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Conditions for Rotational Invariance of a Has-sssonic Lattice
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The conditions for rotational invariance of a Born-von Karman lattice model are re-examined. It is found
that the Born—Huang conditions for rotational invariance are necessary but not sufficient. Some additional
conditions are obtained which, together with the Born-Huang conditions, constitute a set of necessary and
sufficient conditions.

I. INTRODUCTION
' 'T is well known that the force constants associated
~ ~ with a lattice medium must satisfy certain relation-
ships in order for the potential energy to remain in-
variant under a coordinate transformation correspond-
ing to a rigid motion of the medium. A set of such condi-
tions has been given by Born and Huang' and repeated
by Leibfried' and Maradudin et u/. ' in their compre-
hensive treatments of the subject of lattice dynamics.
It has been suspected for some time that the Born-
Huang conditions did not tell the complete story of
invariance under rigid motion. One notable example
has been the case of the Montroll-Potts-Rosenstock-
Newell (MPRN)4' lattice model, one of the 6rst to
include noncentral forces. If the lattice is infinite, this
model satis6es the Born-Huang relationships, but has
some unhealthy features: First, the long-wave approxi-
mation produces two different sets of relationships
between the force constants and the elastic constants, '
depending on whether one compares the potential
energy or the equations of motion given by the lattice
and continuum theories; and, second, a bounded lattice
fails to satisfy the Born-Huang relationship of rota-
tional invariance, even though the infinite lattice does.
In a recent paper, Ludwig and Lengeler' suggested, as
a method for restoring the rotational invariance of a
bounded lattice, introducing some additional inter-
actions near the surface. This, of course, does not
correct the ambiguity regarding the force-constant-
versus —elastic-constant relationship in the long-wave
approximation.

In this paper, it is shown that the Born-Huang
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relationships, while necessary, are not sufhcient for
rotational invariance. They guarantee that the re-
sultant force on any particle remains invariant under a
small rotation, but do not guarantee that the same is
true of the potential energy. Some additional relation-
ships are obtained which, together with the Born-
Huang relationships, form a set of necessary and
suKcient conditions for rotational invariance, in the
harmonic approximation. Similar conditions are, of
course, needed for anharmonic lattices.

The new conditions are not satis6ed by the MPRN
model, either in its original form or as modified by
Ludwig and Lengeler, both in the bulk and near the
surface of a bounded lattice. This is because a small
rotation produces a zero resultant force but a nonzero
moment acting on every atom, and consequently, a
nonzero change in potential energy.

A safe method for constructing a potential-energy
function which is invariant under rigid motion is to
write it as a function of invariant. quantities, such as
distances between atoms and angles formed by sets of
three atoms. This has been done in two previous
papers' ' in constructing models of simple cubic- and
body-centered-cubic lattices including noncentral forces.

II. THE INVAIGANCE CONDITIONS

We shall give a concise derivation of the complete
set of necessary and sufBcient conditions of invariance
under rigid motion, including the Born-Huang condi-
tions, after a remark regarding the contrast between
bounded and unbounded lattices. In solving a problem
for a bounded lattice region one may take one of two
points of view. The erst one is that taken by Ludwig
and Lengeler, ' namely, that a bounded lattice is an
inhomogeneous medium with a discontinuity in the
force constants near the surfaces. The second point of
view is that the solution for the bounded lattice is one
obtained for the unbounded lattice with the displace-
ments satisfying certain constraints so that the bounded
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region of interest is not inAuenced by the motion of the
atoms outside of it. The two points of view must, of
course, give the same solution to a physical problem.
It is the second point of view which is taken in the
classical formulation of boundary-value problems in
continuous media, as well as in our own formulation of
boundary-value problems in lattices. ' This observation
allows us to confine our attention to an unbounded
lattice and obtain conditions of invariance which will

also be appropriate for a bounded region of this lattice.
The potential energy of a lattice C is assumed to be a

function of the displacements u(lk), where l distinguishes
the various lattice cells and k the different atoms in the
unit cell. In the harmonic approximation, the function
4 is further assumed to be a quadratic function of the
components of displacement, namely,

C=Cp+ Q C' (lk)u (lk)

Using Eq. (6) we can write the potential energy and.

the force components in the form

C'=C'o+p Q C'ap(tk, t'k') ua(tk, t ko)oup(Pk', t ko)o,

P (lk) = —Q C tr(tk, t'k')up(t'k', lk),

where u (lk tpko) denote the components of relative
displacements between the atoms (lk) and (lpkp); i.e.,

u (lk, loko) =u(lk) —u(loko)

aiid (lpkp) is an arbitrary reference atom.
Let us now assume that the whole lattice undergoes

a small rotation about a position of equilibrium; hence,
the relative displacements are given by

L, Tc, a
+-', Q C p(tk, t'k')u (tk)urr(t'k'). (1)

u (lk lpkp) =P or.,x, (tk, tpkp)
P

(9)

In Eq. (1), C p is the equilibrium potential energy and

C.(tk) =BC/Bu. (tk) i „

C p(tk, t'k') =O'C /Bu (tk) Burr (Pk') i p,
(2)

In addition, the first-order constant C' (lk) is seen to
be equal to the negative of the force acting in the 0,

direction on the atom (lk) in the equilibrium configura-
tion, which must be zero, i.e.,

C (lk)=0.

The invariance conditions further express the require-
ment that the potential energy must remain invariant
under a coordinate transformation corresponding to a
rigid displacement of the lattice, while the forces acting
on each atom must transform as vectors.

It may readily be seen that a necessary and sufhcient
condition for invariance under translation is that the
force acting on each atom as a result of an arbitrary
translation be zero. The force components are given by

where the subscript 0 means that the derivatives are
evaluated in the equilibrium configuration. From the
second of Eqs. (2) we see that C rr(tk, t'k') satisfies the
symmetry condition

C p(tk, t'k')=Cp (l'k', lk).

where or p are the components of an antisymmetric
tensor and

Xtr(tk, tpkp) =Xp(tk) —Xrr(tpkp) (10)

The requirement of zero change in potential energy
yields some additional invariance conditions, namely,

Q ($4,(tk, t'k')Xp(tk, tpko)
l,k
l',k'

—C p, (lk, Pk')X (lk, lpkp) jXp(l'k', lpkp)

+/C pp(tk, t'k')X (lk, lpkp) Cp(tk, t'k')Xp(—tk, tpkp))

XX7(t'k', tpkp)) =0. (12)

denotes the relative positions of the two atoms. It is
again necessary that the resultant force on each atom
due to this rotation be zero. But this condition is no
longer sufhcient because the atoms may be acted upon
by moments in addition to forces. If these moments
have a nonzero resultant per unit cell, then they will
result in a nonzero change in potential energy after a
small rotation described by Eqs. (9) and (10). The
requirement of zero forces due to an arbitrary small
rotation yields the well-known conditions' '

Q LC p(tk, t'k')X (tk, t'k')

—C, (tk, t'k')Xrr(tk, t'k')]=0. (11)

BC
F (lk) = — = —Q C p(tk, t'k')urr(t'k') (5)

Bu (lk)

Q C p(tk, t'k')=0.
l', k~

(6)

and they are zero for arbitrary urr(t'k') = ps, where the
vector ep is constant, if and only if

These conditions are obtained by writing the potential
energy corresponding to the displacements given in Kq.
(9), and setting the coeKcients of each product or por~p

equal to zero. It may be ascertained that these condi-
tions are independent of the Born-Huang conditions
given in Eq. (11).Therefore, the Born-Huang conditions
are not sufhcient for rotational invariance.

It is of interest to consider the class of lattice models
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which satisfy the additional symmetry relationship

4' p(lk, l'k')=4p (lk, Pk'). (13)

Such models are, for example, all central-force models
and all models in which each atom is a center of cubic
symmetry. In this case, the potential energy may be
written in the form

4 =Co+-', Q 4 p(lk, l'k')e (lk, l'k')Np(l'k', lk). (14)

The condition of zero forces after a small rotation [Eq.
(11)$ remains unchanged. However, instead of the
condition (12) we now obtain the condition

P i[C.„Xp—Cp,x.jx,
t', I ', a

+[4pgX —4 )XpjX„)=0, (15)

where the identification (lk, l'k') is the same for all
values of 4;; and I; and has been omitted. The index
of summation / has been suppressed before arriving at
Eq. (15) because all lattice cells in an unbounded
lattice give an identical contribution.

We now consider the case of a monatomic cubic
lattice, which includes the MPRN model. In this case,
the conditions (15) are further simplified because the
coefFicients of all the cross products of the components
a p are zero. The remaining conditions are

[4 Xp'+4ppX '—24 pX Xpj=0 (16)
L', k', k

and they are obtained from the requirement that the
coefIicients of the squares of ~ p be zero.

III. THE MPRN MODEL

The MPRN model is a model of a simple cubic lattice
which, in addition to central-force interactions, in-
cludes shear-force interactions. 4' If /;, /;, and /y denote
a lattice position in a monatomic lattice and i, j, k the
corresponding axes, then the force constants corre-
sponding to these shear-force interactions are

4..(lp, lp+1)=4..(tp, lp)=y, nWP

while all the other noncentral-force constants are zero.
For simplicity, only that one of the indices /;, /;, /&

which is diferent for a pair of interacting atoms has
been included in Eq. (17).

All the invariance conditions are obviously satisfied
by the central-force constants. The noncentral-force
constants satisfy the conditions (6) and (11) if the
lattice is unbounded. They violate the conditions (11)
near the surface of a bounded lattice, and conditions

(16) everywhere, since the quantity inside the bracket
of Eq. (16) is always positive. The revised model of
Ludwig and Lengeler~ contains some additional noncen-
tral-force interactions corresponding to force constants

4;,(t;, ld-1) = +qi2
which are associated with atoms at the boundary, for
which /~=0. With these additional force constants, the
conditions (11) are satisfied for a semi-infinite lattice.
However, the conditions (16) are, of course, still
violated, and hence the model is not rotationally
invariant.

IV. CONSTRUCTION OF ROTATIONALLY
INVAMANT MODELS

It is in principle possible to verify the rotational in-
variance of an arbitrary lattice model using the relation-
ships given in the preceding sections. However, a more
convenient method for constructing an invariant model
is by writing the potential energy as a function of in-
variant quantities. Recently, Keating' used inner
products of vectors of displacement and equilibrium
positions in obtaining invariant contributions to the
potential energy. Other invariant quantities are the
distances between atoms and the angles formed by sets
of three atoms. Interactions proportional to changes of
distances and angles are physically plausible and do
not depend on the orientation of the coordinate axes.
Such interactions were included in two papers" in
constructing models of simple cubic and body-centered-
cubic lattices. Only nearest- and next-nearest-layer
interactions were included in these models. Longer
range interactions may be introduced in two ways: by
considering sets of farther removed atoms, and by
introducing in the potential-energy diGerence approxi-
mations to the space derivatives of these distance and
angle changes, with the differences taken between
lattice points. These additional terms would be analo-
gous to strain-gradient terms, such as those included
in the Cosserat" "couple-stress" theory which has
recently been revived and extended by Mindlin and
Tiersten" and by Toupin. "
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