constant factor, to the
matrix elements (&p, (r) (H(g~e'~"~yp(r r—~)), where
the origin is at one of the 0, sites, The three matrix
elements are equal for a given sublattice and may be
represented by the parameters EI. and EL,&I'. The
appropriate linear combinations which diagonalize the
truncated Hamiltonian at L are

Z&(L) = (3) '"P e'""~Lpp &(r—r,)+p„&(r—r,)
(A3)

where p refers separately to the sum over anion sites n
or the sum over cation sites P. The wave vector at L
is kp ——(s./ap)$111). Each of these sets of functions is
odd about an origin taken at one of its own sublattice
sites. However, if a common origin at one of the
P (Pb) sites is chosen, then the X~(L), Y~(L), and
Z~(L) are odd and correspond to the L-point basis
functions I, Y, and Z. Referred to the same origin, the
functions X (L), Y (L), and Z (L) are even and linear
combinations can be found which transform like the
basis functions R and S~. Due to an awkward con-
vention which was adopted early in this work, the
direct identiacation of X (L) with S», etc., is not valid.

Consider the transformation properties of N, &(kp, r)
under the group of L-point symmetry operations Q.

+"(kp,Q )=Z """""''p'(QL -*n')) ( 4)

where Q 'r, =r ' or Q 're ——re'(Q 'r, =r,') and Q 'kp

=kp+tc with x'=0 for operations which leave kp
invariant and x'=2ko for the operations which send
kp into —kp. Since re and re' are translation vectors of
the lattice which are included in the sum and a' is a
vector of the reciprocal lattice, the functions 4';e(kp, r)
transform like p, (r), i.e., like x, y, and s in the crystal
coordinate system. Thus the functions X~(L), Y~(L),
and Z~(L) transform like X, Y, and Z in the ellipsoid
coordinate system. The functions are real since the
y;(r) are real and exp(ikp re) =+1.

Similarly, it can be shown that the 4'; (kp, r) are
pure imaginary functions which transform like x, y,
and s except for a multiplicative factor of —j. under
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those operations which send ko into —ke (i.e., J and tion properties of R and S+ given in Table II, we obtain
3Cs). This follows since exp (—t'2ks. r ) = —1 and
exp(iko r ) =+i when the origin is chosen at one of the R=iZz, , S+=+(Xz,'+iYz"),/K2

P sites. Relating these transformation properties of the
functions X (L), Y (L), and Z (L) to the transforma-
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The transverse magnetoresistance p/pe of phonon-assisted hopping conduction in rt-type germanium
samples having phosphorus concentrations

¹
between 5)&10"and 2)&10" cm 3 has been measured at

4.2'K as a function of the strength and orientation of the magnetic induction B in a (110)plane up to much
higher values of B (78 kG) than used in previous work (30 kG). It is found that p/pe is an increasing function
of 8 /Nz up to the highest values of 8 and depends on the direction of 8, the anisotropy being more compli-
cated at higher B. For B~~(001$, p/po increases most rapidly (almost exponentially) with B. Following
Sladek and Keyes these e6ects are explained qualitiatively in terms of the in6uence of the magnetic field
on the donor wave functions. A simple extension of the magnetoresistance theory of Mikoshiba is made and
compared with our anisotropy curves. A reasonably good fit requires that the difference in phase between
wave functions on adjacent donors have a much smaller e6'ect than expected of following Mikoshiba's
method of choosing a certain parameter e. A more reasonable choice of e, which also includes the inQuence
of the decrease in size of the donor wave functions due to the magnetic Geld, greatly reduces the calculated
phase eGect. A Gnal choice of values for e and a parameter relating the spacing to the concentration of im-
purities yields a calculated anisotropy curve which reproduces the main features of the experimental curve
in remarkable detail.

'AGNETORESISTANCE of m-type Ge in the
& ~ phonon-assisted hopping conduction range has

been observed previously by Sladek and Keyes (SK),'
Yamanouchi, ' and Lee and Sladek' at magnetic fields

up to 30 ko. The observations of SK were shown to be
consistent with the theory of Mikoshiba, 4 which ap-
peared shortly after their experiment. Our present
results concern the region of higher magnetic 6elds, up
to 78 ko. The magnitude of the magnetoresistance in
this region is much larger, and the anisotropy of the
effect is larger by an order of magnitude and has more
complicated structure, than at lower fields. In this paper
we compare our observations with the theory of Miko-
shiba and show that the new features of the effect are
compatible with the previous observations.

Miller and Abrahams' showed that the transition rate
for phonon-induced tunneling of an electron between

*Work supported by the Advanced Research Projects Agency.
t On leave of absence from Institute of Physics, Polish Academy

of Sciences, Warsaw, Poland.
' R. J. Sladek and R. W. Keyes, Phys. Rev. 122, 437 (1961).
~ C. Yamanouchi, J. Phys. Soc. Japan 18, 1775 (1963).
3 W. W. Lee and R. J. Sladek, Bull. Am. Phys. Soc. 10, 546

(1965); W. W. Lee, thesis, Purdue University, 1966 (un-
published).'

¹ Mikoshiba, Phys. Rev. 127, 1962 (1962).
' A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).

two donors, differing slightly in energy due to the
presence of an ionized acceptor in their vicinity (Mott's'
model), is proportional to the square of its resonance
energy,

~
W

~

'. Mikoshiba' followed essentially the treat-
ment of Miller and Abrahams in his calculations of the
resonance energy but used wave functions derived by
including in the Hamiltonian a term quadratic in the
magnetic field H. His wave functions decreased in
spatial extent as the magnetic 6eld increased (size
eRect). The magnetic fmld also introduces a phase differ-
ence between the wave functions of neighboring donors
(phase effect). Because of mathematical difliculties
Mik.oshiba treated the size and phase eBects separately
and considered only the component of the donor wave
function derived from one conduction-band valley. The
resonance energies for the size e6ect t/t/"&'& and the
phase effect W&~& were then squared and averaged over
pairs of donors to yield quantities proportional to the
transition rate for electron jumping, i.e.,

1 KR

(( W &'& [') —(( W„o(') exp —— H' cos'fo fz,
48 mg*c'

(&)
9 1 1 ~R'x'

fz dh(1+@') exp————— EP cosset„
16 p 32 etg*c

e N. F. Mott and W. D. Twose, Advan. Phys. 10, 107 (1961}.


