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function is essentially the same on all atomic spheres
(such as for s-p type states) and is useful for semi-
quantitative work whenever one type of atom com-
pletely dominates the average, such as occurs for the
d-type state in a-brass. It is emphatically not valid
near the region where the amplitude of one type of
atom has a singularity (see Fig. 5). For near the singu-
larity it may easily be shown that the imaginary part
of the corresponding angular-momentum component of
Green’s function vanishes, yielding a finite Ap(E),
whereas our procedure yields a singularity in Ap(E).

where G is the exact Green’s function, and

d(x—R)
wlgloy= [ = =ruwg)

(%' —R)
XV (%) dxdx’
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where the integration is over the surface of the ith
sphere and the notation is defined in the text.
Relation (B1) is therefore valid whenever the Green’s
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The Shubnikov-de Haas effect has been measured in single crystals of high-purity bismuth. Some of the
observed oscillations have periods similar to those found by Lerner and attributed by him to heavy-holes and
electrons. Some of these periods are shown to be the result of superposition of oscillations due to different
parts of the Fermi surface of the two-carrier model of Smith, Baraff, and Rowell, and the others to be the

result of frequency modulation due to oscillations in the Fermi energy.

INTRODUCTION

ECENT measurements of the Shubnikov-de Haas
effect,!? the de Haas-van Alphen effect,® and
cyclotron resonance! have revealed the presence of a
group of holes in the band structure of bismuth, in
addition to the electrons originally found by Shoenberg.®
The differences between the estimates of the size and
shape of the Fermi surface made by various authors are
consistent with the differences in purity of the samples
used in their experiments, and in each case a calculation
of the electronic component of the low-temperature
specific heat based on the band structure leads to a
value an order of magnitude smaller than that meas-
ured.®” This discrepancy may be explained by postu-

* Research supported from grants in aid of research awarded
by the National Research Council of Canada and the Ontario
Research Foundation. One of us (A.M.F.) acknowledges support
by a Garnet W. McKee-Lachlan Gilchrist Scholarship.

T Present address: Department of Physics, St. Salvator’s
College, St. Andrews, Scotland.

(1192(5.) Eckstein and J. B. Ketterson, Phys. Rev. 137, A1777

2 G. E. Smith, G. A. Baraff, and J. M. Rowell, Phys. Rev. 135,
A1118 (1964).

#N. B. Brandt, T. F. Dolgolenko, and N. N. Stupochenko,
Zh. Eksperim. i Teor. Fiz. 45, 1319 (1963) [English transl.:
Soviet Phys.—JETP 18, 908 (1964)7.

4 G. E. Smith, L. C. Hebel, and S. J. Buchsbaum, Phys. Rev.
129, 154 (1963).

5 D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).

¢T. N. Kalinkina and P. G. Strelkov, Zh. Eksperim. i Teor. Fiz.
3:653;:6' (1958) [English transl.: Soviet Phys.—JETP 7, 426

7 N. E. Phillips, Phys. Rev. 118, 644 (1960).

lating another set of charge carriers in bismuth, with
greater effective masses than those already observed.
Lerner,®® claims to have found Shubnikov-de Haas
oscillations which are caused by these heavy carriers,
and deduces from them the sizes and shapes of the
corresponding pieces of Fermi surface. The measure-
ments described here were made with the object of
providing confirmatory evidence for Lerner’s sugges-
tions, whose validity has been doubted by several
authors. It is found that a straightforward interpreta-
tion of our results is consistent with Lerner’s observa-
tions, but that a more thorough analysis shows that all
the results may be explained on the basis of the two-
carrier model of the bismuth band structure.

EXPERIMENT

Zone-refined bismuth, purchased from the Consoli-
dated Mining and Smelting Company of Canada
Limited, and of a nominal purity of 99.99999, was
subjected to further zone refining in Union Carbide
grade AUC graphite boats iz vacuo. Central sections,
15 cm long, cut from three 50-cm-long ingots which
had each been passed through a zone-melting furnace
at 4 cm/h 21 times, were placed end to end in another
boat and repassed 13 times. Single crystals were grown
from the central section of the resulting ingot by
passing a molten zone along its, starting from a small

8 L. S. Lerner, Phys. Rev. 127, 1480 (1962).
9 L. S. Lerner, Phys. Rev. 130, 605 (1963).
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seed crystal. Natural cleavage planes were used to
determine the orientation of these crystals, and speci-
mens, about 5 cm long with a 12-mm-diam semicircular
cross section, were cut from them with a Servomet
spark-erosion machine.

To minimize strain due to differential thermal ex-
pansion on cooling, the sample holder was made of
bismuth covered with a layer of varnish to insulate it
from the specimen. Beryllium-copper springs served to
keep the sample in the holder and to hold point elec-
trical contacts against it, thus avoiding the possibility
of contamination with solder.

The sample was mounted with its length vertical in
a conventional liquid-helium cryostat, so that it was in
a central position between the pole faces of an electro-
magnet, which could be rotated about a vertical axis
with the field kept horizontal. The magnet (Harvey-
Wells model L-158) was capable of producing fields up
to 19 kG which were calibrated in terms of the current
with an accuracy of %% using a Harvey-Wells pre-
cision NMR gaussmeter (G-502) and a Rawson rotating
coil gaussmeter (type 829S).

Resistance measurements were made by passing a
steady current (about 1 mA) through the specimen and
measuring the resulting potential difference with a
Keithley Model 149 millimicrovoltmeter. The output of
this meter was fed into the y input of an x-y recorder,
whose x input was fed from a high current resistance in
series with the magnet windings, via a low pass filter
which reduced noise from the generator.

Most measurements were made at 1.4°K to maximize
the Shubnikov-de Haas oscillations, the normal pro-
cedure being to set the orientation of the field and then
increase the magnet current from zero to its maximum
value at a rate slow enough that the resistance recorded
at any field was identical with that obtained in the
same steady field. Apart from the obvious advantage
of simplicity, this method was chosen in preference to a
differential -technique to avoid distortion of the re-
sistance oscillations by eddy currents and because field
values for which resistance minima occur, which can be
related directly to the band structure, are more easily
obtained from a graph of resistance R rather than
dR/dH, plotted against field H, if corrections have to
be made for zero errors introduced by the instruments.
The ‘method is, however, less sensitive than the dif-
ferential methods and comparisons of our results and
Lerner’s suggest little difference due to eddy currents.

RESULTS

Measurements were made on three samples: the
first two were oriented with their trigonal (2) axes
within three degrees of the vertical, the magnetic field
making an angle ¥ with the bisectrix (y) axis, and the
third with its z axis horizontal, its binary (x) axis
inclined at 10° to the vertical and H making an angle
0 with the 2z axis. The resistance ratios [R(300°K)/
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Fic. 1. Recording of
R versus H for specimen
1 at y=44°.

R.

R(4.2°K)] of these samples were, respectively, >1000,
~150, and ~300. The significance of these numbers is
somewhat doubtful because the measurements were
made in the earth’s magnetic field, which, according to
Zitter’s® results, may be enough to increase the re-
sistance of a very pure sample to several times its
zero-field value. An alternative criterion for deciding
which samples would be most profitable for detailed
study was the sharpness of the peaks obtained in a
constant field when the resistance was plotted as a
function of angle when the magnet was rotated.!

Graphs of R versus H (or magnet current) were ob-
tained from the first two samples for values of Y ranging
between 0 and 120° in-2° intervals, and from the third
with @ ranging from —90° to 4+90° in 2° intervals. A
typical example of such'a recording is shown in Fig. 1.
The positions of the resistance minima could be deter-
mined by inspection of the original recordings (which
were of larger scale than Fig. 1), with an uncertainty of
less than 60 G, representing a possible error in H of
about 139, and 39, at the lowest and highest fields,
respectively. The effect of the background magneto-
resistance on the positions of the minima was estimated
by fitting to the data of one recording a simple poly-
nomial in A and then subtracting it from the resistance
values to leave only the oscillatory part. The minima
were found to be shifted randomly from their original
positions by less than 39, on the average, so that no
significant correction could be made and the procedure
was not repeated for the rest of the data.

On each graph successive minima were labeled with
the natural numbers, starting at the highest fields. Then
the value of 1/H at which each minimum occurred was
plotted against the number assigned to it. In some
cases many of the points so obtained lay on a straight

0 R. N. Zitter, Phys. Rev. 127, 1471 (1962).

11 Measurements of this kind are described by A. M. Forrest
and A. C. Hollis Hallett, in Proceedings of the Ninth International
Conference on Low Temperature Physics, edited by J. G. Daunt,
D. O. Edwards, F. J. Milford, and M. Yaqub (Plenum Press, Inc.,
New York, 1965), p. 740.
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Fic. 2. (a) Observed Shubnikov-de Haas periods for H in the
x-y plane at an angle ¢ with the y axis. O, specimen 1; A, speci-
men 2; @, data from Fig. 3 of Ref. 9. (b) Periods due to inter-
ference between Shubnikov-de Haas oscillations.

line, but more often the pattern was broken up into
various groups each containing several collinear points
(see, for example, Fig. 4 shown later). Whenever four
or more points were collinear, the slope of the line
through them was taken to be the period P=A(1/H),
“of the Shubnikov-de Haas oscillations. The values thus
obtained are plotted against orientation in Fig. 2(a),
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which includes Lerner’s? data for this orientation, and
in Fig. 3.

DISCUSSION

The data in Figs. 2(a) and 3 are so scattered that any
attempt to interpret them without prior knowledge of
the band structure of bismuth to serve as a guide
could be little better than guesswork. Fortunately,
there is no lack of literature on the subject, and we
have chosen for a starting point the model used by
Smith, Baraff, and Rowell? together with their experi-
mental parameters.

The curves in Figs. 2 and 3 represent periods of
Shubnikov-de Haas oscillations calculated from these
parameters, using the well known result

P=A(1/H)=2re/hQ, )

where @ is the extremal cross sectional area (in % space)
of the Fermi surface in a plane normal to the field, ¢ is
the electronic charge (in emu) and % is Planck’s con-
stant divided by 2. Curves 1, 2, and 3 in each case
correspond to the three electron ellipsoids disposed
symmetrically about the trigonal axis, and curve 4 cor-
responds to the hole ellipsoid of revolution.

In Fig. 2(a), Lerner’s data for periods greater than
1.0X1075 G are less scattered than ours but differ
widely from the electron curves, and are better de-
scribed in terms of different effective masses and Fermi
energy. The discrepancy in the latter could be due to a
difference in purity between the samples of Lerner and
of Smith et al., but effective-mass ratios would not be
expected to differ significantly between samples as pure
as these. Our long-period data, on the other hand, could
be described as well by Smith’s parameters as by any
others.

P x 10% (G™')

30° 0° 30°
0

Fic. 3. Observed Shubnikov-de Haas periods for H in a plane
containing the 2 axis (specimen 3). 2 axis is at §=0°,
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For periods less than 1.0X1075G™! our data are
similar to Lerner’s, some of which he accounts for in
terms of a light-hole ellipsoid and a group of heavy
holes associated with a piece of Fermi surface in the
shape of a “trefoiloid.” The light-hole periods are
supposed to lie on or near a horizontal line at 0.41
X10~5 G [curve 4 in Fig. 2(a) is at 0.49X10~° G™]
and the heavy-hole periods on a curve with maxima of
about 0.8X1075 G! at y=0, 60°, etc., and minima of
about 0.48X10~% G at ¢=230°, 90°, etc. To conserve
charge neutrality it is necessary to postulate another
group of electrons, which are assumed by Lerner to be
associated with a spherical piece of Fermi surface and
to give rise to oscillations with a period of about 1.2
X10-5 G, three of which appear in Fig. 2(a) at
¥=>521° 63° and 68° and a few more when the field
is in the y-z plane.

Lerner’s suggestions might be supported on the evi-
dence of the similarity of the two sets of short-period
data, were it not for the scatter of the rest of our re-
sults, which casts doubt on the validity of the inter-
pretation of the experiment. This doubt has led us to
seek alternative explanations of the oscillations at-
tributed by Lerner to heavy carriers, as well as others
which he dismissed as being spurious, and to account
for most of our long-period data. The following sections
describe two different effects which account for the
confused appearance of Fig. 2(a).

INTERFERENCE BETWEEN OSCILLATIONS

Under ideal conditions at 0°K the Landau levels for
electrons in a magnetic field are very sharply defined.
As the field is increased, the energy of a Landau level
increases, and when its minimum value becomes equal
to the Fermi energy, it is suddenly depopulated. The
relaxation time for electron scattering, which depends
on f(E)[1— f(E)], where f(E) is the Fermi function, is
temporarily increased at this field value, giving rise to
a sharp dip in the transverse magnetoresistance. In
practice, the Landau levels are not so sharply defined
and the temperature is finite, so that the resistance dip
is spread over a range of field values which are such as
to keep the difference between the minimum energy of
the level and the Fermi energy within about k(74x).
(k is Boltzmann’s constant, 7T is the temperature and «
is the Dingle temperature.) If this difference is small
compared with the separation of the Landau levels the
Shubnikov-de Haas effect will appear as a series of
fairly sharp dips superposed on the normal magneto-
resistance of the metal.

When several sets of Landau levels exist, several sets
of resistance dips will occur as the field is varied. The
separation between some of them may be so small that
they will merge into each other. An order-of-magnitude
criterion for the resolution of two dips may be set up:
If the energies of the corresponding Landau levels at
the same field value differ by more than a few
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times %(74x) then the resistance dips should be
distinguishable.

Consider first two sets of Shubnikov-de Haas oscilla-
tions, each periodic in 1/H, but with slightly different
periods. These will “interfere” to form a pattern with
regions in which the resistance dips are in phase, and
combine to give a periodicity similar to that of the
components, and out-of-phase regions giving an ap-
parent period of approximately half that of the com-
ponents. This is somewhat different from the beating
which occurs when two sinusoidal oscillations are
superposed. Many of the observed periods in Fig. 2(a)
occur at approximately half the value indicated by the
calculated curves, and may therefore be explained in
this way. In general, however, there are four different
sets of oscillations at any orientation (if we ignore
Lerner’s heavy carriers), and the interference effects
will be much more complicated. A quantitative esti-
made of these was made by calculating the 1/H values
at which resistance dips would be expected for the four
sets of carriers in a particular orientation, combining
together those which would not be resolved, and plot-
ting the resulting values against the natural numbers.

According to Smith ef al.,? there is a resistance dip
whenever

Er(14+Er/Eg)={(n+3)mo/m.g/4}ehH /my (2)
for electrons, and

Ey—Ep= { (n—l—%)mo/M,;:l:g/fl}ehH/mo (3)

for holes, where Ep is the Fermi energy, Eq is the band
gap for the electrons, E, is the band overlap for the
holes, m, is the free-electron mass, m, and M, are the
electron and hole cyclotron masses, g is the spin-
splitting factor, and » is the number of the Landau
level.

The cyclotron masses are defined for electrons by

m.=[detm*/h-m*-h]2, 4)

where his a unit vector in the direction of the magnetic
field and m*=mea! is the effective-mass tensor which
is used in defining the electron energy in the absence of
a field by

2mE(1+E/Eq)/H*=k-a-k, 5)

where k is the electron wave vector. For one of the
electron ellipsoids m* has the form

mi1 0 _0
m*= |0 may mag ),

0 Moz M33

©

where the subscripts 1, 2, and 3 refer to the x, y, and 2

axes, respectively, and for the other two ellipsoids m*

is the same tensor rotated by 4120° about the z axis.
For the holes the cyclotron mass is similarly defined
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F1c. 4. X, calculated 1/H values for successive resistance dips
for H in the x-y plane at ¥=5°; O, observed 1/H values for
specimen 1; @, 1/H values from Lerner [Fig. 6(b), Ref. 8].
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in terms of an effective mass
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M,
The spin-splitting factor is given by

g=2mq h-m,-h/detm, ]2, ®

where m, is a spin-mass tensor similar in form to the
effective mass tensor, and its components for both holes
and electrons have been determined experimentally by
Smith et al.2

The variation of Er with H has been calculated by
Smith et al., to satisfy the condition that the total
carrier density in the metal be field-independent. They
find that at fields below 15kG, Ep remains within
about 19, of its zero-field value of 27.6 meV, which
we have therefore used in our calculations. The effect
of the variation of E on our results is described in the
next section.

For each of seven equally spaced orientations in the
x-y plane, 1/H values were calculated from Egs. (2)
and (3) for all four groups of carriers, and arranged in
one list in ascending order. Those which were separated
by less than a fraction » were merged. The value of 7
was determined empirically, but an order of magnitude
can be obtained for it by assuming the width of a re-
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sistance dip corresponds to the Landau level being
within AE of the Fermi energy. Then, from Eq. (2),
AH AE Eg+2Ep

'H Ep Eo+Ep’

so putting AE~k(T+x) and taking Dhillon and Shoen-
berg’s? value x~1.3°K we have

|a(l/H)/(1/H)| =AH/H~15%, (10)

at 1.4°K, so that for two resistance dips to be resolved
7 should be about 3%,. This value takes no account of
detailed line shapes, differences in Shubnikov-de Haas
amplitude, or experimental sensitivity. It is also neces-
sary to allow for the fact that the amplitude of the
oscillations decreases with decreasing field. In the ab-
sence of any quantitative calculation it was assumed
that the oscillations would be unobservable if the period
was less than 7/H, so that when 1/H> (1/7)A(1/H) for
a set of carriers, no more 1/H values were included in
the list. The remaining 1/H values were plotted against
natural numbers and the result for ¢ =>5° with r=59,
is shown in Fig. 4, together with experimental values
for this orientation. (Note that Lerner’s points occur
at n—¢ because they represent minima in dR/dH.)
There is quite a sharp bend in the experimental data
at 1/H~10X10-% and 7 was chosen so that the bend
in the calculated points was close to this. Similar com-
parison of calculated and experimental data for other
orientations gave values of 7 varying between 39, and
5% and in one case (at $=30°) it was necessary to put

©)
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Fic. 5. Calculated 1/H values for successive resistance dips for H
in the x-y plane at ¢y =15°.
. g S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc. London
A248, 1 (1955).
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r=59, for electrons and =49, for holes. What is
surprising is not that the values of 7 vary, but that the
variation should be so small when so many simplifying
assumptions have been made.

Figure 5 shows another graph of calculated 1/H
values against integers. There are several groups of
four or more collinear points. It was found that in
most orientations the choice of 7 had very little effect
on the slopes of these linear portions, but merely altered
the positions at which they occurred. Values of the
slopes of all the linear portions for each orientation are
plotted in Fig. 2(b). Some of the points fall on or close
to the curves, and others at approximately half the
height of the curves, illustrating our earlier qualitative
discussion. The scatter of the calculated points is not
unlike that of the experimental points in Fig. 2(a),
although quantitative agreement between them is no
better than would be expected in view of the simple
nature of the calculations. It is not unreasonable to
suggest, therefore, that many of the periods, especially
those greater than 1.0X10-5 G, in Fig. 2(a), as wellas a
few observed by Eckstein and Ketterson,! are due to
interference between oscillations whose periods should
be represented by the curves. It is also evident that
deviations between these periods and the correct curve
might give the impression that curves calculated from
different parameters would fit the observed periods
better, and suggest departures from ellipsoidal form of
the electron Fermi surface.

The points at P~1.2X1075 G near the bisectrix
axes shown in Fig. 2(b) are of special interest. These are
very close to three of Lerner’s experimental points in
the x-y plane, mentioned earlier, and to another near
the y axis in the y-z plane!® and suggest that they are
due to interference rather than to the proposed group
of heavy electrons. Lerner’s other evidence for heavy
electrons consists of a few more periods in the y-z
plane, all of which seem too close to light-electron or
light-hole periods to be distinguished from them.

The points at P=0.24X10-5 G, ¢=30° and 90° in
Fig. 2(b) are due to spin splitting of the electronic
Landau levels associated with curves 3 and 1, respec-
tively. When g=mq/m, the spacing of the spin-split
levels is exactly half that of the unsplit levels, and this
occurs when H is at an angle of 1.4° with the binary
axes. There is, however, a small range of angles around
this value where g is so close to mo/m, that deviations
of corresponding 1/H values from a straight line graph
would be comparable with experimental error, and a
“harmonic” of the Shubnikov—-de Haas frequency would
be deduced. It appears that several of the periods of
~0.24X 1075 G! near the binary axes in Fig. 2(a)
originate in this way. It should be noted that the spin
splitting observed by Lerner? in this orientation was in
the Landau levels of the electrons represented by the
intersecting curves. Smith’s? parameters give g=2.13m,/
m, for these, while Lerner finds g=1.86m,/m,, but the

18 See Fig. 3 of Ref. 9.
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F16. 6. Observed 1/H values for successive resistance dips
specimen 2, with H in the x-y plane at ¢ =35° showing frequency
modulation.

latter’s determination is not unambiguous and g=2.14
mo/m, would fit his results equally well.

Interference between hole and electron oscillations
does, in some cases, affect the period of the former, but
not enough, apparently, to cause the considerable
scatter about curve 4 in Fig. 2(a).¥'However, the
assumption made in our calculations, that the Fermi
energy is constant, is not valid at the higher fields at
which most of the short-period oscillations were ob-
served. This is considered in detail in the next section.

In Fig. 3 the long-period data is just as scattered as
in Fig. 2(a), but most of the shorter periods can be
associated with the hole oscillations, associated with
curve 4. Most of the scatter of these periods is caused
by fluctuations in the Fermi energy. There are, however,
a few points where P~0.5X10~5 G! between 6=20°
and 45° which are probably “harmonics” of the electron
oscillations represented by curve 3. For these electrons
g=mo/m,. at §=30.5° but it is within 209, of this value
from 6=22° to §=44°. Spin splitting of the hole levels
should produce harmonics at §=485.5°, where g=m,/
me, and at 4=67.5° where g=3mq/m,. The period of
0.4X10-5 G at §=70° is probably a harmonic (Eck-
stein and Ketterson® also observe a harmonic when the
field is 70° from the z axis), but harmonics at 2-85.5°
would probably be too short in period to be observed
in this experiment. The other points well below curves
3 and 4 could be caused by interference between elec-
tron and hold oscillations. There is no evidence for
heavy carriers in Fig. 3.

FLUCTUATIONS IN THE FERMI ENERGY

The calculations of Smith et al.2 show that at fields
above 15 kG, the Fermi energy undergoes considerable
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fluctuations which are roughly periodic in 1/H with the
same period as the long electron oscillations. The
period of the short oscillations is proportional to
[Er(1+Er/Eg) ] for electrons and to [Ey— Er ! for
holes, and will therefore fluctuate with the Fermi en-
ergy. In fields below 20 kG the period of the hole oscilla-
tions with H along the y axis will vary between 0.36
and 0.72X1075 G, and a similar variation of the
period of de Haas—van Alphen oscillations has been
observed with H 8° from the y axis by Brandt and
Lyubutina.!s (These authors could not observe de Haas—
van Alphen oscillations due to holes with H along the
¥ axis because the contribution to the torque from the
holes vanishes in this orientation.) The range of hole
periods corresponds quite closely with the short periods
observed in this work and by Lerner near the bisectrix
axis. Ideally the modulation of the hole periods should
be apparent when 1/H values are plotted against
integers, and an example of this is shown in Fig. 6.
More often, however, the pattern is distorted by inter-
ference and the modulation is not obvious. The slopes
of linear portions of such graphs defined by only a few
points may take almost any value between the maxi-
mum and the minimum of the modulated period. It
thus appears that most of the data in the range 0.35
to 0.7X10~% G~ in Fig. 2(a) are from modulated-hole
oscillations, and that the curve drawn by Lerner
through some of these points, on which he bases his
heavy holes, is quite fortuitous. Frequency modulation
also accounts for the scatter of the hole periods in
Fig. 3.

CONCLUSION

Although this work has produced no new information
about the band structure of bismuth, it provides alter-
native explanations for the observations which led to
the proposal of two new sets of carriers, and demon-
strates that extreme caution must be used in the
interpretation of Shubnikov-de Haas oscillations. It is
interesting to compare our experimental results with

14 See Fig. 5 of Ref. 2.

15 N. B. Brandt and L. G. Lyubutina, Zh. Eksperim. i Teor.
Fiz. 47, 1711 (1964) [English transl.: Soviet Phys.—JETP 20,
1150 (1965)].
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those of Lerner, who measured dR/dH, and of Eckstein
and Ketterson,! who measured dR/dH and @*R/dH?.
They find far fewer spurious periods due to interference.
This may be partly because the differential methods
are more sensitive than ours, enabling long-period
measurements to be made at lower fields where short-
period oscillations are too small to cause interference,
and partly because differentiation emphasizes the inter-
ference so that it may be allowed for in the analysis of
the data. It is apparent that a much more satisfactory
method of analysis is that adopted by Smith et al.,? in
which they try to assign a quantum number to each
resistance dip. It is doubtful, however, whether this
method could be used conveniently at fields below 20
kG, where the quantum numbers become large and
much more difficult to fit by trial and error.

Finally, we should emphasize that while our results
are consistent with the band-structure model of Smith
et al., which involves no heavy carriers, there is still
no good explanation of the high specific heat of bismuth.
According to these band-structure parameters the elec-
tronic component of the low-temperature specific heat
of bismuth is given by y7', where y=2.50 erg cm—3°K~2,
which is much lower than the measured values. The
value of v is, however, dependent on the carrier con-
centration in the metal, but we have to assume 3.3X10~*
excess electrons or 5.3X10~* excess holes per atom to
raise v to Phillips” value of 9.8 erg cm™3°K~2, or 1.9
X 1072 excess electrons or 2.2)X10~% excess holes per
atom to raise it to the value of 31 erg cm™3 °K—2 ob-
tained by Kalinkina and Strelkov.® The purities of the
samples of these authors do not justify such an assump-
tion. If we assume that there are six electron and two
hole ellipsoids in the band structure we can double our
estimated value of v, but this would be inconsistent
with Zitter’s! low-field galvanomagnetic measurements.
It is possible, therefore, that the high specific heat of
bismuth might be due in part to other groups of charge
carriers, but no direct evidence for these has yet been
found.
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