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The attenuation of circularly polarized sound as a function of magnetic field H, oriented parallel to the
sound propagation direction, was measured for Al, Sn, and Sb at 4.2 and 1.2°K. This direction was chosen to
be along the [100] axis in Al, the [001] axis in Sn, and the trigonal axis in Sb. The dispersion was also
measured in Al and Sn. Doppler-shifted cyclotron resonance, causing peaks and edges in the attenuation,
was observed in the case of Al and Sn. For Al the peaks are periodic in 1/H with a period of (1.84-0.04)
X10~*G™1. These peaks were found to be caused by holes coming from the second Brillouin zone. In Sn both
types of carriers contributed to the peaks. Geometric resonance, causing sinusoidal oscillations in the at-
tenuation periodic in 1/H, was observed in Sh with a period of (44+2)X10~*G™. This resonance was found
to be caused by the hole ellipsoids in Sh. The earlier theories of magnetoacoustic attenuation have been ex-
tended to general Fermi surfaces and to include the simultaneous presence of electrons and holes and de-
formation effects. The relationship between the attenuation and the Fermi surface geometry is discussed for
different crystal symmetries and carrier compensations. A comparison between the known Fermi surfaces of
Al and Sb and the observed attenuation for these metals is made.

I. INTRODUCTION

AGNETOACOUSTIC attenuation experiments

where the sound propagation vector q is per-
pendicular to the magnetic field H have proved useful
in providing a caliper of the Fermi surface of metals.'™
The dependence of the attenuation on a longitudinal
magnetic field (qg||H), on the other hand, has been
studied in very few metals,5! because the results
cannot be interpreted so easily in terms of geometrical
parameters of the Fermi surface.*” Although the
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knowledge of Fermi surfaces might not be advanced by
such experiments, the longitudinal magnetic field case
enables one to study several new and interesting proc-
esses concerning the interaction of the conduction
electrons with sound waves.

As first discussed by Kjeldaas,’*? Doppler-shifted
cyclotron resonance occurs in the longitudinal field
case because the carriers drifting with velocity v, along
the field direction see an effective frequency w(v,/v;—1)
instead of the applied sound frequency w. Here v; is the
velocity of sound. Denoting the cyclotron frequency by
we, the resonance condition is

we=0w(,/9,—1) (1.1)
we=w(v,/,+1), (1.2)

depending on whether the carrier is drifting parallel or
opposite to the sound velocity. Below a certain mag-
netic field Hy which is determined by the maximum
value of v, there will always be some carriers in reso-
nance. The attenuation edge occurring at H4 is known
as the Kjeldaas edge.

Not only an edge, but a peak can be observed in the
magnetoacoustic attenuation whenever the resonance
condition Eq. (1.1) or (1.2) is fulfilled at a given field
for a large number of carriers. This happens when v,
or, in other words, d@/dk. is constant over an appreci-
able part of the Fermi surface. Here m, is the cyclotron
mass, @ is the cross-sectional area of the Fermi surface
perpendicular to H, and %, is the component of the
electron wave vector in the field direction.

Higher harmonics of these edges and peaks in the
attenuation are introduced when the Fermi surface does
not have full rotational symmetry about the %. axis.
In that case, v, may become a function of the polar
angle ¢ about the z axis and another resonance effect is

or

. J. Quinn, Phys. Rev. Letters 11, 316 (1963); S. G. Eckstein,
ibid. 16, 611 (1966).
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520 BARRY I.
possible. The ¢ dependence of v, causes the carriers to
oscillate along the 2z axis as they traverse their orbit.
Whenever the amplitude of these spatial oscillations
matches the sound wavelength \, geometric resonance
will occur, provided that the velocity averaged over the
orbit , nearly equals v,, the sound velocity.

Doppler-shifted cyclotron resonance using longi-
tudinal sound waves has been observed in Al® and Mg.5
Geometric resonance of this type was observed in Cd’
and Sb.?

The present investigation involves the use of shear
waves. These are of particular interest because of the
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following. By restricting ourselves to shear waves
traveling along a crystallographic axis of 3-fold or
higher rotational symmetry, the normal modes of the
sound wave are circularly polarized. By noting the
difference in the attenuation as a function of magnetic
field between the right-handed (4) and left-handed (—)
waves, the sign of the carriers giving rise to the
Doppler-shifted cyclotron resonance can be deduced.

Taking into account the possibility of higher har-
monics and requiring that the electrons be in phase
with the sound wave, the complete cyclotron resonance
conditions can be written in two groups:

Type A:

(=) wave: nw.=w(@,/vs+1)]#=1,5,9 -.-for holes

(+) wave: nwc=w(iz/vs—1)]n=3, 7, 11. - -for electrons (1.3)
Type B:

(+) wave: nw.=w(,/vs+1))n=3, 7, 11---for holes

(=) wave: nwc=w(z7z/vs—1)}n=1, 2,9 -.-for electrons. (1.4)

For a type-A resonance, the attenuation peak or edge
for a (+) wave occurs at a slightly larger H than that
of (—) wave for the same #. The difference in H is of
the order v,/v.n.

Experiments using shear waves and longitudinal
magnetic fields have been carried out on AL?® Sn,® and
Cu.l® However, these experiments used linearly polar-
ized shear waves because of the difficulties involved in
detecting circularly polarized shear waves. Besides being
unable to distinguish between electrons and holes, ex-
periments with linearly polarized shear waves suffer
from uncertainties resulting from the rotation of the
plane of polarization similar to Faraday rotation in
optics. This may cause some false attenuation peaks
when the polarization plane becomes perpendicular to
the fixed axis of the receiving transducer.

In this work a method!® is used which enables one to
measure the magnetic field induced change of the
attenuation and dispersion of right-handed and left-
handed circularly polarized shear waves directly. Such
measurements on Sn, Al and Sb at helium temperatures
will be reported. In Sec. IV the existing theories?16-2
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of magnetoacoustic attenuation for parallel fields and
shear waves will be extended to general Fermi surfaces
and to include deformation-potential terms and the
simultaneous presence of electrons and holes.

II. EXPERIMENTAL DETAILS

In the present work the relative attenuation o*(H)
—a(0), and dispersion [¢*(H)—¢(0)]/q(0) of the circu-
larly polarized normal modes for tin and aluminum
samples were measured. The relative attenuation for
antimony was also measured. When we talk about
attenuation (a*) and dispersion (Ag%/go) in the re-
mainder of this paper we always mean these relative
quantities.

Circularly polarized sound can only propagate along
an axis of threefold or higher symmetry in the presence
of a magnetic field parallel to this axis. In tin the sound
was propagated along the [001] axis; in aluminum,
along the [100] axis; and in antimony, along the trigo-
nal axis,

TasLE I. Sample details.

Sound Sound
Cross- propaga- velocity
Sample section tion di- (shear Resistance
Sam- length area  rection  waves) ratio werd
ple cm cm? q 105 cm/sec p300°k/ps.2°x 1 kG
Al 047 1.0 [100] 3.400 5000 0.7
Sb 0.67 2.0 Trigonal  2.43b 6000 85

Sn 0.75 3.0 [001] 1.91¢ 50 000 2.0

a G. N. Kamm and H. V. Bohm, Phys. Rev. 131, 111 (1963).

b S, Epstein and A. P. DeBretteville, Jr., Phys. Rev. 138, A771 (1965).

o J. A, Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658 (1960).

d This was derived from the 4.2°K resistivity of the metal using the
approximation ¢ =Ne3r/m., where N =carrier concentration/cc, and 7 is
the average relaxation time.
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The crystals were approximately cubic in shape.
Details of the samples are given in Table I. The crystals
were grown in a horizontal graphite crucible by passing
a molten zone along the length of the crucible at a
rate of 1 in. per h. The samples were grown under a
vacuum of 10~-10~% Torr in order to minimize con-
tamination. The Sn crystal was grown after twenty
passes, while the Al and Sb crystals were grown after
one pass. The extra passes on the Sn purified it by zone
refinement. The results of a mass-spectrometric analysis
of the samples is given in Table II.

The samples were aligned by x rays to within 3°.
They were cut and planed by spark erosion. The planed
surfaces were parallel to within 10~ cm over the trans-
ducer area. The depth of the spark erosion pits was
about 0.0002 in., and any damage to the crystal was
confined to the surface, as confirmed by x-ray analysis.

The method used to propagate and receive circularly
polarized sound waves consisted of placing an AC-cut
quartz transducer on the front surface of the sample,
as shown in Fig. 1. Excitation of this transducer by rf
pulses of 3—4-usec duration at 60 or 84 MHz simul-
taneously generates a right- and left-handed circular
wave. At the rear surface were placed two AC-cut
receiving transducers which had mutually perpendicular
displacement axes. The output of one of the receiving
transducers was delayed one-fourth period with respect
to the other. The two outputs were then added together
before rectification. The resulting signal was propor-
tional to either the right or left circularly polarized
normal mode.? Either signal was then amplified and
rectified by a logarithmic receiver, after which it went
to one axis of an x-y recorder. The attenuation of the
right- or left-hand signal (ot and o, respectively)
could be accurately determined to within 41 dB over
an 80-dB range. The receiving system was sensitive to
amplitude changes of 0.0025 dB.

The phase shift of the sound wave going through the
sample is [¢*(H)—q(0)]d, where d is the length of the
crystal, and can be determined by comparing the phase
of the right- or left-hand signal to that of a fixed refer-

TasLE II. Spectrographic analysis.?

MAGNETOACOUSTIC ATTENUATION

Sample Impurity® ppm
Sn Au Cu Mn Cr Ti S Al
01 03 001 01 004 10 03
Al Zn Fe K Cl Ti S Si Mg Na
10 11 04 13 004 10 10 04 10
Sb As Fe K Cl Ti S Al Ca Na
01 03 35 05 01 03 10 35 100

» The analysis was done on an Associated Electrical Industries mass

spectrometer.

b Any impurities not listed are presumed to be <0.01 ppm except for
gases which cannot be reliably determined.

24 A wave is defined as right- or left-handed if the displacement
vector S moves in a clockwise or counterclockwise sense, respec-
tively, as viewed from the observer.
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F16. 1. Transducer geometry used for detecting circularly polar-
ized sound. The transmitting transducer on the front surface is
an AC-cut shear transducer whose displacement axis & is oriented
at 45° with respect to the displacement axes, ¢, and &, of the
receiving transducers on the rear surface.

ence signal. The phase change could be determined to
within £0.05 rad. The accuracy is limited by the
difficulty of getting a good null in the comparison be-
tween the signal and reference signal. This, in turn, is
limited by the time duration of the signal pulse. In
Sec. ITI a method comparing the direct output of the
and y transducers is shown to give better accuracy in
the determination of the dispersion.

The magnetic field was generated by a 0-30-kG
superconducting solenoid, having a homogeneity of
0.05% in the sample volume. It is possible to determine
the magnetic field by measuring the current through
the magnet. However, the field at the sample lags the
current when the current is being swept. For example,
in a sweep of from 0-6 kG in 15 min, the lag was found
to be 200 G. It is possible to correct this by sweeping
up and down in field, at the expense of doubling the
time for a magnetic-field sweep. This hysteresis effect
can be eliminated by use of the Hall probe, except for a
very small field lag =10 G caused by the skin effect
of the bulk sample. The Hall probe was mounted
directly in the solenoid, near the sample.?5 This elimi-
nates significant errors caused by trapped flux at low
fields.

The Hall probe used in this work was calibrated at
4.2°K against an NMR probe operating at room tem-
perature. The over-all accuracy in the measurement of
H is 4-0.5%,. The sample was aligned parallel to H

2 Two Hall probes were found useful at 4.2°K. International
Systems Corporation Hallistor type SV210T is rated for use at
4.2°K, but is fairly nonlinear. Also, after many cycles, it cracked.
Hallistor type FC33 is linear to within 0.2, to about 15 kG, but
cracks after a few cycles. For other probes see McEvoy and
R. F. Decell, Rev. Sci. Instr. 34, 914 (1963).
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TasLE III. Summary of attenuation peaks from Fig. 4.
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Fi1c. 2. Attenuation of right- (4) and left-handed (—) waves
as a function of H in Sn at 4.2°K. The 0-30-kG curve shows the
(+4) wave only since the attenuation of the (4) and (—) waves
were nearly identical at high magnetic fields.

within £2° Purposely varying the angle of misalign-
ment as much as 5° produced no appreciable change in
the results.

III. RESULTS
A. Tin
1. Attenuation

Figure 2 shows the attenuation ot and o~ of the right-
and left-circularly polarized waves at 4.2°K, respec-
tively, for 84.23 MHz. Only the right-handed wave is
plotted for high fields, as the left-handed wave exhibited
the same structure and almost the same amplitude.

Most striking in Fig. 2 is the very rapid drop in
attenuation over a few thousand gauss. This change in
attenuation (40 dB/cm) suggests that a very strong
attenuation mechanism takes place at low fields. The
decrease in the attenuation as a function of H is sug-
festive of the Kjeldaas theory outlined earlier, and the
peaks suggest that there are large portions of the
Fermi surface for which m.7, is constant.

The difference in peak positions for the (4) and (—)
wave, as given in Egs. (1.3) and (1.4), is evident near
1350 G, while the peak at 1800 G shows only a small
difference, as all the low-field peaks seem to do. As
discussed in Sec. I, we can classify these attenuation
peaks as belonging to Type A if the (—) peak occurs at
higher fields than the (4) peak and Type B if the (+)
peak occurs at higher fields than the (—) peak. The
peaks near 1350 and 1800 G are of Type A, and if one
justifiably assumes that these strong peaks are caused
by the fundamental (z=1) in the cyclotron frequency,
then these peaks are caused by holes.

There appears to be almost no difference in the peak
positions of the (4) and (—) waves at 500 G. It is
curious, however, that on the high-field side it appears
as if the peak were Type B, yet on the low-field side as
if it were Type A. This peak is much broader for the

Peak Hny= (HY+H7)/2 Ht—H-» Peak
number kG kG classification
1 0.453 —0.01140.002 A
2 0.511 0.014-+0.002 B
3 0.585 ce. cee
4 0.657 0.016=0.002 B
5 0.80 0.0 =0.003 oo
6 0.85 0.0 =+0.003 oo
7 0.90 —0.0032-0.003 A
8 0.97 0.0 =+0.0035 cee
9 1.04 —0.018+-0.003 A
10 1.33 —0.0404-0.002 A
11 1.86 —0.0164-0.004 A
12 2.05 —0.009-+0.006 A
13 2.26 —0.025+0.006 A
14 2.60 —0.0654-0.003 A
15 2.87 —0.0404-0.003 A
16 -3.07 —0.0862-0.006 A
17 3.23 —0.0434-0.009 A
18 3.50 0.025:0.009 B
19 3.68 —0.026+0.003 A
20 4.16 —0.031+4-0.003 A
21 5.03 0.0 =+0.007 e
22 5.35 0.014:-0.007 B
23 5.62 vee cee
24 6.18 0.086£0.007 B
25 6.70 0.1444-0.014 B

26 7.07 —0.0144-0.015 A(?)

27 9.03 0.10140.007 B
28 9.31 0.029-0.020 B
29 10.02 —0.0144-0.007 A
30 11.99 0.072+0.025 B
31 16.77 0.058+0.025 B
32 18.47 0.029+0.007 B

» The accuracies quoted apply only to H*—H~. This inaccuracy comes
from the difficulty in reading the graph and in determining peak maxima.
The usual 1%, accuracy applies to Hav.

(4) wave than for the (—) wave. The field below 300 G
is expanded in Fig. 3. Below 200 G there appears to be
very little, if any, difference between the (4) and (—)
wave.

In order to increase the resolution of the measure-
ments, the attenuation measurements were repeated at
1.2°K. The results are shown in Fig. 4. Many peaks
which appeared to be single at 4.2°K show multiple
structure at the lower temperature. For example, the
peak at 500 G is seen here as a double peak whose
high-field side is Type B, and whose low-field side is
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Fic. 3. Attenuation of the right- (4) and left-handed (—) waves
in Sn at 4.2°K as a function of H at low magnetic fields.
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Fic. 4. Attenuation of right- (4) and left-handed (—) waves
in Sn at 1.2°K as a function of H. The positions of the peaks as
well as their classifications are given in Table III. The sharp
drop in the attenuation below 300 G is caused by the onset of
superconductivity. Therefore, the peak below number 1 is dis-
torted and is not included in Table III.

Type A. The fact that tin becomes a superconductor in
fields below 300 G at 1.2°K accounts for the rapid drop
in attenuation below 250 G, in Fig. 4.

The positions of the peaks in Fig. 4, as well as their
difference in peak positions for (+) and (—) waves and
classifications, are given in Table III. Not included in
the table is the peak below peak No. 1, because its low-
field side is affected by the rapid decrease in attenuation
caused by the onset of superconductivity.

The high-field region shows the attenuation for both
(+) and (—) polarizations. Structure in the attenua-
tion curves appears at the very highest of magnetic
fields. Above a few kG, however, the attenuation is
small compared with the large attenuation found in low
fields, and no drastic changes in attenuation occur. This
suggests that a strong attenuation mechanism operates
at low fields and that a weaker attenuation process
persists at the highest fields.

A comparison of measurements at 60 MHz and at
84.23 MHz showed that the positions of all attenuation
peaks scale as w/H. The amplitude of the peaks and the
average attenuation level at 60 MHz is less than those
at 84.23 MHz. This is expected, since the attenuation
at H=0 is proportional to (g?)", where » is between?® 1
and 2 and / is the mean free path of the electrons.

2. Dispersion

In Sec. IT it was pointed out that although the dis-
persion Ag¥/qo could be measured directly, these

26 A, B. Pippard, Rept. Progr. Phys. 23, 176 (1960).
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measurements are difficult to perform and also some-
what inaccurate (4=9°), because of the difficulties in-
volved in making accurate phase measurements using
rf pulses. The relative dispersion [¢+(H)—q (H)1/q0
can, however, be determined quite easily from the x
and y signals.

Figure 5 shows the direct output of the x and y
transducers at 4.2°K before the formation of the circular
mode. The peaks at 0.5, 1.5, 2.0, and 6.0 kG are caused
by the polarization vector S of the incoming acoustic
wave being perpendicular to either the x or y
transducers.

We can write the equations for the right- (4) and
left-hand (—) waves in the coordinate system of the
transducers (see Fig. 1) at any point 2z along the z
axis, as

St=Re{Ss+(2)[—i2+7] expli(gtz—wi) ]}
and

S~=Re{Si ()[2—if]exp[i(gz—wt) ]}, (3.1)
where Sot(z)=S, exp(—a*z). The signal measured by
the x and y transducers (which will be referred to as the
x and y signals) is the component of S* and S~ along
the % or y axis, respectively. The absolute value of the
x and y signals at a distance d are

|| = (CSo* (@) P+LSo (@) +250*(d)Se(d) sin(24))2,
|y = S+ (@) P+L[So(d) P— 2S¢+ (@)S5™(d) sin(24))*2,

(3.2)
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Fic. 5. Direct output of the x and y transducers (see Fig. 1)
in Sn at 4.2°K as a function of H. The amplitude of the direct
output is plotted in dB with increasingly negative dB values cor-
responding to decreasing signal amplitudes.
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set off the different quadrants (see text). By setting Ag*/go
=—Ag™/qo, the solid line in Fig. 6 is a plot of Ag*/qq versus H.

where the phase A= (¢*—¢7)d/2. Solving for A yields

el s

where » takes on the value 41, 2, &3, ---.
The arbitrary phase factor, v, in Eq. (3.3), intro-
duces a degree of uncertainty in the determination of A.

H(KG)

Al

——————

60

o
o

>
o
|
8
RELATIVE ATTENUATION (dB /cm)

n
o
I

Al L2°K

RELATIVE ATTENUATION (dB/cm)
3
I

S
[

IIllll

0 11 1 I | B . | | L1 1
5 10 15 20

H (kG

F1. 7. Attenuation of right- (4) and left-handed (—) waves
in Al at 1.2°K as a function of H. The lower curve is plotted only
for the (—) wave, since both waves are nearly equal above 7 kG.
Except for the high-field quantum oscillations, which are more
pronounced at 1.2°K, both curves are identical at 4.2 and 1.2°K.
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As A increases from 0 to —x/2, |y| will vanish at A
=—m/4, assuming S¢t(d)=S¢(d). [See Eq. (3.2).]
However, if A goes from 0 to —/4 back to 0, y will
still vanish at A=—=/4. With regard to Fig. 5, the
question arises whether the peak at 500 G is caused by
A going from the (4/4, —n/4) quadrant into the
(47/4, +3x/4) quadrant, or by A oscillating in the
(+n/4, —r/4) quadrant. This phase ambiguity can be
resolved by changing the length of the sample, by
changing the sound frequency, or by direct measure-
ment of the phase change as a function of H.

The accuracy of the direct measurements is sufficient
to resolve this phase ambiguity. The solid curve in
Fig. 6 represents the phase A or Eq. (3.3) after the
phase ambiguity has been eliminated by direct
measurements.

From the Kjeldaas theory one can show that the
following symmetry relationships hold:

at(H)=a¥(—H)
and
AGH(H)  AGF(—H)

3.4)
9o o

The relationships are general and hold for arbitrary
Fermi surfaces as we will show in Sec. IV. If one
neglects the small asymmetry caused by the finite
velocity of sound, then Ag+(H)=—Aq¥(H) and hence

Ag(H) _ ¢"(H)—q (@)
Go 2qo '

(3.5)

In Fig. 6 we see that the dispersion rises to a plateau
between 600 and 1200 G, at which point it rises sharply,
forming two peaks centered at 1540 and at 1980 G. The
dispersion declines rapidly after these peaks and re-
mains fairly steady above 10 kG. Comparing o* at
4.2°K (Fig. 2) and Ag*/qo at 4.2°K (Fig. 6) shows that
the peaks in Ag*/go occur at the same field where o
changes most rapidly, and the peaks in o occur when
Ag*/qo changes most rapidly.2?

*7 It appears as if Ag*(H)/go is related to a* (H) by a dispersion
relationship in H such as the Kramers-Kronig transformations.
We applied the Kramers-Kronig transformations toa*(H) (Fig. 2)
and obtained a curve which appeared almost identical to Ag*(H)/
g0 (Fig. 6) above 800 G, but below 800 G appears almost opposite
to Fig. 6, i.e., the peaks in the inversion corresponded to valleys
in the Ag*(H)/qo curve. It was pointed out to us by Dr. V. Heine
that the electrons or holes may obey opposite dispersion relation-
ships corresponding to closing the contour for the dispersion inte-
grals in the upper or lower half-planes. He also went on to show
that if peaks number 1, 5,9, - - - etc., fora certain carrier belong
to one contour, then peaks number 3, 7, 11, - - - etc., belong to the
opposite contour. The reason that this ambiguity is avoided in
Kramers-Kronig transformations in w is because of the causality
principle which limits the contour to the upper half-plane.

Using these Kramers-Kronig transformations may prove useful
in analyzing this type of data, but because of the complexity of
our data, we were unable to take advantage of this.
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B. Aluminum
1. Attenuation

In Fig. 7, ot and o~ are plotted as a function of H
from 0-7.5 kG at 1.2°K. The results are the same at
4.2°K. The high-field plot from 0-20 kG shows only o,
since at=a~ above 6 kG. In Fig. 7 an H dependence,
similar in some respects to that observed in tin, is seen.
At low magnetic fields the attenuation is high, dropping
off to a relatively constant value above a certain field
(4 kG). It remains relatively constant at high fields.

The rapid oscillations in the region above 10 kG are
quantum oscillations?® (de Haas—Schubnikov) and are
unrelated to Doppler-shifted cyclotron resonance and
geometric resonance. Both sets of quantum oscillations
are periodic in 1/H with periods of (3.622-0.006)
X107 G, and (2.71£0.003) X10~7 G, respectively.
This agrees well with the work of Gunnersen? who
used the torque method and found the periods (3.61
£0.13)X107% G and (2.58-£0.005)X10~7 G~.. These
oscillations are due to the electron “arms” in the third
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Fi16. 8. Plot of 1/Hy versus peak number 7 in Al at 1.2°K, taken
from Fig. 7. For attenuation arising from the second zone of Al,
I takes on the values 1,3, 5, - - (see text).

zone of aluminum. The oscillations from the holes in
the second zone are expected to appear above 50 kG,
and for this reason they do not appear in Fig. 7.

In aluminum, as with tin, there is structure below
the edge at 4 kG. However, since the Fermi surface of
aluminum has only two sheets® compared with five
for tin,*3 the structure in Fig. 7 is far less complicated

28 These quantum oscillations in the magnetoacoustic attenua-
tion were first noticed by D. Reneker, Phys. Rev. 115, 303 (1959)
in bismuth. For a list of more recent work see Ref. 1.

(129”5];,). M. Gunnersen, Phil. Trans. Roy. Soc. London A249, 299

30 M. G. Priestley, Phil. Mag. 7, 1205 (1962).

31W. A. Harrison, Phys. Rev. 118, 1182 (1960); N. W. Ash-
croft, Phil. Mag. 8, 2055 (1963) ; see also Refs. 28 and 29.

32 G. Weisz, Phys. Rev. 149, 504 (1966).

33 For the free-electron model of tin, see A. V. Gold and M. G.
Priestley, Phil. Mag. 5, 1089 (1960); V. F. Gantmakher, Zh.
Eksperim. i Teor. Fiz. “4, 811 (1963); 46, 2028 (1964) [English
transls.: Soviet Phys.—JETP 17, 549 (1963); 19, 1366 (1964)];
and V. F. Gantmakher and E. A. Kaner, Zh. Eksperim. i Teor.
Fiz. 45, 1430 (1963) [English transl.:—JETP 18, 988 (1964)].
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Fi1c. 9. Direct output of the x and y transducers (see Fig. 3) in
Al at 4.2°K as a function of H. The amplitude of the direct output
is plotted in dB with increasingly negative dB values correspond-
ing to decreasing amplitudes. Except for quantum oscillations
these curves are identical at 1.2°K.

than that in Figs. 2 and 4. The peaks in Fig. 7 appear
to belong to one family, since their amplitude decreases
at lower fields, as would be expected for higher har-
monics of the Doppler-shifted cyclotron resonance.

As seen in Fig. 8, the peaks are nearly periodic in
1/H with a slope of (1.8040.04)X10~* G~ The reso-
nance is expected to occur only for the 1, 3,5, etc.,
harmonics, and for this reason the peaks are assigned
these values in Fig. 8. Since peaks 1 and 5 are of Type A
[the (—) wave leads the (4+) wave in H] and 3 and 7
are of Type B, we conclude that these peaks are due to
the holes in the second zone. The holes are expected to
dominate because they are the majority carriers.

2. Dispersion

The direct signals from the x and y transducers are
shown in Fig. 9. These data were taken at 4.2°K and
are identical with the results obtained at 1.2°K. The
peak near 2 kG, the double peak near 4 kG, and the
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Fic. 10. Dispersion difference [¢*(H) —g~ (H)]/2¢0 between the
right- (4) and left-handed (—) waves in Al at 4.2°K as a func-
tion of H. By setting Ag*/go=—Ag~/go, this becomes a plot of
Ag*/qo versus H.
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out, remains steady up to 20 kG.
The inset shows the peak positions in
1/H plotted versus peak number.
Here the peaks are numbered con-
secutively because they are caused by
geometric resonance (see text).
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peak near 8 kG are points where the phase [¢*(H)
—q(H)]d might be changing quadrants. The phase
ambiguity was again resolved by direct measurements.
The dispersion, (¢gt—g¢7)/2qo, is shown in Fig. 10. Since
the sound velocity is much smaller than the components
of the electron velocity parallel to H of the orbits con-
tributing to the attenuation peaks, Eq. (3.5) can be
assumed to be valid. As in the case of tin, the positions
of peaks and slopes of the a® and Ag*/qo curves are
interrelated.

C. Attenuation in Antimony

Antimony is compensated semimetal with about 10~3
carriers per atom.?35 Because of the small carrier con-
centration, the magnetoacoustic attenuation of Sb is
much smaller than that in normal metals. We believe
that the major contribution to the attenuation in Sb
is due to very small pockets in momentum space of
electrons and holes,®% which are very sensitive to the
deformation induced by the acoustic wave. This will be
discussed in Sec. V.

The small magnitude of the attenuation made it
necessary to pass the sound pulse five times through
the length of the sample before detection. The diffi-
culties involved with the reflections made it impossible
to preserve the mode characteristic.®® If the direct out-

3 J. Ketterson and Y. Eckstein, Phys. Rev. 132, 1885 (1963);
S. J. Freedman and H. J. Juretschke, sbid. 124, 1379 (1961).

% L. R. Windmiller, Phys. Rev. 149, 472 (1966).

38 L. M. Falicov and P. J. Lin, Phys. Rev. 141, 562 (1966).

%Y. Eckstein, Phys. Rev. 129, 12 (1963); J. Ketterson, ibid.
129, 18 (1963); W. R. Datars and R. N. Dexter, ibid. 124, 75
(1961); W. R. Datars, Can. J. Phys. 40, 1984 (1962).
(1‘;‘5]2)). Shoenberg, Phil. Trans. Roy. Soc. London A245, 1

# Some of the difficulties involved are: (1) the (+) mode may
become a (—) mode upon reflection, depending on the reflection
coefficients, and (2) the reflection coefficients may be sensitive to
changes in H, while the transmission coefficient is not.

puts of the ¥ and y transducers are identical, as was
found in the case of antimony, then either signal yields
(et+0a7)/2 and the rotation of the plane of polarization
is negligible. This average attenuation measured at
84.23 MHz is plotted in Fig. 11. The attenuation begins
at some low value, oscillates about this value as H is
increased, and then stays constant up to 20 kG.

The oscillations are periodic in 1/H with a periodicity
of 0.00442+0.0002 G~ This value agrees with the
value of 0.0046 G~ which was obtained by Beckman
et al.,® who used longitudinal waves instead of trans-
verse waves but otherwise the same geometry. Beckman
attributes these oscillations to geometric resonance of
the kind discussed earlier. He was able to show that
the oscillations arose from the tilted ellipsoids in anti-
mony. The numerical agreement indicates strongly that
the experiments with longitudinal and with transverse
waves detect the same effect. This will be analyzed in
detail in Sec. V.

IV. THEORY

Some of the effects which have been observed can be
understood by generalizing the Kjeldaas theory, taking
into account general Fermi surfaces with many sheets,
as well as the simultaneous presence of electrons and
holes. In the following discussion we will treat only
closed surfaces and will neglect magnetic breakdown.

Following Kjeldaas? and others,'*=?? the wave equa-
tion for sound in a crystal in the presence of a magnetic

field is 3°S/0r=v2v2S+F/M , (4.1)

where M is the ionic mass, and F is the damping force
acting on one ion and is responsible for the attenuation
and dispersion. This force arises from the self-consistent
electric field &, the magnetic field H, and two additional
forces, F, and Fp. One of these forces, F., coherently
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feeds energy back into the ion system because of colli-
sions between the electrons or holes and the ions. The
other force, Fp, can be related to the energy lost in
distorting the Fermi surface and depends upon the
deformation potential.

The force F can be written as

F=Zeg+Z(e/c)uXH+F,+Fp=A-u, (42)

where u=dS/dt is the ion velocity and Z is determined
by the condition for charge neutrality

ZN=N,—Ny, (4.3)

where the quantity NV is the number of ions per unit
volume. Equation (4.3) is valid if no magnetic break-
down occurs, and if the sheets of the Fermi surface with
N, electrons and N; holes per cc, respectively, are
energetically separated from each other as well as from
all other bands. The relation F=A-u assumes that &,
F., and Fp are proportional to u, thus we are restricting
ourselves to effects proportional to u in first order.

By inserting Eq. (4.2) into Eq. (4.1) and setting
q||H||2, we obtain the solution of Eq. (4.1) for circular
waves to first order in A%/wlM;

Q*(H)=qd 1+i(4%/20M)], (4.4)

where go=Re(Q(0)) is the sound propagation constant
at zero magnetic field® and the complex propagation
constant Q% is defined by #==wu¢* exp[i(Q*Z—wi)]. In
circular coordinates #t=u,=41u, and A¥=A4 ;414 y,.
The attenuation o* and dispersion Ag%/qo are given by

ot=Im[Q*(H)—Q(0)]
= (q0/2Mw) Re[A*(H)—A4*(0)] (4.5)

and
Ag* Q*(H)—¢ 1
——=Re[ °]=— Im[A%(H)—4%(0)],
Go o 2Mw

(4.6)
respectively.

A. Self-Consistent Field

Equation (4.2) shows that 4% depends on the quan-
tities &, F., and Fp, which can be derived by following
the procedures given by Cohen, Harrison, and Harrison,?
M. Harrison,'® and Spector.'”

The self-consistent field & can be determined by com-
bining the Boltzmann equation, giving the total elec-
tronic current density j.+7x, with the relation

jeHintZeNu=—oB- & 4.7
as derived by Cohen et al.2 from Maxwell’s equations.

% The quantity g as used in Eq. (4.4) is not strictly equal to
Re(Q*(0)), since Im(4%), which accounts for the ac (i.e., w=+0)
electronic contribution to the dispersion, contains terms which do
not vanish at zero magnetic field. To be precise go should be re-
placed by getatic in Eq. (4.4), where gatatic is the sound propagation
constant in the limit as w — 0. The difference between ggtatic an:
go is of the order of a few percent or less as determined by noting
the change in the sound velocity between 300 and 4.2°K.
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The tensor B is
i3 0 0
B=[o i 0],
0 0 —uy

where B=wc?/4row., v=8(v:/c)?, and oy is the dc con-
ductivity. The screening parameter 3 is proportional to
the square of the ratio of the classical skin depth to the
sound wave length. For perfect screening 8 would equal
zero. In Al and Sn at 4.20°K at 84 MHz 8=~10~*,

The currents j, and ji are defined as

o= / v/dk,

jh=e/thdk,

where f, and fj are the distribution functions for elec-
trons and holes having velocity v, and position r. In
this case we assume a single electron sheet and a single
hole sheet. The results can readily be extended to many
sheets.

The quantities f, and fr can be derived from the
Boltzmann equation if one knows the energy expressions
for electrons and holes in the presence of a sound wave.
Following Harrison and Spector, these energies can be
written as

E(K)=ES(k)—(a-V.(k)-u)/w,
Ex(k)=E(k)—(a-Vi(k)-u)/w,

where V,(k) and V;(k) are the deformation potential
tensors for electrons or holes at a given point k in the
Brillouin zone, and E (k) and E;*(k) are the electron
and hole energies in the absence of a sound wave.

Solving the Boltzmann equation by the path integral
method of Chambers,* the distribution functions f,
and fy, are found to be

(4.8)

(4.9

Lo 1 g q(q-vp~u')]
T e— —— vo ge
YN o, o
,—
Xexp( )dt’. (4.10)
Tp

The quantities w’ and & vary as exp[i(q- ' —ow’)] in
the presence of a sound wave. By making the substitu-
tion ¢=w.t’, where ¢ is the polar angle about the k,
axis, Eq. (4.10) can be rewritten as

of’ ¢ v mu  q(q-V,-u)
T8 R
o0E —o0 Wep Tp W
XKy(p,9')dg', (4.11)
where
¢’ .q.vl’__.w 1
Kp(¢,¢’)=eXp[ f d¢"(t———~+ )} (4.12)
[ Wep WepTp

4 R. G. Chambers, Proc. Roy. Soc. (London) A65, 458 (1952).
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The quantities & and u are in the unprimed coordinate
system. In Egs. (4.10), (4.11), and (4.12), the quantity
P stands for either electrons (¢) or holes (%), and g===1
for holes and electrons, respectively. The quantity f,°
is the unperturbed distribution function, and 7, is the
particle relaxation time. The term mu/7, accounts for
collision drag, as discussed by Holstein.®? The mass m
is the free-electron mass.

As we are only interested in the attentuation and
dispersion of shear waves, a diffusion term accounting
for longitudinal currents need not be included in Eq.
(4.10) or (4.11).

In general, V ,(k) depends on k and cannot be taken
out of the integral in Eq. (4.11). Likewise, the relaxa-
tion time may depend on k. However, by assuming that
7p(k) is nearly a constant for a given sheet of the Fermi
surface,® 7, can be removed from the integral in Eq.
(4.11). Using Eqgs. (4.11) and (4.8), the current can be
written as

je=0,. (8—mu/er,)+D, u,

. 413
Jn=0y- (&+mu/ers)— Dy-u, (413)
where
Af sy
o= / (—-—~—)de (—)Kp(¢,¢’)d¢’. (4.14)
oE —0 \Wep

The integral over ¢’ in Eq. (4.14) is the path integral
of the electron or hole at a given velocity v. It is then
integrated over & space. The tensor D, is defined as

af ¢ 1 v,/
o[ (L)
oE —o Wep\ TWE
VK ,(p,0")de’.  (4.15)

Using Egs. (4.7) and (4.13), the self-consistent field is
&=—[o+or+Boo ]!

moe, MG
'H:ZNe— +—+D,+ Dh:|~u}. (4.16)

€T ETh

B. Coherent Force F,

The coherent force arises because the average elec-
tron or hole velocity, (v.) and (v.), before collision
differs from their average velocity, u, after collision,
causing a net transfer of momentum to the lattice. In
the case of multiple electron and hole sheets, (v.) and
{v:) would be the average electron and hole velocities
for the whole metal.

Following Harrison,'® the expression for the coherent
force can be written as

_mNe mNh 417
c——E((ve>—u)+T—hE((vh>—u)- (4.17)

Te

4 T, Holstein, Phys. Rev. 113, 479 (1959).

4 The anisotropic relaxation time 7 (k) could be kept within the
integral [Eq. (5.11)] and D redefined to include both vV and
(1/7(k))1, where I is a unit tensor.
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The quantities (v,) and (vs) are defined by j,= — N .e(v.)
and j,=Ne(vs). Hence, Eq. (4.17) can be rewritten as

m Ne Nh m . . 1 1
Fc= __<_+ _)u+—(lh+]e)<___>
N\7, 74 2eN Th Te

+2%V<ih—ie>(i+1). 4.18)

Th Te

Using Egs. (4.7) and (4.13) the coherent force F.
becomes

m[ /N, Ny ZNs1 1
F,— ——[(—+ —)1+—(—+—)1
NL\7, 74 2 \11 T

1/1 1\/m m
——(—+—)(—ah+—ae— Di— o)] u

2e Th Te eTh €T

m 1 1 1 1
+——[—<———>aos+(——+—> (m.—oe)]-s,
2Ne Th Te Th Te

(4.19)
where | is the unit tensor.
For metals having only electrons or only holes,

ZNeé*ry
Fc=——gZe(<ro/( ))BS
m

will give only a small contribution to Eq. (4.2) since
oo/ (ZNeé*r,/m)=1 and 8~10~% Only when electrons or
holes are simultaneously present does F, add a signifi-
cant contribution to Eq. (4.2).

C. Deformation Force Fp

From the Boltzmann equation Harrison and Spector
were able to show that the force on a carrier due to the
distortion of the Fermi surface by the sound wave is

q(q-V, u)/icw.

The power taken from the lattice by the motion of the
carriers under this deformation force is

p=(1/i) f a(@-V,0)-v/odk.

The integration averages the power over the particle
distribution, where f, is the distribution function de-
fined in Eq. (4.10). This power represents a complex
flow of energy from the sound wave into the electron
system and is equal to Fp-u, where Fp is the force on
the ions accounting for the power lost in deforming the
Fermi surface. Solving for the force Fp, we get

Fo=(1/N) / [(a-Vy)/iw)(@- V) k. (420)
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Using Eq. (4.11), Fp can be written as

& m m
Fo- (DY~ DJ)—+(=D/+--Dy)

€T e €Th

u
'I/t+ (Ae-l-Ah) 'E, (4.21)

where

e [q-V af > ¢
/= f (q-\l,,)(——)dk / VK (6,6/)d¢’ (4.22)
W) Wep oFE —

1
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and \
s () (55)

x f_ i(q-v>(q'v‘”)l<<¢,¢')d¢'. (4.23)

ew

D. Solution of 4*

Having obtained &, F., and Fp, we can now derive
the expression for 4+, From Egs. (4.2), (4.16), (4.19),
and (4.21), A* can be written as

m 11 1 1
Ax=£iMQ+ {Ze-i— ——,:—iaoﬁ<—————>+<——+———> (ahi—l-ae:':):l-l—x;(Dh'i—De’i)}

2Neél Th Te Th Te

m m 1/m m
X {ZN et+—ort——o t+DE— Dh*} / (oe*-l-ahi-l-iaoﬁ)——(——De'i+—Dh'i+Ae*+Ahi>

€Th €Te

4___ _—

'ml:Ne N ZN<1
N

Te Th 2 \Tp

where Q.=ZeH/Mc is the ionic cyclotron frequency.
We see that 4% is a complicated function of o*, D%
D'%) and A%, which in turn depends on H. The H de-
pendence of these four quantities will be discussed in
the next section.

E. Conductivity o+ and Deformation D%, D'+, and A+

1. Conductivity

Because of the symmetry conditions imposed by
using circularly polarized sound, it is only necessary to
consider the xx and yx components of the conductivity
and deformation tensors. Following Stolz,® the con-
ductivity tensor as defined by Eq. (4.14) can be re-
written in circular coordinates as

e [EF om,
—dk,
42 ) _pop @o

27 ¢
X f (vamtivy)d / 0K (b)) (4.25)
(1] —0

0':':=ou:l:ia'w=

where K (¢,¢") is defined by Eq. (4.12) and k.r is the
maximum extension of the Fermi surface along &..

The velocity can be expanded* in a Fourier series
in ¢ as

14L+f

€Te €Th

171 1\/m m
—)——(——-{-—)(—-ahi—l-—aei—Dhi—De'—‘z>], (4.24)

Te

2e\7;, T/ \eth eTe

Vp= ZZ A cos[g(l—|—1)¢]+; Auyscos[g(+3)e],
vy = ; Ay sin[g (l+1)¢:]—§ Ay sin[g(+3)¢ ],

v,=2_ B, cos(re), (4.26)

where Bo=7, and 7 and ! denote the harmonics of the
Fourier expansion of ». For a Fermi surface centered at
T' in the Brillouin zone of s-fold rotational symmetry
about the k. axis, /=0, 4, 8 and =0, s, 25- - -, where
s=3, 4, and 6. For Fermi surfaces not centered at T,
the velocity expansion becomes more complicated. El-
liptical Fermi surfaces, however, are simple to treat and
are dealt with in Appendix A. In the following discus-
sion we treat only those surfaces centered on I'. The
quantity g=+1for holes, which move clockwise through
their orbit in our coordinate system, and g=—1 for
electrons which move counterclockwise.

To demonstrate the magnetic field dependence of the
conductivity under the conditions of Doppler-shifted
cyclotron resonance, let us first assume that v, is inde-
pendent of ¢. Thus, we neglect the effects of geometric
resonance. As shown in detail in Appendix A, Egs.
(4.25) and (4.26) then yield

Ayt

2 kzF
o i / Me 2 |: -
832/ o T L1t i (X —0/wFe(+1))  1+iva(—X —w/wFgl+1))

14L+§

A

€ L
"o (X —w/wekg(43)) | 1 iver(— X —o/wetg(i+3))

4 H. Aubauer (private communication and to be published).

:,dkz, (4.27)
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where X =¢?,/w.. Using the relationship®
_ kaa (4.28)
MDy=— — .
2 Ok, ’
we can write X as
gh 1 0@
A (4.29)
2wec H Ok,

The quantity @ is the cross-sectional area of the Fermi
surface in a plane perpendicular to H. If d@/dk. is
constant over an appreciable range of k., then at cer-
tain magnetic fields Hy, there will be peaks in Res*.
The fields Hy are given by the relationship

g 1 6@)
27l'6(3 H] <6kz const
if we assume that the Fourier coefficients 4,1 and 443
are independent of %, and that the term w/w. in Eq.
(4.27), which arises from the finite velocity of sound,
can be ignored. Here (9 @/0k.)const represents that value
of d@/dk. which is constant over an appreciable range
of %.. In the present case where v,=7,, [=1,3,5---.

The strength of these peaks will depend on the
magnitude of the corresponding Fourier coefficients,
and also on w,r. For those Fermi surfaces having full
rotational symmetry about k,, 43=0, A;=0, - - -, only
the H; peak will appear in Reg®. These peaks in Res*
areknown as Doppler-shifted cyclotron resonance peaks.

Equation (4.30) shows that a plot of peak number
(1,3,5- - -) versus 1/Hr will yield a straight line whose
slope is proportional to (8 @®/dk.)const unless the Fourier
coefficients are strongly k.dependent. A strong Z.
dependence of the Fourier coefficients causes the peaks
in Reo* to shift from Hy, and Eq. (4.30) will no longer
be valid in determining peak positions.

The line shape of these peaks will depend on the
higher derivatives of @ with respect to %, and also on 7.
The peaks will generally be asymmetrical in shape
although shorter relaxation times will tend to smooth
out the peaks and decrease the asymmetry.

In some cases d@/dk, will not be constant (or nearly
constant) over any part of the Fermi surface. In this
case there will not be any peaks in Res®. An edge in
Reo* will appear at H4! whenever

gh 1 <8@)
2mec HAI 6k; max
where (0G/0k:)max is the maximum value of d@/0k..
This edge will occur for any Fermi surface whether it
gives rise to peaks in Res* or not. An example is an
ellipsoid whose principal axis is tilted with respect to

H and where d@/dk,=ck.. Then there will be no peaks
in Reot but a series of edges at H4l, where Hs! is

|X|= =1 (4.30)

|X|= =1, (4.31)

45 W. Harrison, Phys. Rev. 118, 1190 (1960).
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determined by
gt 1

—— ——ck.r
21rec H AI

=I.

For the ellipsoid, the shape of the edge depends on the
principal radii of curvature and relaxation time as
discussed by Kjeldaas.

In the previous discussion we have ignored the w/w.
term of Eq. (4.27). This term is related to v,/vr and
allows one to distinguish between electrons and holes
in o, If we rewrite Eq. (4.30) taking into account the
w/w. term in Eq. (4.27), we get

q}t 1(3@)
2mec HJ akz const

gt 1 <aa)
2mec HJ, 6kz const

where J=1,5,9---, and J'=3,7,11---. For a hole
surface (g=-+1) and a right-handed wave (+), the
H  peaks are shifted to lower fields and the H;. peaks
to higher fields with respect to the corresponding peaks
at Hr. The opposite occurs for left-handed waves. This
is in agreement with the conditions classifying reso-
nances as Type A or B, as stated in Egs. (1.3) and (1.4).

The symmetry relations Reo*(H)=Reo*(—H) and
Ime*(H)= —Imo*(— H) follow from Eq. (4.27).

By assuming that v,=7,, o* takes on the simple form
given in Eq. (4.27). However, v, may be a function of ¢.
When v, is expanded in a Fourier series [ (Eq. (4.26)]
and inserted into Eq. (4.25), K(¢,¢") after integration
over ¢/, becomes

Fo/w=J

and (4.32)

+gw/w,=J",

K (p) = ] §(X 0/ 6= O)+i(T ¢ in(9)
¢>’—¢]
WeT '
The quantities ¢,=¢B,/ws, coc=0, and X=¢?,/w.. The
term K (¢,¢') will introduce Bessel functions into the
integrand of o*, since exp[iW sing =3 mJm(W)em?,
where J,, is the mth-order integer Bessel function and
m=0, =1, &=2- - -, Equation (4.25) can be solved using
the Fourier expansions of v, and v, as before (see
Appendix A). The exact expression of ¢= is a compli-

cated expression consisting of summations over /, 7, 7,
my, my,- - ~m,, and m,’. A typical term in the summa-

tion is
62 kzF
f medk,
8mh2) o

[ A l+1A l'+1l:Hr ]mr(cr)]m’r(cr)]
1+iwr (X —w/wFg(l+1)—> mr)

— ¢, sin(r¢) )+

! ! N —
o rymamy - - -mpm,’) =

]. (4.33)
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TasBLE IV. Values of I for which peaks or edges may appear in A%, D*, D'+ and o* at Hy or H 47, respectively (see text).

Fermi surfaces not
centered at T'
(elliptical pieces)

Condition Fermi surfaces centered at T’ 3, 4, or 6-fold
Tensor (¢ dependence 3-fold rotational 4-fold rotational 6-fold rotational rotational sym-
quantity of v, and V.z) symmetry about k2,  symmetry about %, symmetry about &, metry about &,
ot V=0, I=1,3,5 I=1,3,5--- I=1,3,5-- I=1 only
.= /() 1=1,2,3 I=1,3,5-- I=1,3,5--- I=1,2,3...
9,=1,, V,z=const DE=0 D%=0 D%=0 D=0
D* 0:=0z, Vaz=1"($) 1=3,9,15 DE=0 D=0 I=1only
9,= f(¢), Vs =const I=1,2,3--- D*=0 D*=0 I=1,2,3---
2:=f(¢), Vea=f"(¢) I=1,2,3- D*=0 D=0 I=1,2,3--
9,=0,, Vs =const D'==0 D'E=0 D't=0 D'E=(
D'+ 02=0, Vas=f"(¢) 1=3,9,15--- D=0 D'==0 I=1 only
.= f($), Vap=const I=1,2,3--- D'==0 D'E=0 I=1,2,3...
2:=f(#), Ve =1"(¢) 1=1,2,3- D':=0 D'*=0 I=1,2,3...
v, =10z, Vaz=const A*=const A*=const A*=const A*=const
A% V=02, Vie=f"(¢) 1=3,6,9--- I=4,8,12 1=6,12,18- - I=1,2,3
v.=f(¢), V.s=const 1=3,6,9--- I1=4,812---. I=6,12,18.-- I=1,2,3
=1(9), Vie=1"(0) 1=3,6,9--- 1=4,8,12. I=6,12,18.-. I1=1,2,3

If the k. dependence of the Bessel functions and
Fourier coefficients in Eq. (4.33) can be neglected, then
for 4-fold rotationally symmetric Fermi surfaces cen-
tered on T, peaks in Res* will again occur at H,, Hs,
Hs--- as in the case of v,=7,, because r=0,4,8:--.
However, for other symmetries additional peaks may
be introduced when v, is a function of ¢, as seen in
Table IV. If the Bessel functions are k.-dependent,
then the peaks arising at Hy, will be shifted in addition
to any peak shift caused by the Fourier coefficients.

In addition to possibly shifting the Doppler-shifted
cyclotron resonance peaks in Res#, the Bessel functions
may themselves cause oscillations in Res#, since at
low magnetic fields the Bessel functions oscillate sinus-
oidally. These oscillations are known as geometric
resonance. Since ¢, does not depend upon the polariza-
tion of the sound wave, there will be no difference in
the effects of right- or left-handed waves on geometric
resonance. There will also be no difference in the geo-
metric resonance between longitudinal and shear waves,
since ¢, is the same in both cases. This is confirmed by
the agreement between our results and those of Beck-
man et al. in Sb.

The denominators in the integrand of ¢%, which give
rise to Doppler-shifted cyclotron resonance, also cause
rapid variations in ¢* at low magnetic fields, as dis-
cussed earlier, so that Doppler-shifted and geometric
resonances may simultaneously appear. In some cases
the denominator may remain constant as a function of
H and k.. In this case only the Bessel functions cause
o* to vary. In particular, this happens when 7,=0, and
then X=0. An example of this is a cylinder whose axis
is tilted with respect to H and where 5,=0 over all k..
Then ¢,=¢B:/w is finite and only geometric resonance
will be observed.

2. Deformation Terms D%, D'+ A+

The deformation tensors glven by Egs. (4.15), (4.22),
and (4.23) can be written in circular coordinates
analogous to the conductivity given by Eq. (4.25). In
evaluating these deformation terms, the ¢ dependence
of the components of the deformation potential V,, and
V.y must be taken into account. The deformation po-
tential can be expanded in a Fourier series as

V.= E, cosrg,
r (4.34)

V=Y E/sinrg,

where E,=E,’ and r=0, s, 25 - + for s-fold rotationally
symmetric surfaces centered on I, and E.FE, and
r=1,2,3--- for elliptical surfaces not centered at I
Using Egs. (4.26) and (4.34), the deformation terms can
be evaluated and result in an expression similar to o%.

The final expressions for D%, D'+ and A* show that
Doppler-shifted cyclotron resonance and geometric reso-
nance occur. The allowed peaks at Hy and edges at H 4!
are given in Table IV. The geometric resonances occur-
ring in D%, D’%, and A* are the same as those occurring
in o* since the function K (¢,¢’) appears in the expres-
sions of all four quantities.

The ReD*(H)=ReD¥(—H), ImD*(H)=—ImD¥
X (—H), etc., can be shown to hold as in the case of g+,

The quantity A+ is proportional to V..?, and since
V .z is zero for spherical Fermi surfaces® and small for
nearly-free-electron metals, one expects A+ to be very
small for most metals. The total magnitude of the shear-
deformation contribution to the attenuation can be

46J. M. Ziman, Electrons and Phonons (Clarendon Press, Ox-
ford, England, 1963), p. 216.
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estimated for certain metals from measurements of the
temperature dependence of the attenuation in the
normal and superconducting state. From measurements
on the attenuation of shear waves in Al by David et al.,*
Liebowitz* has shown that 109 of the total attenuation
for shear waves propagated along the [110] direction is
due to deformation effects. In Sn, Liebowitz# has found
the deformation contribution to be about 309, of the
total attenuation for shear waves propagating along
the [001] direction.

F. Discussion of 4%

It is possible to draw some general conclusions re-
garding A+ from the properties exhibited by ¥, D%,
D’%, and A*. From the symmetry properties of these
quantities we can show that

Re[A*(H)—A*(0) ]=Re[AT(—H)—AF(0)]
and
Im(A*(H)—A*(0)]=—ImAT(—H)—A47F(0)].

This is in agreement with the Kjeldaas theory and
confirms Eq. (3.4).

We have seen that the conductivity and deformation
terms give rise to geometric resonances, which vary
sinusoidally with respect to 1/H, and Doppler-shifted
cyclotron resonance which causes asymmetric peaks
nearly periodic in 1/H. The sinusoidal oscillations
coming from the geometric resonances will suffer only
amplitude and phase change, when combined in Eq.
(4.24) to form A#. Thus, by measuring the period of
the oscillations in 1/H of a*, the amplitude of v, as a
function of ¢ can be determined.

It is possible that the Doppler-shifted cyclotron
resonance peaks may also be periodic in 1/H, in which
case one can also analyze the period as determined from
o, and obtain the value of (0 @/0k.)const- This assumes
that the peaks in Rec*, ReD*, ReD’+, and ReA* all
occur at the same Hy. In general, this periodicity in
1/H will not be present because of the Fourier coeffi-
cients or the Bessel functions, or it may be extremely
difficult to identify peak positions in H because of the
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asymmetry of the peaks. Sometimes only the first peak
in a family will appear (e.g., tin) in o*. In any of the
above cases the only way to relate these peaks (or
peak) to (0@/0k.)conss is through Eq. (4.24). Under
certain conditions it is possible to relate a single peak
in o to (9@/9%:)const Without having to explicitly
evaluate Eq. (4.24), as will be shown later.

The symmetry of the Fermi surface plays an im-
portant role in the form of Eq. (4.24), through the ¢
dependence of v, and V... For example, a Fermi surface
centered on I' with 4- or 6-fold rotational symmetry
about &, would cause 4+ to depend upon ¢* and A+
only. If v, and V., are independent of ¢, then A+
depends only on ¢%, since A* would be independent of
H as seen in Table IV.

The way in which the conductivity and deformation
terms are combined to form 4+ depends upon the con-
stants in Eq. (4.24) (e.g., N, No, N3, etc.). In this
relationship, the number of electrons and holes present
in the metal play a very important role, giving us three
cases to consider: (1) both electrons and holes present,
but N.#N,; (2) electrons and holes present, and
N,=N,; (3) only electrons or holes present.

Case 1. There can be no simplification of Eq. (4.24).
It should be noted that 4* is proportional to D*, D'+,
A%, 0%, and the cross products DxD'% ¢£D’%) etc.,
while it is inversely proportional to ¢*. Thus, the field
dependence of 4+ will depend upon the relative strength
between the deformation and conductivity terms, which
in turn depends upon the Fermi surface in question.
Unfortunately, in this case the deformation and con-
ductivity terms must be evaluated before they can be
compared with experiment.

Case 2. When N,= N, then Z=0 and Eq. (4.24) can
be simplified somewhat. A% is proportional to such
terms as o*, D D'E A% /(0. E+01%), o.fort/
(ee+04%), 0tDE/ (0 +01E), etc., if ¢8<Kot is neg-
lected. For those Fermi surfaces where ¢%, D%, and D'+
all have the same H dependence, we would expect the
H dependence of A% to be nearly proportional to the
conductivity and deformation terms.

Case 3. If only electrons or holes are present, then
Eq. (4.24) reduces to

A=
O'pi‘*"iﬁao

Equation (4.35) shows that a peak in Res* will result
in a dip in Re4#, while a peak in ReD*, ReD'+, and
ReA* will give a peak in Red#. The resulting 4+ de-
pendence will depend upon the relative strength of the
various terms.

47 R. David, H. R. Van der Laan, and N. J. Poulis, Physica 29, .

357 (1963).
4 J. R. Liebowitz, Phys. Rev. 136, A22 (1964).
© J. R. Liebowitz, Phys. Rev. 136, A84 (1964).

mD'+ .
N< +A,,>:I:iQM . (4.35)

€Tp

For a spherical Fermi surface, Eq. (4.35) reduces to
o e ignon/Ner,)8) ZNertg(ono 2/er,)
‘Tpi‘l"iﬁff 0

+iMQ, (4.36)

since D#, D'#, and A* are then zero. Here A* is pro-
portional to 1/0,% and a peak in Reo* will result in a
dip in Red+.
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For a free-electron spherical Fermi surface, Eq.
(4.36) can be shown to yield the Kjeldaas result.

V. DISCUSSION

We have seen how the compensation (V,—N) affects
the relationship between 4* and o%, D, D'%, and A%,
and the following discussion treats our results, and those
of others, according to the compensation.

A. Complete Compensation N.= N,

Metals which have an even number of electrons per
unit cell, such as antimony with ten and tin with eight
electrons per unit cell, are compensated.

1. Antimony

The Fermi surface of Sb is composed of electron and
hole pieces which are nearly ellipsoidal. Windmiller®®
and Falicov and Lin® have shown that there are six
hole surfaces with mirror symmetry, whose principal
axis is tilted at 53° away from the trigonal axis, and 3
electron surfaces located at the point L of the Brillouin
zone, whose principal axis is tilted at 88° from the
trigonal axis. Each of the hole surfaces can be char-
acterized by an ellipsoid with the following energy
equation:

2mE F

=a11k52+a22ky2+a33kz2+a23kykz, (51)

written in the coordinate system of the crystal centered

3 ¢ ZEF 172 qoias
G
16 7#2x3 m MW,

where J; is the first-order Bessel function, and w.
= (eH /mc) (a11022)2. Since we are only considering the
k,~0 orbit (9,=0), integration over k, was not per-
formed. The quantity A%, is the width of the band of
electrons at k,~0 participating in geometric resonance.
There are other terms in Eq. (5.4) but they have
factors of wer in the denominator, and since w.r =100,
we have neglected them.

The quantity Ji(W)=cos(W—%mr) for W>3 and
hence J (W) becomes a maximum at W=3r, (7/4)m- - -.
Thus, the Bessel function is periodic in 1/H with a

1 f
period o e/ @ \!2am
a/m=—{(2) 22,
26 ZmEp Q23

(5.5)

which is identical to the condition derived by Beckman
et al.8 and Quinn." Using the values a11=0.965X 10“Ep,
Q2= 0426)( 1014EF, Q33= 0588)( 1014EF, and Q3= 0576
X104Ey, as derived from Windmiller’s data, and Ep
=18.6)X 10~ erg from Schoenberg,® in Eq. (5.5) gives
A(1/H)=0.00472 G, which should be compared to our
experimental value of A(1/H)=0.00442+0.0002 G~

MAGNETOACOUSTIC ATTENUATION

ZmEF 1/2
:l >(ozn+oz22)Akz/1+iw'r,

533

on the ellipsoid. The velocity of the holes can be
written as

v=(t/m)e-k. (5.2)
Each of the electron surfaces can also be characterized.
by an ellipsoid having the energy equation

2mE F

7=ﬁ1k22+ﬁ2ku2+ﬁ3kz2- (53)\

For simplicity we have neglected the 2° deviation be-
tween the principal axis of the electron surface and the:
binary-bisectrix plane of the crystal.

For the hole surface, v, will vary through the orbit
due to the 53° tilt from the trigonal giving rise to
geometric resonance. From Table IV we see that
Doppler-shifted cyclotron edges will occur at H,4%,
where I=1, 2, 3- - -, in Res*, ReD=, ReD’%, and ReA®.
The velocity v, on the electron surface will be constant
through the orbit and will give no geometric resonances.
From Table IV edges will occur at H4! in Res*, ReD%,
and ReD'* and at H,', H4% H,4®% -+ in ReA* for the
electron surface. Those results apply to the most
general case where V., and V., are functions of k.

Let us first consider the geometric resonances arising
from the hole surface. By solving the equation of motion
for holes in the presence of a magnetic field, the ve-
locities v, 9y, and v, can be determined by using Egs.
(5.1) and (5.2) as seen in Appendix B. Using these
velocities in Eq. (4.25) yields the solution (see Ap-
pendix A) for the 2,=0 orbit

(5.4)

Q22

To determine where the Doppler-shifted cyclotron
resonance edges occur, we need to compute (9 @/0%:)max
as seen from Eq. (4.31). From the value of X as deter-
mined in Appendix B, we find that (9@/0k:)max
=2 (as3—azs/ass) k.r for the hole surfaces, and
(0G/0kz)max=2mPs k.r for the electron surfaces. For
the hole surfaces k.r=5.36X10° cm™, and for the elec-
tron surfaces k.r=38.38X10%¢ cm. Using the previous:
values of ay1, ass, ass, a2, and Er, Eq. (5.30) gives a
value of H47 as

H,1=280/I G

for holes. Since I=1,2,3--- we would expect a series
of edges periodic in 1/H to appear in the attenuation
because a* is proportional to Re(ct+D+4-D'+4A%)
in a compensated metal. Similarly by using the value:
of 33=0.236 X 10“EF we get

HA1=350/1 G

for electrons. The fact that there is no experimental
evidence of these edges, as seen in Fig. 11, implies that
Doppler-shifted cyclotron resonance is weak in this case..
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2. Tin

The detailed structure of the Fermi surface of Sn
indicates a complicated topological figure which makes
any computation of o%, D%, D'% and A* nearly im-
possible. However, for Sn, which has 4-fold rotational
ssymmetry about H, « is proportional to %, D%, D'
and A% since o*, D%, and D'* all have the same H
-dependence (see Table IV). This holds for the surfaces
centered on I' and not on T'.

Figure 6 shows that certain peaks (1, 10, 11, 19, 24,
and 32) are Doppler-shifted cyclotron resonance peaks
because of their sharpness, asymmetrical character, and
difference in H for the (+) and (—) wave. They are
probably H; peaks because of their strength. If so, and
if we assume that the position of H; is unaffected by
the Fourier coefficients and Bessel functions in the inte-
grands of %, D%, D'#, and A%, then we can state the
following condition for the maximum in Re4*:

qe _
- _(mcvz) const
€ Hft

Fo/w.=1, (5.6)

which follows from Eqgs. (4.28) and (4.32). This means
that if the product .7, is constant over an appreciable
range of the Fermi surface along k. a peak will occur at
H* in Red#*. By taking the sum and difference of the
-+ and — parts of Eq. (5.6), we get

Mo e
‘—'=————|H1 "'"Hf-l (57)
m  2mew
and
H+*H-
|7, =1, (5.8)
H+—H

Here m, and 7, are the cyclotron mass and average
velocity along 2z belonging to that part of the Fermi
surface giving rise to the peak at H,*. Applying Egs.
(5.7) and (5.8) to peak number 10 (the strongest peak)
in Fig. 4 gives

me/m=0.6420.03 and |5.|=(0.1332:0.007)X 105

This peak arises from a slice of the Fermi surface where
7, is much less than the Fermi velocity vp.

The weak peaks in Fig. 4 (Nos. 5 through 9) are
caused either by geometric resonance or by the higher
harmonics of the Doppler-shifted cyclotron resonance
peaks, but it is difficult to determine which one is
responsible because of the many processes which occur
simultaneously.

B. Zero Compensation

The metals which have zero compensation are the
alkali metals and nobel metals, in particular, copper.
In this case A* is given by Eq. (4.35) and is propor-
tional to the deformation terms and inversely pro-
portional to the conductivity. Copper has 4-fold

BARRY 1I.
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rotational symmetry about [100] and is centered on
T', so one would expect the first-order deformation terms
D%, and D'+ to vanish when ¢||[[100]. However, the
necks introduce complications and these two terms are
probably present.%

By using the Fermi surface of copper as computed
by Roaf, Gavanda and Boyd! were able to predict
that H; in o should occur near 4 kG for ¢||[100]. This
peak comes from the region of the Fermi surface where
the necks join the belly. They then compared this peak
directly with their measured attenuation peak at 4.3 kG.
This agreement is surprising since it implies that 4%
is proportional to o= instead of 1/0%. However, A% is
proportional to D%, D'+ and A%, and in general all
these terms will give rise to a peak at H;. It is probable
that the deformation terms are large since the region
where the necks join the belly in copper is extremely
sensitive to any strains induced by the acoustic wave.
Thus, one expects that ReD* and especially ReA* to
dominate the attenuation.

C. Incomplete Compensation N,# N,

Incomplete compensation occurs in polyvalent metals
having an odd number of electrons per unit cell, such
as Al

In a preliminary calculation, Aubauer has obtained
o* for the second zone holes in Al using a nearly-free-
electron model. He included the Fourier coefficients of
the velocity expansion in his calculation but assumed
9,=7,. For the Rec* he found a family of peaks periodic
in 1/Hy having a period of 1.15X10~¢ G™! with the H,
peak occurring at 9 kG. By calculating Re(1/0%), he
also found a family of peaks periodic in 1/H having a
period of 1.15X10~* G as before, but now the H,
peak occurred at 3.9 kG. The H dependence of Re(1/0%)
resembles Fig. 7 and Im(1/0%) resembles Fig. 10 very
closely except for the exact peak positions and perio-
dicity. This suggests that A+ is nearly proportional to
1/0% in Al. The discrepancy between the observed and
calculated periodicities might be resolved by using a
more accurate model for the Fermi surface of Al.® A
more complete calculation including the effects of the
Bessel functions is now in progress.

It is surprising that Jones,® by assuming that the
attenuation was proportional to the conductivity,®

% If one treats the necks in the Fermi surface of Cu as cylinders
centered on L, they will have the same properties as ellipsoids at
L with regard to which peaks are allowed by symmetry (see
Table IV).

51D, J. Roaf, Phil. Trans. Roy. Soc. London A255, 135 (1962).

52 Phonon renormalization corrections will enter both 2, and
wc. If the two corrections are identical, they will of course cancel
out in the determination of the peak position leaving only the
geometric quantity d@/dK.. If not, there could be an effect of
phonon renormalization on the period. However, it seems unlikely
that it is able to account for the discrepancy of a factor of 1.5;
an explicit theoretical investigation of this problem would be of
value. M. H. Cohen (private communication).

% Jones actually did not assume that «.. was proportional to
022. He derived a quantity from energy considerations which had
the same form as ., and set this proportional to «:..



151

accounted for his attenuation results as being due to
the second zone hole surface in Al. He propagated
longitudinal waves along the [100] axis of Al with
g||H and found that the first peak in a family of peaks
(periodic in 1/H) occurred at 0.65 kG.

For longitudinal waves the substitution A*— 4.,
ot —0,,/1—R,,, Dt— D,,, D'*— D’',, and A*— A,,
can be made in Eq. (4.24). The diffusion term R, arises
for longitudinal waves and is proportional to ¢... By
assuming A.,<o,., Jones found, using the relations
given in Eq. (4.30), that the peaks were caused by a
region of the Fermi surface where (9 @/9%:)const=3.3k0,
where ko=2w/a and ¢ is the lattice spacing. From the
free-electron Fermi surface of Al he found a region of
constant slope in the second zone of about 3.3%¢, from
k,=0.35k, to 0.50%. He suggested that this region of
the Fermi surface was responsible for his peaks. This
region is also responsible for the 9-kG peak in Res*
calculated by Aubauer.

The fact that Jones can explain his data by assuming
4., is proportional to o.. might be explained if D,
D’,., or A, become the dominant terms in A4.., since
Reo.., ReD,., ReD’,,, and ReA,, all have peaks at
Hy, Hg---. It is not unreasonable to expect that the
longitudinal deformation terms may be large, because
even in the case of a sphere where D*, D'+, and A*=0,
D.,, D',., and A, are finite.

VI. CONCLUSION

The attenuation and dispersion of circularly polarized
sound has been measured as a function of magnetic
field oriented parallel to the sound propagation by
using the method of split receiving transducers. This
method eliminates any ambiguity in the measurement
of the attenuation that might be caused by rotations
of the plane of polarization of the sound wave. A further
advantage of this method is that information can be
.obtained about the sign of the carriers contributing to
the structure in the magnetoacoustic attenuation caused
by Doppler-shifted cyclotron resonance.

There are two mechanisms responsible for the at-
tenuation: Geometric resonance and Doppler-shifted
cyclotron resonance. Geometric resonance appears in
the attenuation as a damped sinusoidal oscillation
periodic in 1/H and is independent of sound polariza-
tion. The period can be related to an orbit on the
Fermi surface where the average velocity 7, along H is
nearly equal to zero and whose instantaneous velocity
v, is nonzero. Doppler-shifted cyclotron resonance ap-
pears in the attenuation as families of asymmetric
peaks or absorption edges each of which is nearly
periodic in 1/H. This periodicity can be related to that
section of the Fermi surface where d@/dk. or m.D, is
constant over a wide range of %..

When electrons and holes are present the observed
structure in the attenuation, such as peak position or
peak shape, cannot simply be related to the Fermi
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surface. Instead, the expression for the attenuation de-
pends in a complicated way on the components of the
conductivity and deformation tensors, which in turn
depend on the details of the Fermi surface. Such details
include the % dependence of the Fermi velocity and the
deformation potential over the entire Fermi surface.

The Fermi surface of Sb consists of ellipsoidal pieces
which should give rise to Doppler-shifted cyclotron
resonance edges. However, no edges were observed. In-
stead, a damped sinusoidal oscillation periodic in 1/H
was seen and identified as geometric resonance. The
observed period of (0.4424-0.02)X10~* G agrees with
the period 0.47X10~* G~! expected from the k,=0 orbit
of the tilted hole surface of Sb.

Over thirty peaks in the attenuation for Sn could be
identified, many as Doppler-shifted cyclotron resonance
peaks. Unfortunately, because of the complicated Fermi
surface of Sn, no relation between the peaks and the
Fermi surface could be made.

For Al the measured attenuation peaks were nearly
periodic in 1/H having a period of (1.8420.04)X 10~ G!
with the high-field peak occurring at 3.2 kG. By ob-
serving the relative peak shift of the right- and left-
handed waves, it was established that these peaks were
caused by the second Brillouin zone hole surface. By
assuming that the attenuation is inversely proportional
to the conductivity, the attenuation was calculated
using the nearly-free-electron model for the second zone
holes. It was found that the calculated attenuation has
peaks which are periodic in 1/H having a period of
1.15X10~* G with the high-field peak occurring at
3.9 kG. This calculated attenuation is similar to the
measured attenuation except for the exact peak position
and periodicity. This discrepancy in the period remains
unexplained. In Al the majority carriers are the holes
and the hole surface does not satisfy the conditions for
geometric resonance. It is, therefore, not surprising that
geometric resonance was unobserved.

In this analysis we have shown that the longitudinal
case (q||H) is much more complex than the perpendicu-
lar case and, notwithstanding the strong attenuation
peaks, is unlikely to yield much information about the
Fermi surface.
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APPENDIX A
1. Fermi Surfaces Centered on I"

The conductivity tensor can be written [see Eq.
(4.25)] as

e kFz Me
f "

A2 _ip, o

a—i:

2
. / (vo=1v,)dep
0
é
x / 0K (6808, (A1)

where K (¢,¢") is defined in Eq. (4.12). Using the
velocity expansions given by Eq. (4.26) valid for s-fold

32 keF
o= f merdk /
8mw3h? —keF

m1 m1’ my my’
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rotationally symmetric Fermi surfaces about k., cen-
tered on T, K (¢,¢’) can be evaluated and becomes

K(¢,¢'>=exp[¢(qf_wic> @9
¢'—¢

WeT

+ —2. ¢, sin(r¢’)+> ¢, sin(re), (A2)

where ¢,=¢B,/ws, and ¢y=0. Remembering that
exp[iW sing |=> mJm(W)ei™$, where J, is the mth-
order integral Bessell function, we can write Eq. (A2) as.

K (¢,0")=expli(X —w/w) (¢'—¢)]

XITLE Jm(er)e e TIL [ Tme (er)e™ 4], (A3)

where X =qv,/w, and ], is the product sign. Equation
(A3) can be simplified using the identity

HZRW—ZZ 2 11 Ry

m1 m2 my T

and then inserted into Eq. (A1), which after integration
over ¢’ yields

(vomktvy)dep 22 Z DI Z [II er(cf)]m Jme (€r)] expld Z (m,' —m)re]

i) 4 1

PICE Iy
|l
14+ iwer (X —w/w414+1—3 m,r)

PUGLY | +3

b iwer (X —w/we— (1) — 3 m,7)

P aaGLY, P

| | | a9
1+WcT(X"'w/wc+l+3_-Z ’WL,-?) 1+7:‘007(X_w/w0— (l+3)—2 m,r)

Finally putting
Uy 10y =

into Eq. (A4), 0% becomes

m1 m1

3 Aot 4, FolHDs
1 1

e2 kzF
e[ e SR ST T L T (sl Jun) UrsCorh A rasDs)
T 0 v

mp my’

1

1
X +
[1+i<»cf(X—~w/wc+a(l+b)—Z myr) 1+iwer(—X—w/wAa(l+b)—> m,r)

where e==1, b=1, 3, and =0, 4, 8- -
and D, ,* are

Ca,bd:= { .
0 otherwise

-Da,b:b= {

where g=-1 for holes and g= —1 for electrons.

-, and r=s, 25, - -

1 if a(4+b)x£g(l'+1)+2 (m/—m)r=0

] }dk, , (A5)

for s-fold rotational symmetry. The constants C, %

1 it a(+0)FgU+3)+2 (mi'—my)=0

0 otherwise,
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When v,=17,, 7=0 and ¢,=0 and then J,,(0)=0 except for Jo(0)=1. Thus, Eq. (A4) can be evaluated, using
the values of v,2-iv, stated earlier, to give Eq. (5.27).

2. Ellipsoidal Fermi Surfaces Not Centered on I"
For ellipsoidal Fermi surfaces not centered on T, the velocity expansion becomes
v,=A cosp, and v,=Bsing, and v,=7,+csing, (A6)
written in the coordinate system of the crystal centered on an ellipsoid. Since we are dealing with crystals having

3, 4, or 6-fold rotational symmetry about k., there will be %, ellipsoids about %, 2r/%. rad apart, where n, =3,
4, 6, 8, or 12. The velocities for the other ellipsoids can be obtained by the following axis transformation:

278 2B 27 2m3
9,8=1, cos(——)—!—vy sin(———) , Uf=—1, sin<—>+v,, cos( ) , and 9.f=9,, (A7)

e Ne Ne Ne

where =1, 2, - -n.. The conductivity o* is

762

keF Mo 27 ¢ 2¢ ¢
oD ntiind= [ e [Castoin) [ oiKoaret [ it [ nkeora | @9
0 0 —c0

8 8w —ker We —

and by using Eq. (A6) and o* can be evaluated and becomes
ne® (kT (B2 — AT (G ms(G)  (B2=A2)Tn(G) T mis(G)
f - [1+iwcr<X—w/wc+1+m> = 1+iwer (X —w/we—1+m)
(AFB)T,2G) (A4+B)2,2(G)
U e (X—o/wct-14m) 14 iver (X—w/we—14m) )’

ot=
32132

—k2F

(A9)

where G=¢C/w, and X =¢7,/w.. If the ellipsoids are not tilted with respect to the %, axis, G=0 and the only non-
vanishing terms are those having Jo in them, then Eq. (A9) reduces to

nee® [keF (A=FB)? (A+B)?
oeme [ b | | (A10)
872) _im 1tiwr(X—w/wct1)  14ioa(X—w/we—1)
which is similar to the result obtained by Kjeldaas.
APPENDIX B
The energy equation for the hole Fermi surface in Sb is
ZmE F
=a11k12+a22ky2+a33kz2+a23kzky (Bl)
and the energy equation for the electron surface is
2mE F
7=51k12+62ku2+33kz2- (B2)
The Lorentz force on the holes when H||z is
. € eh
nk=-vXH=—a-KXH, (B3)

4 mc
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where
11 0 0
a= [0 Qa2 aza] , (B4)
0 o« as
using v= (#/m)«-k. Solving for & we get
a
kr="Fq cosp, k,=ky sinqs—fk,, k.= const, (BS)
Q22

where ¢ =w,f and we=eH /mc(c11022)”2. The quantities k4 and ko can be solved for using Eq. (B1) and are given by

023 1 o200t aniee’ass  Sanieed?E pm \ V2 Q23 1/8asErm 4ase\'?
kzo= kz[1+-(1+4( E } ) ], kyo=-—kz|:1—|-—< ——) :' (B6)

2a9011 2 asy asst Wzt Qg 2\ WPaslk?  an

Finally, the velocity is

anh (2% . aash ) hk.
Vg = <—>kx0 cosg, v,= <_)ky0 sing, and 7,= (—)kyo sing+ (ass— aas?/arz9)—. (B7)
m

m m m

The conductivity is then given by Eq. (A9) where 4 = (a1#/m)kq0, B= (aeeft/m)kyo, X = (33— r25*/cra0) (h/m)k.,
and G= (gasst/ (mwe))kyo. The equivalent solution for the electron ellipsoids can be obtained by substituting 8
for a1, B2 for ags, and B3 for ass, and by taking into account the fact that there are three electron ellipsoids per

Brillouin zone.
For these orbits where k,=0 (i.e., geometric resonance condition),

1/2mEp\ ! 1/2mE R\ 2mEr\'"
ky0=;l( ) ) kx():‘—( ) ) and G=(qa23/(mwc))< ) *

(423 A\ an (429

Also, X=0, so that ¢* [Eq. (A9)] will be a maximum when 7z =1, since w.7~100 at 1 kG. Hence o+ becomes

3 & ZEF ]12 (G)
oE=— — M ((111+0122) N Akz y (BS)
16 h27r3 m 1—iwr

where Ak, is the band of electrons contributing to the geometric resonance at &,~0.



