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%'e have investigated the predictions of a model of a disordered binary alloy employing the averaged
atomic t matrices as the eRective scatterer. In order to facilitate the calculation we have introduced an
energy-dependent model potential of 5-function character in place of the true atomic potentials. The energy
dependence of the model potentials requires us to make an approximation other than the one invoked
by the use of the averaged I, matrix. On the other hand, the use of the model potentials allows us to do
numerical calculations for a disordered alloy. Our calculations are done for 0. brass. We have computed the
spectral density for states of various symmetries. When considered as a function of wave vector, the width
of the peaks in the spectral density corresponding to s-p-type states are of the order of 1/o of a Brillouin-
zone dimension, indicating that the wave functions are very nearly Bloch functions. The peaks corresponding
to d-type states are considerably broader, the widths being of the order of 5 jo of a Brillouin-zone dimension.

I. INTRODUCTION

~
'HE quantum-mechanical study of disordered

metallic alloys was begun nearly simultaneously
with the study of ordered materiajs. ' In recent years the
latter area has progressed to the point where one can
say that, as least as far as the one-electron picture is
valid, the properties of pure metals and ordered inter-
metallic compounds may be calculated to a high
degree of accuracy. To a great extent the theoretical
work in this area has been stimulated by the availability
of a huge body of microscopic experimental data.
The overwhelming number of experimental techniques
employed in the study of ordered materials are pred-
icated upon the existence of long electron relaxation
times and hence are completely inappropriate for the
study of nondilute alloys. Nonetheless, in recent years
data of a microscopic character, usually involving the
optical properties of the alloy, has begun to appear in
the literature and has stimulated theoretical work in
this area.

Our work is based. very heavily on a series of papers
by Edwards and Beeby, ' ' which treat the problem from
the multiple-scattering point of view introduced by
Lax' and others. Other work in the Geld includes that
of Stern~ who has performed an analysis of alloys in the
tight-binding approximation and also considered the
very delicate self-consistency problems involved in the
determination of the potential fi.eld in an alloy. comers,
Amar, and Johnsona have made actual calculations of

' See, e.g., N. F. Mott and H. Jones, The Theory of the I'roperfies
of Metals and A/loys (Dover Publications, Inc. , New York, 1959).

2S. F. Edwards, Phil. Mag. 6, 617 (1961); Proc. Roy. Soc.
(London) A267, 518 (1962).'j. L. 3eeby and S. F. Edwards, Proc. Roy. Soc. (London)
A274, 395 (1962).

4 J. L. Beeby, Proc. Roy. Soc. {London) A279, 82 (1964).
5 J. L. Beeby, Phys. Rev. 135, A130 (1964).
' M. Lax, Rev. Mod. Phys. 23, 287 (1951).
7E. A. Stern, Physics 1, 255 (1965); Phys. Rev. 144, 545

(1966).
8 C. B.Sommers, H. Amar, and K. H. Johnson, Bull. Am. Phys.

Soc. 11, D (1966).

the electronic spectrum of several of the e-phase noble-
metal alloys, using the "virtual-crystal" approximation
in which the averaged potential of the constituents is
used to calculate the energy bands of the alloy.

The great difhculty in doing numerical calculations
of the one-electron energy levels in an alloy is that if
the approximation employed is anything other than
the "virtual crystal" one, then the lack of periodicity
is indicated by the lack of a unique relationship between
energy and (crystal) momentum. Since it is usually
most convenient to carry out the formal analysis iD

momentum representation, in trying to calculate the
density of states one is inevitaMy confronted with
integrals ranging over all of momentum space, with the
integrand having the interpretation of the density of
states of a given momentum component. This integrand.
is in general a function of various atomic properties and.
therefore will be available, if at all, only in numerical.
form. The net effect of this is that straightforward. com-
putation in detail even approaching that currently
achieved in band-structure calculations is diflicult if
not impossible.

In the present work our starting point is the averaged.
t-matrix approximation considered in great formal de-
tail by Seeby. 4' The idea underlying the approximation
is that the motion of an electron in a system of many
potentials may be viewed as being the result of succes-
sive collisions with the individual potential 6elds. As a
Grst approximation, therefore, in calculating the proper-
ties of a disordered binary alloy one can replace the two
distinct atomic potentials by a single scatterer having
the property that for a given incident wave it generates
a scattered wave equal to the average of the scattered
waves produced by the true potentials. Now the I
matrix corresponding to a given potential is that
quantity which operates linearly on an incident wave to
produce the scattered wave. Hence, if we do our calcu-
lation with an eGective I, matrix equal to the average of
the constituent t matrices we will have exactly averaged
the waves scattered from individual atoms.

Our aim in the present work is not to improve on the
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formal calculation performed by Beeby. Indeed, we wiH

be forced to make approximations not introduced in
his work. Rather, it is an attempt to cast it into a form
where numerical calculations with it are only slightly
more dificult than those required for a band-structure
calculation, and then to do some exploratory numerical
calculations for a particular aHoy. Our choice for the
numerical work is a-brass, simply because the one-
electron spectrum of copper is well understood and
because there appears to be more microscopic experi-
mental data on it than on any other alloy. We emphasize
at the start, however, that we do not seek complete
agreement with experiment —our choice of potentials
will be far too crude for that —but rather to simply
understand the general nature of the results.

We have been guided in this work by the great
success achieved in the study of pure metals by the
introduction of a model potential, ' i.e., of some poten-
tial, simpler in form that the original ionic potential,
but still retaining enough of the true potential properties
to allow one to calculate various things of interest. In
particular, all that we will require of our model po-
tentials is that, if properly manipulated, they reproduce
the true density of states, although we shall argue that
certain properties of the wave functions are approxi-
mately reproduced as well.

A word must be said concerning the type of system
we are attempting to treat and the general nature of the
results one expects. We consider only disordered substi-
tutional binary alloys. Thus the atoms are arranged on
a regular lattice, and we may de6ne such things as
reciprocal lattice vectors and Brillouin zones, although
the usefulness of such concepts is not necessarily great
in the disordered situation. Similarly, the concept of a
crystal momentum has no fundamental signi6cance-
one cannot associate any particular momentum with a
given eigenstate. The most that one can ask is what
region of momentum space is associated with eigen-
states of a particular energy. Thus, our equations will
not be of the secular equation variety —designed to
yield a definite answer to the question of whether an
eigenstate exists at a given energy and momentum.
They must instead be formulated from beginning in
terms of densities —quantities designed to answer not
the question of whether a state exists, but rather, what
fraction of a state exists at the given energy and
xnomentum.

The organization of the paper is the following: In
Sec. II we will consider the nature of the true atomic
potentials, the form of the model potentials to be
substituted for them, and the t matrices corresponding
to the particular model potential. We will also discuss
the averaged t matrix and the best way to represent it.
In Sec. III we analyze the relationship between systems
ef model potentiaIs and real potentials and attempt to

'V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964); I.
Abarenkov and V. Heine, ibid. 12, 529 (1965).

dehne quantities relevant to both. The formal calcu-
lations are carried out partially in Sec. IV and partially
in the Appendix while in Sec. V we analyze the formal-
ism and give the results of our numerical computations.

II. THE MODEL POTENTIALS

In this section we consider the sequence of steps
leading from the true atomic potentials to an "effective
alloy potential" that will enter into our anal formulas.
We assume that the atomic potentials are of the muf5n-
tin variety, i.e., spherically symmetric out to some dis-
tance E. from the origin and constant for distances
greater than Z. The radius E is generally that of a
sphere inscribed within the Wigner-Seitz cell. This is
the type of potential that has been employed success-
fully in augmented-plane-wavem (APW) and Green's-
function" —"band-structure calculations. The actual
determination of the potential for each constituent is
complicated and uncertain even for pure materials;
in the alloy the nonuniform site environment and the
different atomic properties of the constituents com-
pound the uncertainty. Indeed, the very existence of a
single potential for each constituent is dubious. The
study" of the single-impurity problem has shown that
the actual potential in the neighborhood of the im-
purity depends not only on the atomic properties of
the impurity but also on the environment of the
impurity site. In a real sense, therefore, the assumption
that there exists a single potential for each constituent
is equivalent to the neglect of fluctuations in the local,
i.e., microscopic, distribution of constituents. In view
of the fact that a similar, although much more severe
neglect of fluctuations is made in the formal part of the
calculation, we do not consider this further approxi-
mation about the nature of the potentials to be too
serious.

For our numerical calculations we have chosen po-
tentials that are expected to be approximately valid for
a-brass. We have elected to use potentials independent
of alloy concentration in order to ascertain the effects
of alloying intrinsic in the model without the compli-
cating effects of further concentration dependencies
introduced via the potentials. For this reason we must
keep in mind that certain effects of alloying have been
omitted. On the copper sites we have placed a Hartree-
Fock-Slater" atomic potential augmented by the
(spherically averaged) taiis of the potential of 12 Cu
nearest neighbors, while on the Zn sites we have as-
sumed a similar atomic Zn potential also overlapped
with only Cu neighbors. These potentials are then

"J.C. Slater, Phys. Rev. 51, 846 (1937)."P.M. Morse, Proc. Natl. Acad. Sci. U. S. 42, 276 (1956)."J.Korringer, Physica 13, 392 (1947).
"W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
'4 P. A. Wol6, Phys. Rev. 124, 1030 (1961); A. M. Clogston,

ibid. 125, 439 (1962)) 136, A138 (1964).
"For a discussion of this type of potential see, e.g., F. Herman

and S. Skillman, Atomic Structure CalculutiorIs (Prentice-Hall,
Inc. , Englewood CMs, New Jersey, 1965).
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truncated at the Cu inscribed-sphere radius. The dif-
ference in Cu and Zn potentials at the sphere radius was
O.i Ry. YVhen employed for the calculation of the bands
ef pure Cu, the potential yielded results agreeing with
those of Burdiek'6' and SegaO"b to within 0.01 Ry. %C
add in passing that we have also neglected the small
change in lattice constant that occurs on alloying Zn
'into Cu. '~

Our aim is to 6nd approximate solutions to the
Schrodinger equation of an electron under the inhuence
of a collection of spherieaBy symmetric nonoverlapping
potentials. It may easily be shown that the property
of the potentials determining whether at any given
energy an eigenfunetion for such a system exists is the
set of logarithmic derivatives of the radial wave func-
tions in each type of potential evaluated at the sphere
radius of the potential. In the periodic case this may be
seen explicitly in the formulas of Slater'0 for the APT
method or of Morse" and Korringer-Kohn-Rostojk;er" "
(KKR) for the Green's function method. In the dis-
ordered case it may be proved by a simple extension of
the formulas of Slater. This being so, all we need
require of the model potentials is that they yield loga-
rithmic derivatives identical with those generated by
,the real potentials.

Our choice for the model potentials is an energy- and
angular-momentum-dependent 8-function potential. Ex-
pHcitly, wc introduce the following operator in place of
the true atomic potentials. '

o(x—R) 3(x'—R)
V&*&(x,x') =Jr, FI.(x) sg&o Fr,(x'), (1)

E2 E2

where (i) indicates the type of atom to which the model
potential corresponds, L denotes the angular-momen-
tum quantum numbers (l,m), Fl, (x) is the real spherical
harmonic of the angles of x, and u»&'& is an appropriately
chosen energy-dependent amplitude. A simple calcu-
lation shows that the v»&') are deaned by the relation

s( &o(E)=R'Ly) &o (E)—aj)'(sR)/j((sR)1,

where E is the energy, ~'=E, j» and j»' the spherical
Bessel function and its derivative, and y~&o(E) is the
exact logarithmic derivative of the radial wave function
for angular momentum / and energy 8 evaluated at
radius E. %c shall refer to the v»&'& as the atomic-
potential amplitudes.

The t matrix corresponding to a potential of the form

"(a) G. A. Burdich, Phys. Rev. 129, 138 (1963). (b) 3. Segall,
ibid. 125, 109 (1962) and private communication referred to in
Ref. 16.The results quoted in Ref. 16 are for a calculation employ-
ing Surdick's potential, voile the published results employ a
slightly different potential. %'e note that Segall's calculations
employ the Green's-function method and hence are more akin to
the spirit of the present work than are Burdick's.

"E.A. Owen and E. W. Roberts, Phil. Mag. 27, 294'(1939).
' The introduction of this type of potential in the ordered

situation has been suggested independently by J. C. Slater, Phys.
Rev. 145, 599 (1966).

(1) may easily be determined. 's In general the( matrix
T(x,x') corresponding to a nonlocal potential V(x,x') is
de6ned by the equation

T(x,x') = V(x,x')+ V(x,y)G(y y')—T(y', x')dydy',

where G(y —y') is the free-electron Green's function. If
V(x,x') may be decomposed into angular-momentum
components of the form

V(x,x') =Pz, Fz,(x) V((x,x') Fr,(x'),

then T(x,x') may be similarly decomposed:

T(x,x') =Pr, Fl,(x)T)(x,x') FJ„(x').
The T((x,x') satisfy

T)(x,x') = V((x,x')

Gg(a, x') is the 1th component in the angular-momentum
representation of G(x—x'),

G((x,x') =sj)(sx()fng{trx&) —ij(sx))j,
where g~ is the lesser and x& the greater of x and x', and
e» is the spherical Neumann function. For a potential
of the form (1) T~(x,x') may be written as

tO(g —R)/Rsggb(x' —R)/Rsg. (3)

Substitution into Kq. (2) yields

tg= s)pl —s(g))-',

where g~
——G~(R,R).

The t matrix equal to the average of the atomic t
matrices may also be written in the form (3). Formally
one may use Eq. (4) to decompose the average 1

matrix and derive a set of complex amplitudes m»

w(t 1—g)wQ '=crsr&'&L1 —g(s(&'&P'

+&seri l/1 gÃt ]—
where cj, and t,~ are the concentrations of the constitu-
ents. Thc IIlost convcnlcnt lcplcscntatloIl of thc R» ls
in terms of real quantities I» and h» via the equation
w~ Ng(1+sA——~)

' We sha—ll .refer to the model potential
possessing amplitudes I» as the CGectivc alloy potential.
The 6» will be seen to be of the nature of width parame-
ters and determine the departure of the eigenfunctions
from Sloch character. Denoting the real and imaginary
parts of g» by g»' and g»", respectively, the expressions
for I» and 6» are

Al Clcsg l(sl sl ) /Dl q

"J.L. Heeby, Phys. Rev. 137, A933 (1965).
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where D& is given by

Di &1&l +&8'i gi'[~i~2(ill &i ')'+»i'"i'i(2))
y ( gi( 2p((i)pii2)gyp)(ii+ggJ((2i]

In the following we shall also employ the model po-
tential possessing the average amplitudes ~~=cp~&')
+civi&'&, and will refer to this potential simply as
V(x,x').

III. VALIDITY OF THE MODEL POTENTIALS

In this section we will consider the extent to which
the properties of a system of model potentials may be
assumed to reQect the corresponding properties of the
actual system. We are concerned here only with the
predictions of a hypothetical exact calculation; in the
following section we will consider the problems en-
gendered by our doing only an approximate calculation
for the model potentials themselves.

The model potentials are chosen to reproduce the
energy spectrum of the alloy. It is obvious, however,
that while the eigenvalues are the same for the two
systems, the wave functions and all quantities depend-
ing explicitly on them are certainly different. One wave-
function —dependent quantity of special interest is the
spectral density, which is defined by the relation

~(E,k)=Z- &(E—E-) I|t-(k) I', (6)

where f„(k) is the kth Fourier component of the eigen-
function g„, and E„ the correspond. ing eigenvalue.
Assuming normalized eigenfunctions p(E,k) satisfies

~(E)=Z~ p(E»)

where p(E) is the usual density of states and the sum is
taken over all wave vectors permitted by boundary
conditions. In the periodic case the spectral density
takes the form

p(E,k)= g S(E—E„(k'))P~g., (I+K)~&s(l —l' —K),

where e now denotes the band index and h' the reduced
wave vector of the eigenfunction, and K is a reciprocal-
lattice vector. The form of this equation suggests that
a more appropriate spectral density is the quantity

p(E,I)=+K p(E, k+ K),

where k is now con6ned to the erst Brillouin zone
(BZ). We shall refer to this quantity as the reduced
spectral density. In the alloy case, of course, the Bril-
louin zone does not have the fundamental significance
it possesses for the case of an ordered material. It is
nonetheless clear that the quantity suitable for com-
parison with the energy-versus-momentum curves of an
ordered system, which are defined only modulo a
reciprocal lattice vector, is a spectral density modified
in the above manner.

The reduced spectral density also has the advantage
of being far less wave-function-dependent than the
conventional spectral density from which it is derived.
In the periodic case p(E,k) is given by the simple
expression

and this is certainly independent of the wave function.
In the alloy case the sum over reciprocal lattice vectors
does not completely remove the wave function from the
formula. Nonetheless, we assert that p(E,k) is essentially
identical for both systems. Our reasons are: (1) We
apply our formulas only to alloys where the departure of
the eigenfunction from Bloch-wave character is not too
great (we do not consider local modes); (2)the reduced
spectral density for both systems have identical normal-
izations when integrated over the finite BZ; (3) the
wave functions for both systems are identical outside of
the atomic spheres (typically 30% of the volume); (4)
each angular momentum component of the correspond-
ing wave functions has the same normalization within
the interiors of the atomic spheres and the same ampli-
tude at the sphere radius; and (5) by performing the
sum over reciprocal-lattice vectors we have eliminated
any gross differences in high-order momentum com-
ponents of the corresponding wave functions. In spite
of these arguments, it remains true that the modi6ed
spectral densities are not completely identical for the
two systems. But the arguments given above indicate
that there can be no gross differences between the two,
and the simplicity and tractibility introduced into the
formalism by the use of the model potentials more than
compensates for any slight error in P(E,k). And, of
course, p(E) is in any event given correctly.

IV. FORMALISM

The ultimate aim of the calculation is the determina-
tion of the density of states for a disordered alloy. If g
is the (outgoing wave) Green's function, then the usual
formula for the density of states is

p(E) = —(1/n. )Im Trb,

where Im indicates the imaginary part of the following
expression and Tr means that a trace is to be taken over
any complete set. This formula implicitly assumes that
the potentials in the system are energy independent. The
point is simply that in energy representation b is
PE+is E„j ', where the E—„are the eigenvalues and
s is a positive infinitesimal. Since ImLE+is —E j '
=—~r8(E—E„) and p(E) =P„h(E—E„), the above
formula follows directly. But if one has energy-depen-
dent potentials, g is actually (8+is E„'(E)j ', where—
E„'(E)is the formal eigenvalue of the energy-dependent
Hamiltonian. Now our potentials are chosen to ensure
that E„'(E„)=E„,but due to the implicit energy de-
pendence this is not sufhcient to make the density of
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states come out correctly. Explicitly, we want the
quantity P„b(E E„—) while we actually calculate

8(E E„'—(E)). But since E '(E„)=E„, there is the
relation

b(E—E )=8(E—E„'(E))t1—(dE„'/dE)].

Hence, the density of states is given by

= 1 dE„')
p(E)= ——P Im[E+is —E '(E)] '~ 1—

m dEi'

which may be written in a general representation as

1 ( B"U

p(E) = ——ImTrg~ 1—
BE

'

where 'U is the potential energy and the only energy-
dependent term in the Hamiltonian of the system.

It has been noted by Lifshitz" that the alloy problem
is a self-averaging one in the sense that the correct
solution for, say, g, is equal to an ensemble-averaged
solution. Nonetheless, averaging simplifies the work,
and we will be concerned with the calculation of

1 ( BV)
p(E) = ——TrIm g~

1—
BEi

where the angular brackets indicate that an average
over an ensemb/e is taken.

The essence of the approximation is to calculate g
under the assumption that on each site there is a po-
tential giving rise to the average atomic t matrix.
Formally the argument proceeds as follows. The Green's
function may be expanded in a perturbation series of
the form'

G+Q GT t"G+Q Q GT t'&GTp&&&G+'
where n,P refer to the lattice point and i,j to the type of
atom on the particular site. The approximation is the
factorization

(GT &'&GTp'» ~ GT&"&)-+ GT GTp GTs, (9)

where T= crTi'&+csT&''.
Several comments may be made. By making the

factorization (9) the random system has been reduced
to a periodic one, thereby effecting enormous simpli-
6cation in the formalism. This is not to say that the
wave functions of the system are Bloch functions.
We have seen in Sec. II that the "potential" cor-
responding to the averaged t matrix is complex: The
imaginary part will produce the damping of waves
expected in a random system. Nonetheless, it re-
mains true that this model averages at a very early
stage in the calculation. This will have serious conse-

quences whenever &he states under consideration arise
from the resonance of an electron in a particular con-
figuration of atoms. Consider a term in the pertur-
bation series where the t matrix on a given site occurs
S times. In a correct calculation the concentration
dependence arising from averaging this particular term
would be linear, whereas the present technique includes
it with a c~ dependence.

The presence of the energy derivative of the potentials
in Eq. (8) is a difhculty engendered by the introduction
of the model potentials. It is not a priori clear what ap-
proximation to (QB'U/BE) is consistent with the
averaged t-matrix approximation. In Appendix B we
show that it is reasonable to make the factorization

&BB'U/BE) ~ &B)BIBE(U)

where ('U(x,x))=g V(x—r, x'—r ), in which V(x,x')
is the averaged model potential defined in Sec. II.

A group of quantities appearing throughout the
equations are the Green's function defined by Kohn and
Rostoker. "These are de6ned by the expression

1 exp/i(k+K) (x—x'))
Gg(x —x') =—Qg

Qp E+is—(k+K)'

where 00 denotes the primative cell volume. These
quantities are simply properly symmetrized free-elec-
tron Green's functions. Using these quantities we de6ne
a Green's matrix Gs by

B(x—E)
(I ( G, (I.')= I,(x)

E.2

B(~'—Z)
&(Gs(x—x) 7'&'(x')dxdx'.

R2

The calculations leading to an explicit formula for
p(E) are involved and are given in detail in the Appendix
A. The result is the following formula:

1 -BGs BY
p(E) =—Qa' ImTr —— +Gs Gg

7r BE BE

W(1—WGq) —', (10a)

where V and W are diagonal matrices with components
v& and m&, respectively, and the trace is over the angular-
momentum indices. The momentum-space sum is
confined to the 6rst Brillouin zone. Hence, the reduced
spectral density is given by

)BGa BY
p(E,k) =—ImTr~ +Go Gg

~

i BE BE

W(1—WGg) '. (10b)

Lifshitz, Usp. Fiz. Nank 83, 617 (1964) LEnglish Before proceeding to an analysis of the content of Eq.
transl. : Soviet Phys. —Usp. 7, 549 (1964)g. (10b) we make one slight change in notation. Ham and
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U AND GI .

V (2)

all. b, ~ ~ 0,

elGa BV
p(E,k) = —h(det(1 —UGa))Tr U + UGa Ga

BS BE

Xdet(1—UGa)(1 —UGa) ', (12)

where the zero of the determinant cancels the infinity in
the inverse matrix. The condition det(1 —V"'Gs) =0,
which results as c2 —+ 0, may be shown to be equivalent
to the Morse" and KKR"" eigenvalue equation. If
Gs is diagonal, Eq. (12) is a sum of terms of the form

—b(l —Ni(L
i
Gs iL))

aGs l ~~)
X N&~ L L ~+ (L~Ga~L) . (13)

aE i aE

FrG. 1. Schematic drawing of the eGective potential for negative
energies and the case where the constituent amplitudes are energy-
independent. The shaded region is the domain .of the inverse of
the KKR Green's function. EI and E2 are the atomic bound-state
energies.

Segalls' show that the components of the matrix Ga may
be written in the form

(L~ Ga~L')=i' '(real quantity).

If we make the correspondence Ga~ [Gal ', where ]
is the matrix with components i 81„1... and substitute
this into Eq. (10), an expression of the same form
results. This is convenient since it shows that we need
only concern ourselves with the imaginary term arising
from the complex nature ofW. The imaginary part may
now easily be evaluated. Written in terms of the eGec-
tive potential amplitudes N~ and the width parameters
b, &, the expression for the reduced spectral density is

1 — elGa BV
p(E,k)= ——Tr U — +UGa Ga

x BE BE

XPa+(I —UGa) a-'(1—UGa)) —', (11)

where U and cL are diagonal matrices with components
I& and 6&, respectively. If G& were diagonal, the in-
verse matrix would have components

h(Lhp+(1 —N)(L~ GI, ~L))']-',

which illustrates the eGect of the h~ in determining the
width of the peaks in p(E,k).

For negative energies, and of course for all energies
in the limit of a pure material, the 6» vanish. In this
case the inverse matrix must be treated with special
care. A similar situation arose in the work of Beeby,
and we refer the reader to his article for the details of
the limiting process. The result is that in the limit as

"F.S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).

We note that as cs ~ 0 expression (13) has the correct
normalization when integrated as a function of energy
over the position of the eigenvalue.

The formulas have now been reduced to a form suit-
able for calculation. Whether or not the calculation is
feasible is dependent upon the order of the matrices
entering Eq. (11). In principle, of course, the matrices
are of infinite order; in practice one may easily show
that they may be truncated at a low value of /. As a
practical matter, it is known from our work and that of
others that for pure copper accuracies of order 0.01 Ry
are obtainable at nearly all points in the zone if the
matrices are truncated at l=2. This leaves a 9&(9
matrix, which may easily be handled on a computer.

The Green's matrix entering into (11) is an energy-
and momentum-dependent quantity which must be
calculated numerically. Ham and Segall" have given
an exhaustive discussion of the properties and of the
methods of calculating these functions. While in our
numerical work we employed accurately calculated
Green's functions, for the purposes of explication it
will be useful to introduce approximate forms for these
functions. For negative energies the matrix takes the
form

(L[GalL')=gi4z. +(Ll&a)L'), (14)

where the components of F~ may be written in terms of
trigonometric functions of the type entering into tight-
binding energy-band calculations. For positive energies
a typical component of Ga may be approximated as

where the K„ is that reciprocal-lattice vector for which
the energy denominator is smallest, and A and 8 are
functions of both energy and momentum. A is of the
order of g~' for the appropriate l.

V. ANALYSIS AND CALCULATIONS

We turn now to an analysis of the formulas. Although
the energy bands of interest in metals occur for energies
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above the muffin-tin zero, the formulas are simpler for
negative energies and we will briefly consider this
region. To a certain extent this has been done by Beeby.
However, as we believe that our formulas are somewhat
more transparent than his, we will to a limited degree
repeat his work. In the negative energy region the h~
vanish (because the g& are real) and Eq. (12) for p(E, ir)
is applicable. We will consider only diagonal matrices
and omit the angular momentum subscripts on the
Green's matrix elements.

Let us assume that the e&(') are constant in energy
and satisfy the relations v~('& &~~"' &0.Using expression
(14) for the diagonal components of the Green's matrix
the eigenvalues of pure (i) material are given by the
equation

1—v)&oGg ——1—v) "&(g(+ I'k) =0.
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The essential point is that if this equation has a so-
lution then the v~"' must be of order g~ '. Indeed, the
free-atom eigenvalues, E,, are given by the equation
1—vq"'g~(E, )=0, and for the tight-binding situation
being considered here this approximately de6nes the
middle of the band. Examination of Eq. (5a) shows that
its denominator vanishes for some energy between E~
and E2. We schematically represent the state of affairs
i:n Fig. 1.In the sketch the shaded region represents the
domain of the function Gj, ", there is a solution to the
eigenvalue equation for every energy for which the
value of N~ lies within the shaded region. We note that
if c2=0, N~=e~'" and the curve becomes horizontal.
The theory predicts that the bandwidth of the band
arising from each constituent decreases as the concen-
tration of the second constituent increases. The actual
variation as a function of concentration is a complicated
function depending upon the actual values of the po-
tential and upon the energy dependence of the Green's
functions.

The theory predicts that the in6nity in I& occurs even
as the atomic energies Ej and E2 approach each other,
and hence that there is a gap in the energy spectrum
even when the bands of the separate pure materials
would otherwise overlap. We view this result with
scepticism. The gap appears to arise from an artificial
intra-atomic matrix element introduced by averaging
the atomic t matrices; the averaging process in effect
puts the orbitals of both types of atoms on the same site
thereby allowing them to interact strongly, whereas in
the tight-binding situation being considered it is clear
the major matrix elements are of interatomic character.

We will not discuss the case of energy-dependent
potentials in the negative-energy region, as the states
occurring there are of no interest in metallic alloys.
The situation in the positive-energy region is consider-
ably complicated by the finite values of the width
parameters A~. We shall 6nd that the predictions are
reasonable for states which in a pure material would
consist of a few orthogonalized plane waves (OPW), but
that there are ambiguities for states of 3d character.

FIG. 2. The effective alloy amplitudes I& and the quantities
h&N&, where the 6& are the width parameters, for an alloy of 75/&
Cu and 25% Zn. The curved marked Vo is the average model
potential amplitude for l =0.

The mathematical criterion distinguishing these situ-
ations may be given in many guises. For our purposes
the following inequalities are most convenient:

N~g~'&&1 (few OPW behavior), (16a)

N~g~' 1 (3d behavior), (16b)

where the N~ represent the effective potential amplitudes
for those l of greatest importance in determining the
character of the state. The basis for this distinction is
our observation that the Green's matrix is of the general
nature given in Eq. (15).If condition (16a) is applicable,
the eigenvalue can occur only resonably near the singu-
larity of the Green's function, yielding nearly free-
electron bands, while if (16b) applies the eigenvalues
are far from the free electron 8=k'. We emphasize
that, distorted as they may appear, for our purposes we
include the copper s—p band in the free-electron cate-
gory. It is true, of course, that this sharp dichotomy
does not really exist in a material such as O.-brass. It
clearly breaks down whenever there is significant s-d
hybridization.

The implication of condition (16a) is that a reason-
able approximation to N~ is simply e~, the averaged
potential amplitude. If the h~ are neglected, then use
of the averaged amplitude is approximately equivalent
to the use of averaged logarithmic derivatives in an
APW calculation. From the conventional pseudopo-
tentials point of view, it is equivalent to averaging the
pseudopotentials of the two materials. In Fig. 2 we show
a plot of the effective s-wave amplitude for a 25%%u~ Zn
alloy together with a plot of the averaged amplitude. For
the cases that have been investigated the effects of the
s- and p-width parameters are qualitatively small. It
may be shown that the use of the approximate equation

hg—-—cgcmg("(v) "&—v( &'&$'/vg
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certainty of a percent or two. By way of comparison,
a note that if the thermal smearing present at

momentumhelium temperatures is translated into mo
s ace one 6nds an uncertainty in k& of the order of
0.01%%uc. Using any other standard, however,er the smear-

't all and in doing numerical calcu-

sof Fi. 3fall atthe center of the peaks of the curves o ig. a a
the zeros of det(1 —uGa).

We must emphasize that the s- and p-width parame-

ra io
larly at the higher energies, doNO if of the or er

f th f t that there is significant s-wave
f Fi .admixture in the states described by the curves o ig.

3onemayas w yk h then do the curves come out looking
so much like delta functions. Mathematically the reason

h t f r a iven k the Green's function is changing so
ra idl in the energy region where the states occur a

l in a very narrow region that one c ppan a roach
the resonance condition necessary p

~ ~

r for a eak in the
density. Physically one may simply say that these
states are basically free-electron-like to begin with and
no reasonable tampering with the potential wi signi-

del forWe now consider the predictions of the mo e or
the d bands in O,-brass arising from the Cu atoms. We o

together with Eq. (11) for the spectral density is es-
sentially equivalent to calculating the momentum-space
width of the eigenstate to the accuracy of the first Born
approximation.

I F . 3 lot the spectral density correspondingn ig. we p
e for ato the s-p Dt ' band in fcc metals. The curves are or a

25%%uo Zn concentration and are evaluated at energies
suKciently great that the d admixture may be neglected.
We call attention to the fact that the half-width of
these curves is approximateiy iq& of t e
mension. is simp y. Th

'
ply means that the wave functions of

these states may be characterized as being on y sma

is not surprising; e' the residual resistivity of o.-brass has
been measured" and one may employ simple formulas

energy electrons. For the alloy for which the curves are
calculated this turns out to be approximately 4 attice
spacings, in ica ing ad' t' that the width of the states must
be of the size quoted above.

The energies for which the curves of Fig. 3 are plotted
are near the Fermi energy of the alloy. Hence, we can
say that a Fermi surface may be defined up to an un-

"The use of bf to denote the width parameters and of A1 and
6& to denote the symmetry of states should cause no confusion.

"W. R. G. KettJp e$ a/. , Acta Met. 5, 303 (19 7).
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not consider at all the d bands arising from the Zn
atoms. It is clear that the model employed here can
only be approximately valid when the states we are
trying to describe are influenced by the combined effect
of many potentials, while certainly in pure Zn and
probably in O.-brass the Zn d bands are highly atomic in
nature and depend only upon the local environment.
To a certain extent this is true for the Cu bands, as is
evidenced by the fact that tight-binding formalisms
employing only nearest-neighbor overlap integrals are
able to satisfactorily account for the over-all shape of
the d bands. '4

We will treat in detail only points and lines in the BZ
for which the singular part of the d-d submatrix
Lcorresponding to the 8 of Eq. (15)j of the Green's
matrix vanishes identically. Such states are repre-
sentative of pure "d-band" behavior without the compli-
cating e6ects of s-d hybridization. We also restrict
ourselves to points in the zone for which the Green's
matrix either exactly or to a good degree of approxi-
mation factors into diagonal submatrices. For such k
vectors the eigenvalues in a pure material are given by
the roots of the scalar equation 1—w&'"Q, =0, where Gz
represents the relevant component of Gq. In Fig. 4 we
have plotted G» ' for several wave vectors together
with the d amplitude for pure Cu. We note that the X5
state de6nes the upper edge, and the X3 state lies near
the lower edge of the d band. We note also the near
constancy in energy of the Green's function; this allows
us to neglect the 6rst term in the square bracket of
Eq. (11).It also means that we are now dealing with a
situation for which our model is not precisely equivalent
to the averaged t-matrix one.

It is easiest to demonstrate the nature of the results
and the difhculties of the calculation by considering the
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FIG. 6. The spectral density for 55 states in 0!-brass for various
energies plotted as a function of E along the I'X direction in the
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-12
case where v2&'&=0 and v2&'& is the Cud amplitude. In
this case the eGective alloy amplitude is given by

~ -24
D

-28

N2
——c,op &'&L1—cmg2'v2&'&)

—'

and the width parameter by

+2 c2g2 s2 L1 c2g2 ~2

(17)
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"F.M. Mueller, Phys. Rev. (to be published).

FrG. S. Position of pure d-type states in a-brass. The maximum
in the spectral density is given by the crossings of the inverse-
Green's-function curves and the curves marked with the zinc
percentage. The latter curves are the effective alloy amplitudes u2.

Following the discussion in Sec. IV and Appendix 3,
we will consider only the physically interesting region
of energy not too near the singularity in v2&'&.

To illustrate the nature of the results, in Fig. 4 we
have plotted em from Eq. (17) for several concentrations
of vacancies. The peaks in the spectral density are given
by the crossing of the curves of G» ' and the effective
potential amplitude. The function N2 always passes
through the point where 1—g&'v&&'&=0, which may be
shown to be the point where the conventional phase
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the peak density. In Fig. 7 we show the spectral density
as a function of energy for states of I'» symmetry or
the same alloy composition.

At this point we have completed our discussion of the
preaictions o e md' ' f the model. We have not attempte to

- rass feelin1 1 t complete density of states foro, - rass, ee ing
that such extensive calculation is not merited a
point because of the great uncertainty in the choice of

' I, th 11 great ambiguity concerning the
predictions of the model for the d bands, and t e ac
of really detailed experimental data with which to

plotte in ig. eF' 8 the variation of the spectral-densi y
peaksasa unc iono cf t' f oncentration for states of various

d
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hsymmetries. For orientation w p de have lotted in t e
same 6gure the approximate variation of the Fermi

1 1 t d 'th the nearly constant specific-
our calcu-heat" density of states. We have compared our ca cu-
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Fzo. 7. The spectral density for j. 25 states in Q.-brass
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shift equals s /2. However, as c~ ~ 0 it does so wham ever
increasing s ope. oslo e. For moderate concentrations o type
(2) (vacancies) the curves show the expecte an
narrowing. But for large cg the band narrows to quite
small widths. This is incorrect. It has been shown in
many places" that an isolated d scatterer will yield a
"band" of Gnite width. The reason for the discrepancy
lies, of course, in our putting some small fraction o a
t matrix on every site rather than a

~ ~

h whole t matrix on a
fraction of the sites. The point to be made here is the
one ma ede earlier: our approximations are va i on
when the states under consideration are of a propaga ing
nature.

Turning now to parameters appropriate to O,-brass,
we show in ig.h F' 5 the effective d amplitude for several
Zn concentrations. or ot' For low Zn concentrations these
curves are similar to those shown in Fig. 4 for Cu va-
cancies In Fig. 6 we have plotted the spectral density
for states corresponding to those of 65 symmetry in
perio ic ccme as.' d' f t ls. The curves are for a 25% Zn aloy.
They are similar to those plotted in Fig. 3 or e

~' J. Friedel, Advan. Phys. 3, 446 (1954); P. W. Anderson and
W. F. McMillan (to be published).
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lations with the results of optical-absorptivity measure-
ments by Siondi and Rayne. '~ Making the common
interpretation of the peaks in the optical absorbtivity
as being due to direct electronic transitions" curves of
Fig. 8 may be used to calculate the shift in the position
of the absorbtivity peaks as a function of concentration.
We have done this; and although the shifts we calculate
are of the correct sense, they di6er from the experi-
mental ones by a factor of roughly 2. (We should add
that in the case of the optical threshold we are talking
about energy shifts of 0.1 eV, which is infinitesimal
from the band-structure point of view. ) It might be
objected that because of the nonconservation of crystal
momentum one cannot hope to predict the position of
the absorbtivity peaks by considering only direct
transitions. And it has recently been argued" that even
in the case of pure Cu, indirect transitions are important.
While we do not wish to discuss this question here, we

simply point out that if direct transitions dominate in
the pure material, then the 1% width of the s-p states
and the 5% width of the d states indicate that the same
transitions should dominate in the alloy also. We sus-

pect, instead, that the discrepancy between the results
of our calculation and the experiments of Biondi and
Rayne lies either in the choice of potentials or in the
manner in which the d bands were treated.

where X is the number of sites and the sum is con6ned
to the first Brillouin zone. The function gq satisfies

g~(x,x') =G~(x,x')

+ Ga(x,y) W(y, y') ga(y', x') dydy', (A3)

where gs is the KKR Green's function. " Equation
(A3) may be solved to yield

ga(x, x') =Ga(x,x')+ Q (xlG&IL&
L,L'

Xwg(L) (I—WGg)-'j L')(L'[ Gg) x'), (A4)

where

8(z'—Z)
(x I Gj, I

L,& = G,(x,x') I'z, (x')dx'
R2

and the other symbols are defined in the text.
Following the work of Edwards, the imaginary part

of the first term on the right-hand side of (A4) may be
ignored. The trace in Eq. (A1) may then be evaluated
using the relations

a
&xIG IL&(L'IG~lx&~x= —& (LIG.IL')

APPENDIX A

In this Appendix we outline the calculations leading
to Eq. (10a) for p(E). The point is that once having
made the averaged t-matrix approximation of Eq. (9)
we can simply assume that we have a periodic system
possessing the potential W(x,x') (the forrnal inversion
of the average t matrix) on every lattice site.

We wish to calculate

( 8
Tr Ims~ 1— (v)), (A1)

az
where g is the Green's function and ('U) the average
model potential. It is easily shown that g may be
written

1
g= —Za' g~

Ã
(A2)

"M. A. Biondi and J. A. Rayne, Phys. Rev. 113, 1522 (1959).
"H. Ehrenreich and H. R. Phillip, Phys. Rev. 128, 1622

(1962).
"C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030,

(1964); 136, A1044 (1964).
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and

dV
(x)G~iL&(L'[G~[x) dx

dV)
=&2 (L'I G.IL"& (L"

I G IL&
L,// dE

Combining these results with (A1), (A2), and (A3) im-
mediately yields Eq. (10a) for the density of states.

APPENDIX 3
In this Appendix we discuss the approximation

(s,';)=(s),',( )

which we have introduced in order to treat the energy
dependence of the model potentials. A term involving
t)'U/BE arises in the first place because in calculating the
density of states of the actual system using the model
potentials we have incorrectly treated the interior of
the atomic spheres. Starting from the results of Ref. 25
it may be shown in a manner entirely independent of
the method used in the text that the exact expression
for the correction to the density of states within the
atomic sphere of the ith atom is

dvg(')

At (~)=-2 Im(LI glL)',
dE
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where g is the exact Green's function, and

where the integration is over the surface of the ith
sphere and the notation is dined in the text.

Relation (81) is therefore valid whenever the Green's

function is essentially the same on all atomic spheres
(such as for s-p type states) and is useful for semi-
quantitative work whenever one type of atom corn-

pletely dominates the average, such as occurs for the
d-type state in n-brass. It is emphatically not valid
near the region where the amplitude of one type of
atom has a singularity (see Fig. 5). For near the singu-
larity it may easily be shown that the imaginary part
of the corresponding angular-momentum component of
Green's function vanishes, yielding a finite hp(E),
whereas our procedure yields a singularity in hp(E).
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Analysis of the Shubnikov —de Haas Effect in Bismuth*
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The Shubnikov —de Haas effect has been measured in single crystals of high-purity bismuth. Some of the
observed oscillations have periods similar to those found by Lerner and attributed by him to heavy-holes and
electrons. Some of these periods are shown to be the result of superposition of oscillations due to diBerent
parts of the Fermi surface of the two-carrier model of Smith, Baraff, and Rowell, and the others to be the
result of frequency modulation due to oscillations in the Fermi energy.

INTRODUCTION

ECENT measurements of the Shubnikov —de Haas
effect," the de Haas —van Alphen effect, ' and

cyclotron resonance have revealed the presence of a
group of holes in the band structure of bismuth, in
addition to the electrons originally found by Shoenberg. '
The differences between the estimates of the size and
shape of the Fermi surface made by various authors are
consistent with the differences in purity of the samples
used in their experiments, and in each case a calculation
of the electronic component of the low-temperature
speciic heat based on the band structure leads to a
value an order of magnitude smaller than that meas-
ured. 6 7 This discrepancy may be explained by postu-
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lating another set of charge carriers in bismuth, with
greater effective masses than those already observed.
Lerner, "claims to have found Shubnikov-de Haas
oscillations which are caused by these heavy carriers,
and deduces from them the sizes and shapes of the
corresponding pieces of Fermi surface. The measure-
ments described here were made with the object of
providing con6rmatory evidence for Lerner's sugges-
tions, whose validity has been doubted by several
authors. It is found that a straightforward interpreta-
tion of our results is consistent with Lerner's observa-
tions, but that a more thorough analysis shows that all
the results may be explained on the basis of the two-
carrier model of the bismuth band structure.

EXPEMMEÃT

Zone-rehned bismuth, purchased from the Consoli-
dated Mining and Smelting Company of Canada
Limited, and of a nominal purity of 99.9999% was
subjected to further zone re6ning in Union Carbide
grade AUC graphite boats in eaclo. Central sections,
15 cm long, cut from three 50-cm-long ingots which
had each been passed through a zone-melting furnace
at 4 cm/h 21 times, were placed end to end in another
boat and repassed 13 times. Single crystals were grown
from the central section of the resulting ingot by
passing a molten zone along its, starting from a small

'L. S. Lerner, Phys. Rev. 127, 1480 (1962).
9 L. S. Lerner, Phys. Rev. 130, 605 (1963).


