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Thermodynamic Functions

Several thermodynamic functions for alpha-uranium
metal have been calculated by suitable integrations of
the smooth C„curve given in Table I, and these are
tabulated in Table IV at 5'K intervals up to 25'K. The
latter table is in cal deg ' (g at.) ' with 1 cal=4.184 J,
for comparison with, and use with, Table II of Flotow
and Lohr. ' The agreement at 25'K is close enough so
that the entries above 25'K can be used without
change. In particular, at 298.15'K the values are S'
=12.00+0.02 cal deg ' (g at.) ', EP—Ps'=1521&3
cal (g at.) ', and (O'—Ps')/T= —6.893 cal deg '
(g at.)—'.
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Certain dipolar impurities in alkali halides, such as OH in KC1, are free to reorient themselves among the
six (100) directions of the crystal. A one-parameter model Hamiltonian is introduced to describe the prop-
erties of such an impurity in the presence of electric and strain Gelds. Wave functions and energy levels are
calculated for fields along the L100j, L110j, and $111$ directions. The susceptibility is calculated for fre-
quencies much smaller or much larger than r1, the rate of relaxation to the lattice. Resonance transitions
between different energy levels are described and the matrix elements for such transitions are tabulated for
several orientations of dc and rf electric Gelds. A simple theory of line broadening due to inhomogeneous
strains is presented and compared with experimental results.

I. INTRODUCTION

~ 'HERE has been a great deal of recent experi-
mental and theoretical interest in the properties

of dipolar impurities in alkali halides. Two general types
of impurities have been investigated. One type consists
of diatomic ions with a permanent dipole moment;
examplesareOH orCN substitutedfor Cl inKC1. ' "
The second type consists of atomic ions, such as Li+ sub-
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stituted for K+ in KCl."" In this type the dipole
moment arises because the substituted ion can occupy
a diferent position in the unit cell than the ion it re-
places. The most interesting property of both types of
impurities is that they are free to reorient themselves
along several equilibrium directions of the host lattice;
and this reorientation can be inQuenced by external or
internal electric 6elds and strains. This property makes
possible the observation of many of the phenomena that
were first observed in connection with paramagnetic
impurities in insulating crystals; such as a temperature
and field-dependent susceptibility, paraelectric cooling,
and paraelectric resonance. All of these have now been
observed.

In much of the theoretical work on paraelectric im-
purities and their interactions with each other and
with their environment'~" it has been possible to treat
the impurity as a classical electric dipole pointing along
one of several possible equilibrium directions, each de-
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generate in energy with the others. Several authors'~"
have pointed out that this is an oversimpliGcation, since
the true states of the system must transform according
to the symmetry group of the lattice, and states trans-
forming according to different representations will in
general have different energies. These energy splittings
will have a signiGcant effect on properties such as the
speciGc heat and low-frequency susceptibility when the
temperature is of the same order or less than the split-
tings; they also play a crucial role in determining the
linewidths and intensities of resonance transitions be-
tween different orientations.

The purpose of the present paper is to describe a
simple model Hamiltonian that will represent the effects
of the crystal Geld, electric Geld, and strain on the
impurity and to use this Hamiltonian to calculate the
expected properties of the system. In this paper only the
simplest three-dimensional model will be considered;
namely the one in which the equilibrium orientations
of the dipole are along the six [100]axes of the lattice.
We shall find that even though one knows almost
nothing about the dynamics, or for that matter the
statics, of the impurity in the crystal; we can still say
a great deal about the low-temperature behavior of the
specific heat and susceptibility.

)Pote added in proof Many .of the results of this

paper, and particularly the energy level structure in the
presence of an external electric field, have been derived
independently by P. Sauer, O. Schirmer, and J.
Schneider, Phys. Status Solidi 16, 79 (1966).j

II. HAMILTONIAN AND ENERGY LEVELS

It is assumed that the impurity finds itself in a strong
octahedral crystal Geld with potential minima along the
six L100] directions of the lattice. Devonshire" has
solved a problem of this type using a simple potential
of OI, symmetry and Gnds, as expected, that there are
six approximately degenerate low-lying states, corre-
sponding to the dipole pointing along one of the
equilibrium directions. The states can be written as
~+s),

~

—s), ~+x),
~

—x), [+y), [
—y). We take care

not to specify too carefully the nature of these states,
except that they are mutually orthogonal. Each of the
states is a many-particle wave function describing all
the atoms making up the impurity and the associated
lattic distortion. Of course once one of the states is
known, all of the others are related to it by simple
rotations.

For a finite crystal field there will be matrix elements
of the Hamiltonian connecting the different states, i.e.,
there will be a finite probability of "tunneling" through
the potential barrier to a new orientation. There will be
equal matrix elements, —i~A, connecting the state

~
+s)

to the states (+x),
~

—x), ~+y), (
—y); and a diferent

matrix element, 6', connecting the states ~+s) and

~

—s). The crystal-Geld Hamiltonian can then be
written as a matrix:

0 0 1 1 1 1 0 1

0 0 1 1 1 1 1 0

d, 1 1 0 0 1
Q{)

2 1 1 0 0 1 1

1 1 1 1 0 0

1 1 1 1 0 0

0 1

1 0

0

1 0

If the crystal Geld is suKciently strong the probability
of tunneling by 180' will be small compared to the
probability for tunneling through 90', consequently, it
will usually be possible to set d'=0. Henceforth this ap-
proximation will be used; its validity will be discussed
in the Appendix. The crystal field will therefore be
described by the single parameter b.

Electric and Strain Fields

The contributions of electric fields (dipole fields) or
strains (quadrupole fields) to the Hamiltonian can also
be written in matrix form:

S= Si/2+ST
Si/2+ST

Si/2 —Sm

Si/2 —Sg

Here E is the external electric field and p„ is the dipole
moment of the impurity uncorrected for local Gelds,
i.e., Ei,. p=—E p„. For low impurity concentration p„

'~ M. E. Baur and W. R. Salzman, Phys. Rev. Letters 16, 701
(1966)."T. L. Kstle (private communication).

'~ J. A. Sussmann, Phys. Kondensierten Materie 2, 146 (1963).' A. I".Devonshire, Proc. Roy. Soc. (London) A153, 601 (1936).

should be approximately independent of E and tem-
perature.

The quantities S&, S2 are proportional to linear
combinations of the strain components:

Si——n (e„——',e..——',e»),

S,=-;n(e„„—e..).
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The matrix for K, is written in traceless form because form. For example, the dipole-moment operator is
in this approximation the breathing mode,

Sg=n(e +e +e~y),

will result only in an unimportant uniform shift of all
the levels.

The form of X~ used here can be compared with the
form used by Sussman" for a two-level model. In that
paper it was shown that the perturbation has o6-
diagonal elements in addition to the elements indicated
in Eq. (2), Lsee Eq. (16) of Ref. 19j.However, if the
crystal Geld is large it can be seen that these elements
will be negligible compared to the o8-diagonal elements
of the unperturbed Hamiltonian, —~A. Therefore, Eq.
(2) can be used to describe the perturbation for all
values of Ep„or S~, S~ that are small compared to the
depth of the crystal Geld well. The operators for
quantities other than X can also be written in matrix

(4)

where i, j, k are the unit vectors in the x, y, s, directions.
The Hamiltonian Xo+Xs+Xe can be easily diago-
nalized for given values of d, E, S~ and S~, diagonaliza-
tion of Xo alone produces a ground-state singlet (A~,)
with energy h= —2h, a triplet (2'& ) at 8=0 and a
doublet (E,) with 8=+6. In Fig 1t.he level structure
for an applied electric Geld along a L100j axis„a L110$
axis, and a L111jaxis is shown. The symmetry groups
are C4„C2, and C3„, respectively; the transformation
properties of the eigenfunctions are indicated in stand-
ard group-theoretical notation.

First-Order Wave Functions

The wave functions for S=O and arbitrary E can be computed numerically; however, the following analytic
expressions are obtained from perturbation theory. For Ep„/6((1 and E in the +s direction:

1 Ep„
0(3A &) L2 I s&+2 I

—
s&

—I*&—
I
—*&—

I y)—I
—y&j— L I s&—

I
—s&j

2

h(3A, )=+~;

0 (1E)=—
CI &&

—
I
—&&j

v2

$(1E)=0;

1 Ep„
f(2Ai) =—Lls& —

I
—s&j+ Cls&+ I

—
s&

—l~&—
I
—*&—

Iy&
—

I
—y&3,

V2 2' a

$(2A g) =0;

1 Ep-
0(» )= Lls&+ I

—s&+ I*&+ I
—~&+ I»+ I

—yH+ Cls&—
I
—s)l,

6 2/6

$(1A g) = —2D.

The zero-Geld states are obtained by setting E=0. The energies indicated in Eq. (5) are unchanged from the E=O
values because there is no first-order shift in energy with applied electric Geld.
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Fxo. 1. Energy levels versus
electric 6eld for an unstrained
crystal. (a) E 6eld along a 100
direction; (b}E Geld along a 110
direction; (c) Z Iield along a L111j
direction.
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Q2
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2 Ep„+6 2Ep„(Ep„+6)
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I
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FxG. 2. EBect of strain on energy-level structure. g~ is a tension along the s direction; 82 is a tension along the x direction and a
compression along the y direction. (a) E=O, Ss=O; (b) Z=O, Sq=0; (c) Ep =46, 8 in the +s direction, Ss=0.
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The levels that transform according to representations other than Ai are not shifted by the field so that for those
levels the expressions of Eq. (5) are valid for arbitrary E along the s axis.

For Ep&)h and E along the (111)direction:

0(2E)=—
L I

—*&—
I
—x&7+ LI*&—l»7,

V2 8 Ep„

v2 z
4'(2E) = [2I —s)—I

—*)—I
—y&7+— L2ls& —I*)—I»]

6 SE„
1

h(2E) =—Ep„+~/2.

1
&(» )=—

LI
—s&+ I

—*)+I
—»7—

V3 2E
[Is&+ I z&+ I x&7,

1
h(», )=—Ep„—~;

Q6
&«E)=—[I*&—

I x&7
—

L I
—*)—I

—y&],
v2 8 Ep„

1 v2 a
O'(1E) = [2 I s&—I*)—l»7— L2 I

—
s&

—
I
—*&—

I
—»],

8 Ep„

1
h(1E) = ——Ep„+6/2;

1
0 (1~i) =—

L I z&+ I*&+Is&7+ [I—s&+ I
—*)+I

—»],
v3 2Ep„

1
$(1A i) = Ep„——

The level structure can also be calculated for E=O
in the presence of an applied stress. In Fig. 2(a) the
energy levels as a function of strain along a [1007 axis
are shown. In this figure S2——0 and Si is varied. For
large positive stress the levels exhibit the expected
classical behavior; two levels decrease in energy and
four increase.

In Fig. 2(b) the level structure is shown for a strain
in the xy plane such that S~=O while S2 is varied. In
this case a large strain results in a diferent energy for
dipoles oriented along each of the three crystal axes.

In a real crystal the dipole impurities experience both
electric and strain fields, due to crystal imperfections
and interactions with other impurities. Figure 2(c)
shows the level structure as a function of strain S~ for a
nonzero value of E, in this case Ep„=46. Both the
strain and field are along a [1007direction in this figure.

X—Xp+Xg —Xp+1Vp (P)r
dZ

(8)

here Xo is the susceptibility of the lattice, 37& is the

IIL LOW-FREQUENCY SUSCEPTIBILITY

The low-frequency electric susceptibility as a function
of electric field and temperature is inQuenced markedly
by the ground sextuplet splitting. Here, we shall be
concerned with frequencies small compared to 6, but
not necessarily small compared to ~j ', the dipole-
lattice relaxation rate. The calculations of this section
are somewhat unrealistic in that they assume an un-
strained crystal, but the approach can be generalized
to include strains.

In the limit of low impurity concentration, the sus-
ceptibility X can be written as
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IzG. 3. Low-frequency sus-
ceptibility versus electric 6eld
along the +s axis. Xa is the low-
6eld high-temperature limit:
xs=Nap p/3kT. (a) Fast re-
lazatiOn limit: carl&(1; (b) SlOW
relaxation limit ~r1&&1.
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P P~ 1+,3e sa/sT —4e ss/sT-
Xs(Ep——0) =

1+3e ss/RT+2—e sa/sT- (13)

&p)r=Z f'(E T) &p)'

concentration of impurities, and &p)r is the thermal The expression for Xq is then
average dipole moment of a single impurity. For the»x-
level system,

where f;(E,T) is the probability of the ith state being oc-
cupied at a particular value of E and T and (p); is the
expectation value of the dipole-moment operator in the
state i. Using (9) for &p;)r in Eq. (8), there are two
separate contributions to X from the impurity dipoles:

d df;(E,T)
&~=&s Z f'(E,T) (p)'+ (p)' (1o)

dE dE

The 6rst term is the contribution to X due to the pertur-
bation of the wave functions by the 6eld; for frequencies
co&&h, it is rate-independent. The second term gives the
contribution produced by "classical" reorientation of
the dipole among the six states. This term will depend
on the applied frequency; for example, if a single
relaxation time is applicable, one would use the
substitution: ( s);=— p V(W;+1)s

W s+2W,s+W;—1
(15)

This result is essentially identical to those of Refs. 16
and 17. Two limiting cases are of interest; if AT(&h we
have Xs P„PNq/3/3. while if kT&)h the result is
//~p pJV's/3kT. The high-temperature limit is identical
with the result of a classical calculation for a dipole with
six equilibrium orientations, but whereas the classical
calculation would give a Debye-type frequency de-
pendence for curl&1 the present result is frequency-
independent for all Lr &A.

For nonzero Es along the +s direction, both terms
of Eq. (10) contribute to Xz. Again only the three states
of Al symmetry enter. The dimensionless energies
W;= b;/6 of these states are the three roots of the
equation

(W+1)V'= W(W+ 2) (W—1),

where V=Ep„/h. The expectation value of p, for the
three states is given by

df;(E,T) 1 df s(E,T)-
1+gdrr dE

(11) After some manipulation with Eqs. (14) and (15), one
finds again for all three states:

Here f; (E,T) is the equilibrium value of f; at the given
6eld and temperature and Eo is the value of the applied
dc ield.

If Es equals zero, the second term of Eq. (10)
vanishes and the susceptibility is obtained directly by
using the wave functions of Eq. (5) to evaluate the
factors d(p);/dE. For a small ac 6eld in the L100j
direction the nonzero contributions are

d&p.).JdE=-4p-p/»

d(p*)' pp (W;+1)s(2W +2W;s+4W;+1)
(16)

h(W s+2W,x+W;—1)'

The factor f;(E,T) is simply

exp( —h;/kT)
f'(E, T) =

P exp( —h, /kT)
j=l

(17)

Equation (14) is then used together with (17) to
calculate df;/dE.

The result of substituting all of these factors in Eq.
(10) is shown in Fig. 3. The susceptibility is normalized
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ALE I. Squared matrix elements of the dipole-moment
operator connecting different states for a dc field in the $100$
direction. Ep~&h; SI S2&&h. The angle between the dc and rf
fields is 8'.

R

l0—
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W

t I flifl
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hv/4

Fn. 4. Ratio of the square
matrix element of the strong
1AI ~ 2Aj transition to the weak
1A I ~ 3A1 transition versus reso-
nance frequency hv.

Transition

1Ag++ 2Ag

lAI ++ E
1Ag+-+ 3Ag
2Ae+-+ E
2AI ~ 3AI

E +-+ jgI
E ~3AI

Energy difference hv

Ep —6+-'Sg
Ep
2EP —6(il/EP )'Si

Ep +h, —+SI

Ep

Square matrix
element

(5/hv)' cos'8

g (6/hv)' sin'8

64(h/hv)' cos'8

g sin'8

(hfhv)~ cos~8

~ sin~8

$ (n/hv)' sin'8

to the high-temperature, low-field limit, Xs=EsPP./3k T.
Figure 3(a) is the expected result for o~&&1/rr. In the
opposite limit, ~))1/rr, the second term of (10) goes to
zero. Figure 3 (b) shows the expected form of Xs in this
limit. It should be emphasized that these results apply
only to an unstrained crystal in which dipole-dipole
interactions are unimportant. In contrast with our re-
sult derived on the basis of a perfect crystal, Sosshard,
Dreyfus, and Kanzig find a strong frequency depend-
ence of X„ in KCl:OH, even for p„Es«h. Thus the
present calculation provides additional support for the
conclusion of Ref. 1' that the dielectric behavior is
strongly influenced by random electric or strain 6elds
produced by crystal imperfections or dipole-dipole
interactions.

IV. RESONANCE TRANSITIONS

At high frequencies the rf electric 6eld will induce
resonance transitions between the energy levels de-
scribed in Sec. II.S 9" In this section we describe the
possible transitions and the expected intensities. In the
absence of relaxation mechanisms the diagonal elements
of the absorptive part of the susceptibility tensor are
given by

where (i I pl J) is a matrix element of the component of
y in the direction of the applied rf field. The line
intensities for various orientations of the dc and rf fields
are determined by these matrix elements. Simple
analytic expressions can be obtained for the square
matrix elements if the dc fields are such that Esp~)/I,
so that first- (or, in some eases, second-) order perturba-
tion theory is applicable.

Let the large dc field be along the +s axis LFig. 1(a)].
Then the nonzero square matrix elements I(l E y„l) I'/
E'p„ for an electric field in a direction described by the
spherical coordinates 0, q are given in Table I. The
transition probability for 1A~~3A~ is seem to go as

(4/hv)', this is because the states I s}and I
—.s) are not

connected directly by the crystal field Hamiltonian, but
must use the 2A~ state as an intermediary. The ratio of
intensities of the 1A~+-+ 3A~. 1A~+-+ 2A~ transitions is
64(A/hv)4 in the high-field limit. This ratio can be
calculated numerically for any Geld; the result of this
calculation is shown in Fig. 4. This curve was used in
Ref. 9 to determine 6 from the observed intensity ratio
of 30 for the 1A~ ~ 2A~'. 1A~+-+ 3Aj transitions.

For a dc field in the L111]direction [Fig. 1(c)j, it is
convenient to describe the orientation of the rf 6eld.
with spherical coordinates 8, p measured with respect to
the I 111j direction. In Table II, the squared matrix
elements for all the allowed transitions are tabulated,
again for Ep~)/I. .

Strain Broadening

TABLE II. Squared matrix elements of the dipole-moment
operator connecting different states for a dc field in the $11tj
direction, Ep~&d; SI, S2(&b,. The angle between the dc and rf
Gelds is 8.

Transition

1AI ~ 1E
1AI ~ 2AI
1AI ~ 2E
1E+-+2Ag
1E~2E

2AI, ++ 2E

Energy diBerence hv

3Q

(2/v3)EP +(2/vS)+0 Si
(2/VS) EP +ave.

(2/vF) Ep„
(2/%)Ep

Square matrix element

sln2g

s4 (6/hv)' cos'8
—,', (h,/hv)' sin'8

~II (6/hv)' sin'8
Ia (a/hv)'(1+cos'8)
~3 sin'0

The widths of the resonance lines observed in Ref. 9
were independent of temperature below around if'K.
It was concluded that the broadening was due to in-
homogeneous strains in the host lattice. The effect of
strains on the dipole level structure can be qualitatively
detel'IIlilled by use of 'tile stl alii Halllll'tonlall of Eq. (2).
As an example, Fig. 2(c) shows that the energy differ-
ence between the j.A~ and 3A~ levels is changed very
slightly by a small strain 5&. This is in fact true for
any small strain if Ep~)/h. The energy differences
1A~~ 2A~ and 2A~ ~ 32~ are much more dependent
on strain. These observations are consistent with the
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experimental result that the 1A~&-+ 3A~ weak line is
much narrower than the 1A~+-+ 2A~ strong line.

In general, most transitions will be strain broadened.
Only transitions between states that are approximately
related by an inversion through the origin will remian
sharp under small strains. In the limit of large electric
field the wave functions of Eqs. (6) and (7) can be used
to determine the shift in resonance energy hv to erst
order in the strain. These energy shifts are indicated in
Tables I and II for transitions between singlet levels;
the shifts for transitions involving doublets are more
complicated because the doublets may be split by the
strain.

This linear model predicts a linewidth ratio of
16(h/hv)s for the 1At+-+ 3At. 1At+-+ 2At transitions of
Table I. For the resonance of OH in Ref. 9, this pre-
dicted ratio is 11.3, while the observed ratio is approxi-
mately 8. However, the 1A& ~ 2A& line is so broad in
that experiment that it is unlikely that a calculation
which treats only linear terms in the strain will give
accurate results.

APPENDIX

One can estimate the relative importance of matrix
elements 6', connecting states oriented in opposite
directions, by calculating these elements for a model
potential with octahedral symmetry. Such a calculation
has been done by Devonshire" for the potential

3 5 x'+y4+s'
V= E ——+——

2 2 r'
(A1)
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of K/B, where B=k'/2I is the free rotational constant
of the ion. The results are shown in Fig. 5. For 6'/0,
the energies of the six lowest lying states are
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For OH, 6'/6 can be estimated by using the values
5=0.3'K ' and B=27'K."Then Fig. 5 gives E/B) 70
and 6'/h(0. 01.The effective crystal field on this model
is extremely strong and provides a justi6cation for
neglecting 6' in comparison with h.

I I I

0 10 20 ,30 40 50 60 YO

K/B

Fro. 5. Splittings in the low-lying energy levels versus the
strength of the crystal Geld, using the Devonshire potential. Curve
A: 6/B versus IC/B. Here b, is —', of the A1, ~E, energy difference,
B is the dipole rotational constant, and E is the strength of the
potential in Eq. (A1). Curve B: 2a'/n versus Z/8. a' is the
effective matrix element of Eq. (1).Its effect on the level structure
is given by Eq. (A2).

Using this potential and Devonshire's method, we have u C. H. townes and A. L. Schawlow, microwave spectroscopy
calculated the quantities 8/B and 2A'/5 as a function (McGraw-Hill Book Company, Inc. , New York, 1955), p. 639.


