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The attenuation of circularly polarized sound as a function of magnetic Geld II, oriented parallel to the
sound propagation direction, was measured for Al, Sn, and Sb at 4.2 and 1.2 K. This direction was chosen to
be along the $100$ axis in AI, the [001]axis in Sn, and the trigonal axis in Sb. The dispersion was also
measured in Al and Sn. Doppler-shifted cyclotron resonance, causing peaks and edges in the attenuation,
was observed in the case of Al and Sn. For Al the peaks are periodic in 1/1I with a period of (1.8+0.04)
&(10 'G .These peaks were found to be caused by holes coming from the second Brillouin zone. In Sn both
types of carriers contributed to the peaks. Geometric resonance, causing sinusoidal oscillations in the at-
tenuation periodic in 1/H, was observed in Sb with a period of (44+2) X10 4G '. This resonance was found
to be caused by the hole ellipsoids in Sb. The earlier theories of magnetoacoustic attenuation have been ex-
tended to general Fermi surfaces and to include the simultaneous presence of electrons and holes and de-
formation effects. The relationship between the attenuation and the Fermi surface geometry is discussed for
diferent crystal symmetries and carrier compensations. A comparison between the known Fermi surfaces of
Al and Sb and the observed attenuation for these metals is made.

I. INTRODUCTION'

AGNETOACOUSTIC attenuation experiments
- ~ where the sound propagation vector q is per-

pendicular to the magnetic field H have proved useful
in providing a caliper of the Fermi surface of metals. ' '
The dependence of the attenuation on a longitudinal
magnetic fieM (q~~H), on the other hand, has been
studied in very few metals, ' " because the results
cannot be interpreted so easily in terms of geometrical
parameters of the Fermi surface. " '4 Although the
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knowledge of Fermi surfaces might not be advanced by
such experiments, the longitudinal magnetic field case
enables one to study several new and interesting proc-
esses concerning the interaction of the conduction
electrons with sound waves.

As first discussed by Kjeldaas, " Doppler-shifted
cyclotron resonance occurs in the longitudinal field
case because the carriers drifting with velocity e, along
the field direction see an effective frequency to(e./e, —1)
instead of the applied sound frequency or. Here e, is the
velocity of sound. Denoting the cyclotron frequency by
co„ the resonance condition is

or
to, =to(e,/e, —1)

to, =eo(e,/e, +1),
depending on whether the carrier is drifting parallel or
opposite to the sound velocity. Below a certain mag-
netic field H~ which is determined by the maximum
value of u„ there will always be some carriers in reso-
nance. The attenuation edge occurring at II~ is known
as the Kjeldaas edge.

Not only an edge, but a peak can be observed in the
magnetoacoustic attenuation whenever the resonance
condition Eq. (1.1) or (1.2) is fulfilled at a given field
for a large number of carriers. This happens when m,e,
or, in other words, i) 8/i)It, is constant over an appreci-
able part of the Fermi surface. Here m, is the cyclotron
mass, 0', is the cross-sectional area of the Fermi surface
perpendicular to H, and k, is the component of the
electron wave vector in the field direction.

Higher harmonics of these edges and peaks in the
attenuation are introduced when the Fermi surface does
not have full rotational symmetry about the k, axis.
In that case, e, may become a function of the polar
angle p about the z axis and another resonance effect is

r' J.J.Quinn, Phys. Rev. Letters ll, 316 (1963);S. G. Eckstein,
ihid. 16, 611 (1966).
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possible. The p dependence of s, causes the carriers to
oscillate along the s axis as they traverse their orbit.
Whenever the amplitude of these spatial oscillations
matches the sound wavelength ), geometric resonance
will occur, provided that the velocity averaged over the
orbit 8, nearly equals v„ the sound velocity.

Doppler-shifted cyclotron resonance using longi-
tudinal sound waves has been observed in A15 and Mg. '
Geometric resonance of this type was observed in Cd7
and Sb.'

The present investigation involves the use of shear
waves. These are of particular interest because of the

following. By restricting ourselves to shear waves
traveling along a crystallographic axis of 3-fold or
higher rotational symmetry, the normal modes of the
sound wave are circularly polarized. By noting the
diBerence in the attenuation as a function of magnetic
field between the right-handed (+) and left-handed (—)
waves, the sign of the carriers giving rise to the
Doppler-shifted cyclotron resonance can be deduced.

Taking into account the possibility of higher har-
monics and requiring that the electrons be in phase
with the sound wave, the complete cyclotron resonance
conditions can be written in two groups:

Type A:

(—) wave: rior. =co(8,/z, +1) zi=1, 5, 9 ~ for holes

(+) wave: Noi, =a&(8,/e, —1) 6=3, '7, 11~ ~ for electrons
(1.3)

Type 8:
(+) wave: mu. =a&(8,/z, +1) I=3, 7, 11 for holes

(—) wave: rio~. =a&(8,/e, —1) I=1, 2, 9 ~ for electrons.

For a type-A resonance, the attenuation peak or edge
for a (+) wave occurs at a slightly larger H than that
of (—) wave for the same n. The difference in H is of
the order z,/e, rs.

Experiments using shear waves and longitudinal
magnetic fields have been carried out on Al, ' Sn, ' and
Cu."However, these experiments used linearly polar-
ized shear waves because of the difhculties involved in
detecting circularly polarized shear waves. Besides being
unable to distinguish between electrons and holes, ex-
periments with linearly polarized shear waves suGer
from uncertainties resulting from the rotation of the
plane of polarization similar to Faraday rotation in
optics. This may cause some false attenuation peaks
when the polarization plane becomes perpendicular to
the Gxed axis of the receiving transducer.

In this work a method" is used which enables one to
measure the magnetic Geld induced change of the
attenuation and dispersion of right-handed and left-
handed circularly polarized shear waves directly. Such
measurements on Sn, Al, and Sb at helium temperatures
will be reported. In Sec. IV the existing theories"' "
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Miller and V. L. Rehn, Rev. Sci. Instr. (to be published).

"M. J. Harrison, Phys. Rev. 119, 1260 (1960).
'7 H. ¹ Spector, Phys. Rev. 125, 1880 (1960).
"G. L. Kotkin, Zh. Eksperim. i Teor. Fiz. 41, 281 (1961)

[English Transl. : Soviet Phys. —JETP 14, 201 (1962)g.
rs U. P. Silin, Zh. Eksperim. i Teor. Fiz. 38 977 (1960) [English

transl. : Soviet Phys. —JETP 11, 703 (1960) .
"A. E. Kaner, V. G. Peschanskii, and I. A. Privorotskii, Zh.

Eksperim. i Teor. Fiz. 40, 214 (1961) [English transl. : Soviet
Phys. —JETP 13, 147 (1961)g."K.B. Vlasov and B. N. Filippov, Zh. Eksperim. i Teor. Fiz.
46, 223 (1964) [English transL: Soviet Phys. —JETP 19, 156
(1964)g.

ss J. J. Quinn and S. Rodriguez, Phys. Rev. 133, A1589 (1964);
S. Rodirguez, ibid. 130, 1778 (1963).

"A.B.Pippard in Ref. 4, pp. 214—263.

of magnetoacoustic attenuation for parallel Gelds and
shear waves will be extended to general Fermi surfaces
and to include deformation-potential terms and the
simultaneous presence of electrons and holes.

TAmE I. Sample details.

Cross-
Sample section

Sam- length area
pie cm cm'

Al 0.47 1.0
Sb 0.67 2.0
Sn 075 30

Sound
propaga-
tion di-
rection

q

[100j
Trigonal

[001]

Sound
velocity
(shear

mr aves)
10' cm/sec

3.40~
2.43b
1.910

Resistance
ratio cu.r

psoo'I/p4. s'K 1 kG

5000 0.7
6000 85

50 000 2.0

a G. N. Kamm and H. V. Bohm, Phys. Rev. 131, 111 (1963).
& S. Epstein and A. P. DeBretteville, Jr., Phys. Rev. 138, A771 (1965).
J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658 (1960).

~ This was derived from the 4.2'K resistivity of the metal using the
approximation o™sNe'2r/ere, where N =carrier concentration/cc, and r is
the average relaxation time.

II. EXPERIMENTAL DETAILS

In the present work the relative attenuation n+(H)
n(0), —and dispersion Lq+(H) —q(0) j/q(0) of the circu-

larly polarized normal modes for tin and aluminum
samples were measured. The relative attenuation for
antimony was also measured. When we talk about
attenuation (n+) and dispersion (Aq+/qs) in the re-
mainder of this paper we always mean these relative
quantities.

Circularly polarized sound can only propagate along
an axis of threefold or higher symmetry in the presence
of a magnetic Geld parallel to this axis. In tin the sound
was propagated along the L0011 axis; in aluminum,
along the L100$ axis; and in antimony, along the trigo-
nal axis.
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TABLE II. Spectrographic analysis. '

Sample Impurityb ppm

Sn Au Cu Mn Cr Ti S Al
0.1 0.3 0.01 0.1 0.04 1.0 0.3

Al Zn Fe K Cl Ti S Si Mg Na
1.0 1.1 0.4 1.3 0.04 1.0 1.0 0.4 1.0

Sb As Fe K Cl Ti S Al Ca Na
0.1 0.3 3.5 0.5 0.1 0.3 1.0 3.5 10.0

& The analysis was done on an Associated Electrical Industries mass
spectrometer.

b Any impurities not listed are presumed to be (0,01 ppm except for
gases which cannot be reliably determined.

~4 A wave is defined as right- or left-handed if the displacement
vector S moves in a clockwise or counterclockwise sense, respec-
tively, as viewed from the observer.

The crystals were approximately cubic in shape.
Details of the samples are given in Table I.The crystals
were grown in a horizontal graphite crucible by passing
a molten zone along the length of the crucible at a
rate of 1 in. per h. The samples were grown under a
vacuum of 10 7-10 Torr in order to minimize con-
tamination. The Sn crystal was grown after twenty
passes, while the Al and Sb crystals were grown after
one pass. The extra passes on the Sn purified it by zone
refinement. The results of a mass-spectrometric analysis
of the samples is given in Table II.

The samples were aligned by x rays to within 2".
They were cut and planed by spark erosion. The planed
surfaces were parallel to within 10 4 cm over the trans-
ducer area. The depth of the spark erosion pits was
about 0.0002 in. , and any damage to the crystal was
confined to the surface, as confirmed by x-ray analysis.

The method used to propagate and receive circularly
polarized sound waves consisted of placing an AC-cut
quartz transducer on the front surface of the sample,
as shown in Fig. 1. Excitation of this transducer by rf
pulses of 3—4-@sec duration at 60 or 84 MHz simul-
taneously generates a right- and left-handed circular
wave. At the rear surface were placed two AC-cut
receiving transducers which had mutually perpendicular
displacement axes. The output of one of the receiving
transducers was delayed one-fourth period with respect
to the other. The two outputs were then added together
before rectification. The resulting signal was propor-
tional to either the right or left circularly polarized
normal mode. '4 Either signal was then amplified and
rectified by a logarithmic receiver, after which it went
to one axis of an x-y recorder. The attenuation of the
right- or left-hand signal (n+ and n, respectively)
could. be accurately determined to within ~1 dB over
an 80-dB range. The receiving system was sensitive to
amplitude changes of 0.0025 dB.

The phase shift of the sound wave going through the
sample is Lq+(B)—q(0) jd, where d is the length of the
crystal, and can be determined by comparing the phase
of the right- or left-hand signal to that of a fixed refer-

h
X

X Transducer Y Transducer

Fro. 1.Transducer geometry used for detecting circularly polar-
ized sound. The transmitting transducer on the front surface is
an AC-cut shear transducer whose displacement axis s~ is oriented
at 45' with respect to the displacement axes, &„and e„of the
receiving transducers on the rear surface.

ence signal. The phase change could be determined to
within ~0.05m rad. The accuracy is limited by the
diKculty of getting a good null in the comparison be-
tween the signal and reference signal. This, in turn, is
limited by the time duration of the signal pulse. In
Sec. III a method comparing the direct output of the x
and y transducers is shown to give better accuracy in
the determination of the dispersion.

The magnetic field was generated by a 0—30-kG
superconducting solenoid, having a homogeneity of
0.05% in the sample volume. It is possible to determine
the magnetic field by measuring the current through
the magnet. However, the field at the sample lags the
current when the current is being swept. For example,
in a sweep of from 0—6 kG in 15 min, the lag was found
to be 200 G. It is possible to correct this by sweeping

up and down in field, at the expense of doubling the
time for a magnetic-field sweep. This hysteresis e6ect
can be eliminated by use of the Hall probe, except for a
very small field lag =106 caused by the skin eGect
of the bulk sample. The Hall probe was mounted
directly in the solenoid, near the sample. "This elimi-
nates significant errors caused by trapped Aux at low

fields.
The Hall probe used in this work was calibrated at

4.2'K against an NMR probe operating at room tem-
perature. The over-all accuracy in the measurement of
II is &0.5%. The sample was aligned parallel to H

"Two Hall probes were found useful at 4.2'K. International
Systems Corporation Hallistor type SV210T is rated for use at
4.2'K, but is fairly nonlinear. Also, after many cycles, it cracked.
Hallistor type FC33 is linear to within 0.2/0 to about 15 ko, but
cracks after a few cycles. For other probes see McEvoy and
R. F. Decell, Rev. Sci. Instr. 34, 914 (1963).
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TAaI.E III. Summary of attenuation peaks from Fig. 4.

50

Peak II,„=(V++II )/2
number ko

Peak
classi6cation

40E

Kl

I 30
O

+2o

IO—

0 soKG~
r

within &2'. Purposely varying the angle of misalign-
ment as much as 5' produced no appreciable change in
the results.

III. RESULTS

A. Tin

1. Atteeuutiom

O r i r r I r r r I I r r r r l r I I I l r r I r 1

5 IO I5 20 25 30
Mognetic Field H(KG)

FIG. 2. Attenuation of right- (+) and left-handed (—) waves
as a function of K in Sn at 4.2'K. The 0-30-ko curve shows the
(+) wave only since the attenuation of the (+) and (—) waves
were nearly identical at high magnetic Gelds.

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
]9
20
21
22
23
24
25
26
27
28
29
30
31
32

0.453
0.511
0.585
0.657
0.80
0.85
0.90
0.97
1.04
1.33
1.86
2.05
2.26
2.60
2.87
3.07
3.23
3.50
3.68
4.16
5.03
5.35
5.62
6.18
6.70
7.07
9.03
9.31

10.02
11.99
16.77
18.47

—0.011+0.002
0.014~0.002

~ ~ ~

0.016~0.002
0.0 ~0.003
0.0 ~0.003—0.003&0.003
0.0 ~0.0035—0.018~0.003—0.040&0.002—0.016~0.004—0.009&0.006—0.025&0.006—0.065+0.003—0.040+0.003

-0.086~0.006—0.043+0.009
0.025+0.009—0.026+0.003—0.03.1+0.003
0.0 +0.007
0.014+0.007

~ ~ ~

0.086+0.007
0.144+0.014—0.014+0.015
0.101~0.007
0.029&0.020—0.014+0.007
0.072+0.025
0.058~0.025
0.029+0.007

A
B

~ ~ ~

A
~ ~ ~

A
A
A
A
A
A
A
A
A
B
A
A

~ ~ ~

B
~ ~ ~

B
B
A(?)
B
B
A
B
B
B

Figure 2 shows the attenuation n+ and n of the right-
and left-circularly polarized waves at 4.2'K, respec-
tively, for 84.23 MHz. Only the right-handed wave is
plotted for high fields, as the left-handed wave exhibited
the same structure and abnost the same amplitude.

Most striking in Fig. 2 is the very rapid drop in
attenuation over a few thousand gauss. This change in
attenuation (40 dB/cm) suggests that a very strong
attenuation mechanism takes place at low fields. The
decrease in the attenuation as a function of H is sug-
festive of the Kjeldaas theory outlined earlier, and the
peaks suggest that there are large portions of the
Fermi surface for which m, 8, is constant.

The difference in peak positions for the (+) and (—)
wave, as given in Eqs. (1.3) and (1.4), is evident near
1350 6, while the peak at 1800 6 shows only a small
difference, as all the low-field peaks seem to do. As
discussed in Sec. I, we can classify these attenuation
peaks as belonging to Type A if the (—) peak occurs at
higher fields than the (+) peak and Type 3 if the (+)
peak occurs at higher fields than the (—) peak. The
peaks near 1350 and 1800 G are of Type A, and if one
justifiably assumes that these strong peaks are caused
by the fundamental (rr =1) in the cyclotron frequency,
then these peaks are caused by holes.

There appears to be almost no diRerence in the peak
positions of the (+) and (—) waves at 500 G. It is
curious, however, that on the high-field side it appears
as if the peak mere Type 8, yet on the low. -field side as
if it were Type A. This peak is much broader for the

a The accuracies quoted apply only to H+ —H . This inaccuracy comes
from the difhculty in reading the graph and in determining peak maxima.
The usual 1% accuracy applies to Hav.

Sn 4.2'K

4.0E

Xl

o 3.0

'I 2.0

I & r i & I r r r r I r r r r I r r r r I r r r i I i a

50 IOO I50 200 250 300

H Gauss

I I I I I I I

350 400

Fro. 3. Attenuation of the right- (+) and left-handed (—) waves
in Sn at 4.2'K as a function of K at low magnetic 6elds.

(+) wave than for the (—) wave. The field below 300 G
is expanded in Fig. 3. Below 200 G there appears to be
very little, if any, difference between the (+) and (—)
wave.

In order to increase the resolution of the measure-
ments, the attenuation measurements were repeated at
1.2'K. The results are shown in Fig. 4. Many peaks
which appeared to be single at 4.2'K show multiple
structure at the lower temperature. For example, the
peak at 500 6 is seen here as a double peak vthose
high-field side is Type B, and whose low-field side is
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)
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)
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)
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)
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60—

Sn ).2'K

measurements are dHBcult to perform and also some-
what inaccurate (+9'), because of the difhculties in-

volved in making accurate phase measurements using
rf pulses. The relative dispersion [q+(Il) —

q (B)]/qa
can, however, be determined quite easily from the x
and y signals.

Figure 5 shows the direct output of the x and y
transducers at 4.2'K before the formation of the circular
mode. The peaks at 0.5, 1.5, 2.0, and 6.0 kG are caused

by the polarization vector S of the incoming acoustic
wave being perpendicular to either the x or y
transducer s.

We can write the equations for the right- (+) and
left-hand (—) waves in the coordinate system of the
transducers (see Fig. 1) at any point s along the s
axis, as

IO—

0

8
29 30

r
I I I I I I I I

IO I5
Magnetic Field H (kG)

20

S+=Re(Sg+(s)[ il+—g] exp[i(q+s —&at)))

S =Re(Sg (s)[l—ig exp[i(q s—caI)]), (3.1)

FIG. 4. Attenuation of right- (+) and left-handed (—) waves
in Sn at 1.2'K as a function of II. The positions of the peaks as
well as their classi6cations are given in Table III. The sharp
drop in the attenuation below 300 0 is caused by the onset of
superconductivity. Therefore, the peak below number 1 is dis-
torted and is not included in Table III.

Type A. The fact that tin becomes a superconductor in
fields below 300 G at 1.2'K accounts for the rapid drop
in attenuation below 250 G, in Fig. 4.

The positions of the peaks in Fig. 4, as well as their
diiference in peak positions for (+) and (—) waves and
classifications, are given in Table III. Not included in
the table is the peak below peak No. 1, because its low-
field side is affected by the rapid decrease in attenuation
caused by the onset of superconductivity.

The high-field region shows the attenuation for both
(+) and (—) polarizations. Structure in the attenua-
tion cu,rves appears at the very highest of magnetic
fields. Above a few kG, however, the attenuation is
small compared with the large attenuation found in low
fields, and no drastic changes in attenuation occur. This
suggests that a strong attenuation mechanism operates
at low fields and that a weaker attenuation process
persists at the highest fields.

A comparison of measurements at 60 MHz and at
84.23 MHz showed that the positions of all attenuation
peaks scale as ot/II. The amplitude of the peaks and the
average attenuation level at 60 MHz is less than those
at 84.23 MHz. This is expected, since the attenuation
at H =0 is proportional to (q/)", where I is between" 1
and 2 and / is the mean free path of the electrons.

) x) = ([So+(d)]'+[So (d)]'+2S,+(d)So (d) sin(2A))tts,

) y) = ([Sit+(d)]'+[Sit—(d)]'—2Sp+(d)Ss-(d) sin(26))'",

(3 2)

~ I ~ ~ I ~ ~ ~

I
e I ~ ~ ~

I
I ~ I ~

I
I ~ I

-60—
I.

-40—
I

I
I ~ ~ I

I
~ I I ~

I
~ I I I

I
~ I

Sn 4.20'K
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7is ' 00
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«Is

lL
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I I ~ . ~ . I ~ ~ ~ « I a, I. I ~ ~ ~ a I, ~ I I I ~ I ~ I I ~ I ~ I I I

0.5 I.O I.5 2.0 2.5 3.0 3.5 4.0
I

I ( I I e I
I ~ I I

I
I i I I l i I I I

I
I I I

III

I
II
I I

I I
]

I
I

l I ~«~

where Sa+(s) =So exp( —u+z). The signal measured by
the x and y transducers (which will be referred to as the
x and y signals) is the component of S+ and S along
the x or y axis, respectively. The absolute value of the
x and y signals at a distance d are

Z. Disjersi art
I. . . , I, , « I, , t i I t e i t I e

0 5 10 IS 25 30
Magnetic Fietd H(QG)

"A. B.Pippard, Rept. Progr. Phys. 23, 176 (1960).

In Sec. II it was pointed out that although the dis- F 5 D. t t t f thFIG. 5. Direct output of the x and y transducers (see Fig. 1)
persion t)q+/qa could be measured directly, these in $n at 42'K as a function of +. The atnphtude of the direct

output is plotted in dB with increasingly negative dB values cor-
responding to decreasing signal amplitudes.
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As 5 increases fmm 0 to —tr/2, lyl will vanish at g= —s./4, assuming Ss+(d)=Ss-(d), LSee Fq. (3.2).j
However, if 5 goes from 0 to —w/4 back to 0, y will
still vanish at 6= —s/4. With regard to Fig. 5, the
question arises whether the peak at 500 6 is caused by6 going from the (+e./4, —s/4) quadrant into the
(+tr/4, +3tr/4) quadrant, or by 6 oscillating in the
(+s/4, —s/4) quadrant. This phase ambiguity can be
resolved by changing the length of the sample, by
changing the sound frequency, or by direct measure-
ment of the phase change as a function of H.

The accuracy of the direct measurements is sufhcient
to resolve this phase ambiguity. The solid curve in
Fig. 6 represents the phase 5 or Eq. (3.3) after the
phase ambiguity has been eliminated by direct
measurements.

From the Kjeldaas theory one can show that the
following symmetry relationships hold:

FIG. 6. Phase shift through the sample fq+(H) —
q (H)gtf/2 or

dispersion difference Lq+(H) —
q (H) j/2 between the right- (+}

snd left-handed (—) waves in Sn st 4.2'K as a function of H.
The solid line represents the phase shift or dispersion difFerence
as deduced from Fig. 5 and determined by direct measurements
(~ points). The light horizontal lines st 0.25s. and 0.ass rad
set ofF the difFercnt quadrants (see text). Sy setting Aq+/q0

nq /qQ the solid line in Fig. 6 is s plot of nq+/qs versus H.

rr+(H) =rr+( —H)

~q+(H) aP(-H)
(3 4)
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FIG. 7. Attenuation of right- (+}and left-handed (—) waves
in Al at 1.2'K as a function of II. The lower curve is plotted only
for the (—) wave, since both waves are nearly equal above 7 kG.
Except for the high-6eld quantum oscillations, which are more
pronounced at 1.2'K, both curves are identical at 4.2 and 1.2'K.

where the phase 6= (q+—
q )d/2. Solving for 6 yields

~ Ss'(d) Ss (d)~ I*/yl —&6=—'sm ' — + I +r&
2 Ss—(d) Ss+(d)l la/yl+1

(3.3)
where v takes on the value +1, &2, &3, ~ ~ .

The arbitrary phase factor, vier, in Eq. (3.3), intro-
duces a degree of uncertainty in the determination of h.

The relationships are general and hold for arbitrary
Fermi surfaces as we will show in Sec. IV. If one
neglects the small asymmetry caused by the 6nite
velocity of sound, then hq+(H) = —DP(H) and hence

&q+(H) q+(H)-q (H)

gp
(3.5)

In Fig. 6 we see that the dispersion rises to a plateau
between 600 and 1200 G, at which point it rises sharply,
forming two peaks centered at 1540 and at 1980 G. The
dispersion declines rapidly after these peaks and re-
mains fairly steady above 10 kG. Comparing 0.+ at
4.2 K (Fig. 2) and Aq+/qs at 4.2 K (Fig. 6) shows that
the peaks in hq+/qs occur at the same field where n+
changes most rapidly, and the peaks in a+ occur when
dq+/qe changes most rapidly. sr

'r It appears as if nq+(H)/qs is related to o+(H) by a dispersion
relationship in I/ such as the Kramers-Kronig transformations.
%e applied the Kramers-Kronig transformations ton+(H) (Fig. 2)
and obtained a curve which appeared almost identical to 5q+(II)/
qo (Fig. 6) above 800 G, but below 800 G appears almost opposite
to Fig. 6, i.e., the peaks in the inversion corresponded to valleys
in the nq+(H}/qs curve. It wss pointed out to us by Dr. V. Heine
that the electrons or holes may obey opposite dispersion relation-
ships corresponding to closing the contour for the dispersion inte-
grals in the upper or lower half-planes. He also went on to show
that if peaks number 1, 5, 9, ~ ~ ~ etc., fora certain carrier belong
to one contour, then peaks number 3, 'E, 11, » ~ etc., belong to the
opposite contour. The reason that this ambiguity is avoided in
Kramers-Kronig transformations in co is because of the causality
principle which limits the contour to the upper half-plane.

Using these Kramers-Kronig transformations may prove useful
in analyzing this type of data, but because of the complexity of
our data, we were unable to take advantage of this.
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B. Aluminum

1. Atteegatioe

In Fig. 7, n+ and n are plotted as a function of B
from 0-7.5 kG at 1..2'K. The results are the same at
4.2'K. The high-Geld plot from 0-20 kG shows only n+,
since o+=e above 6 kG. In Fig. 7 an II dependence,
similar in some respects to that observed in tin, is seen.
At low magnetic fields the attenuation is high, dropping
oG to a relatively constant value above a certain field
(4 itG). It remains relatively constant at high fields.

The rapid oscillations in the region above 10 kG are
quantum oscillations" (de Haas —Schubnikov) and are
unrelated to Doppler-shifted cyclotron resonance and
geometric resonance. Both sets of quantum oscillations
are periodic in 1/H with periods of (3.62+0.006)
X10 ' G-' and (2.71&0.003)X10 ' G-' respectively.
This agrees weQ with the work of Gunnersen, " who
used the torque method and found the periods (3.61
&0.13)X10 ' G ' and (2.58+0.005)X10-' G-'. These
oscillations are due to the electron "arms" in the third

-50— ]t

tn

30—a
CL

E
-20—

'ts
Ol

Olo
4l

-to

t t t & t i t i i I l I I I I 1 I I I l I

5.0 10.0 t5.0 20.0

Magnetic Field H (RQ)

Fro. 9. Direct output of the x and y transducers (see Fig. 3) in
Al at 4.2'K as a function of B.The amplitude of the direct output
is plotted in dB with increasingly negative dB values correspond-
ing to decreasing amplitudes. Except for quantum oscillations
these curves are identical at 1.2'K.

than that in Figs. 2 and 4. The peaks in Fig. 7 appear
to belong to one family, since their amplitude decreases
at lower 6elds, as would be expected for higher har-
monics of the Doppler-shifted cyclotron resonance.

As seen in Fig. 8, the peaks are nearly periodic in
1/H with a slope of (1.80+0.04) X10 s G '. The reso-
nance is expected to occur only for the 1, 3, 5, etc.,
harmonics, and for this reason the peaks are assigned
these values in Fig. 8. Since peaks 1 and 5 are of Type A
Lthe (—) wave leads the (+) wave in Hj and 3 and 7
are of Type 3, we conclude that these peaks are due to
the holes in the second zone. The holes are expected to
dominate because they are the majority carriers.

-I 0 l 2 3 4 5 6 7

FIG. 8. Plot of 1/Hz versus peak number I in Al at 1.2'K, taken
from Fig. 7. For attenuation arising from the second zone of Al,I takes on the values 1, 3, 5, ~ ~ ~ (see text).

zone of aluminum. The oscillations from the holes in
the second zone are expected to appear above 50 kG,"
and for this reason they do not appear in Fig. 7.

In aluminum, as with tin, there is structure below
the edge at 4 kG. However, since the Fermi surface of
aluminum has only two sheets" compared with Ave
for tin,""the structure in Fig. 7 is far less complicated

'8 These quantum oscillations in the magnetoacoustic attenua-
tion were first noticed by D. Reneker, Phys. Rev. 115, 303 (1959)
in bismuth. For a list of more recent work see Ref. 1.

~9 E. M. Gunnersen, Phil. Trans. Roy. Soc. London A249, 299
(1957}.

ss M. G. Priestley, Phil. Mag. 7, 1205 (1962).
"W. A. Harrison, Phys. Rev. 118, 1182 (1960); ¹ %. Ash-

croft, Phil. Mag. 8, 2055 (1963};see also Refs. 28 and 29.
'~ G. Weisz, Phys, Rev. 149, 504 (1966).
~ For the free-electron model of tin, see A. V. Gold and M. G.

Priestley, Phil. Mag. 5, 1089 (1960};V. P. Gantmakher, Zh.
Eksperim. i Teor. Fiz. 44, 811 (1963); 46, 2028 (1964) LEnglish
transls. : Soviet Phys. —JETP 17, 549 (1963); 19, 1366 (1964)g;
and V. F. Gantmakher and E. A. Kaner, Zh. Eksperim. i Teor.
Fiz. 45, 1430 (1963) (English transl. :—JETP 18, 988 (1964)g.
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Fro. 10. Dispersion difference Lq+(H) —
q (H)]/2qo between the

right- (+) and left-handed (— waves in Al at 4.2'K as a func-
tion of H. By setting nq+/qs ——-aq /qs, this becomes a plot of
hq+/qo versus H.

Z. DisPersioN

The direct signals from the x and y transducers are
shown in Fig. 9. These data were taken at 4.2'K and
are identical with the results obtained at 1.2'K. The
peak near 2 kG, the double peak near 4 kG, arid the
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FiG. 11. Average attenuation (a+
+a )/2 of Sb at 1.2'K as a function
of II. Above 300 G the curve Qattens
out, remains steady up to 20 ko.
The inset shows the peak positions in
1/II plotted versus peak number.
Here the peaks are numbered con-
secutively because they are caused by
geometric resonance (see text).
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peak near 8 kG are points where the phase Lq+(H)—
q (H)jd might be changing quadrants. The phase

ambiguity was again resolved by direct measurements.
The dispersion, (q+—

q )/2qs, is shown in Fig. 10. Since
tlm sound velocity. is much smaller than the components
of the. e1ectron velocity parallel to H of the orbits con-
tributing to the attenuation peaks, Eq. (3.5) can be
assumed to be valid. As in the case of tin, the positions
of peaks and slopes of the n+ and hq+/qs curves are
interrelated.

C. Attenuation in Antiinony

Antimony is compensated semimetal with about 10 '
carriers per atom. '4" Because of the small carrier con-
centration, the magnetoacoustic attenuation of Sb is
much smaller than that in normal metals. We believe
that the major contribution to the attenuation in Sb
is due to very small pockets in momentum space of
electrons and holes, '~38 which are very sensitive to the
deformation induced by the acoustic wave. This will be
discussed in Sec. U.

The small magnitude of the attenuation made it
necessary to pass the sound pulse five times through
the length of the sample before detection. The di%-
culties involved with the refI.ections made it impossible
to preserve the mode characteristic. "If the direct out-

~ J. Ketterson and Y. Eckstein, Phys. Rev. 132, 1885 (1963);
S. J. Freedman and H. J. Juretschke, ibid. 124, 1379 (1961)."L.R. Windmiller, Phys. Rev. 149, 472 (1966)."L.M. Falicov and P. J. Lin, Phys. Rev. 141, 562 (1966).

37 Y. Eckstein, Phys. Rev. 129, 12 (1963);J. Ketterson, ibid.
129, 18 (1963); W. R. Datars and R. N. Dexter, ibid. 124, 75
(1961);W. R. Datars, Can. J. Phys. 40, 1984 (1962).

3 D. Shoenberg, Phil. Trans. Roy. Soc. London A245,
(1952).

39 Some of the difBculties involved are: (1) the (+) mode may
become a (—) mode upon reQection, depending on the re8ection
coeKcients, and (2) the reQection coefficients may be sensitive to
changes in H, while the transmission coefEcient is not.

puts of the x and y transducers are identical, as was
found in the case of antimony, then either signal yields
(n++ot )/2 and the rotation of the plane of polarization
is negligible. This average attenuation measured at
84.23 MHz is plotted in Fig. 11.The attenuation begins
at some low value, oscillates about this value as H is
increased, and then stays constant up to 20 kG.

The oscillations are periodic in 1/H with a periodicity
of 0.00442+0.0002 G '. This value agrees with the
value of 0.0046 G ' which was obtained by Beckman
et al. ,s who used longitudinal waves instead of trans-
verse waves but otherwise the same geometry. Beckman
attributes these oscillations to geometric resonance of
the kind discussed earlier. He was able to show that
the oscillations arose from the tilted ellipsoids in anti-
mony. The numerical agreement indicates strongly that
the experiments with longitudinal and with transverse
waves detect the same effect. This will be analyzed in
detail in Sec. V.

IV. THEORY

Some of the effects which have been observed can be
understood by generalizing the Kjeldaas theory, taking
into account general Fermi surfaces with many sheets,
as well as the simultaneous presence of electrons and
holes. In the following discussion we will treat only
closed surfaces and will neglect magnetic breakdown.

Following Kjeldaas" and others, '~" the wave equa-
tion for sound in a crystal in the presence of a magnetic

asS/au=. sVsS+F/iV, (4.1)

where 3f is the ionic mass, and F is the damping force
acting on one ion and is responsible for the attenuation
and dispersion. This force arises from the self-consistent
electric held 8, the magnetic held H, and two additional
forces, F, and F&. One of these forces, F,, coherently
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feeds energy back into the ion system because of colli-
sions between the electrons or holes and the ions. The
other force, Fz, can be related to the energy lost in
distorting the Fermi surface and depends upon the
deformation potential.

The force F can be written as

F=ZeE+Z(e/c) uX8+ F,+F~——A u, (4.2)

where u= d S/dt is the ion velocity and Z is determined

by the condition for charge neutrality

The tensor 8 is
ip 0

B= 0 iP
'.0 0

0
0
$7.

where P=&ac'/4s. osv,s, y=P(v, /c)', and o.e is the dc con-
ductivity. The screening parameter p is proportional to
the square of the ratio of the classical skin depth to the
sound wave length. For perfect screening P would equal
zero. In Al and Sn at 4.20'K at 84 MHz P = 10 '.

The currents j, and j& are defined as
ZE= X,—Eg, (4.3)

Aq+ Q+(H) —
qe

=Re
gp

respectively.

gp

Im[A+(H) —A+(0)j,
2M'

(4 6)

A. Self-Consistent Field

Equation (4.2) shows that A+ depends on the quan-
tities 8, F„and F~, which can be derived by following
the procedures given by Cohen, Harrison, and Harrison, '
M. Harrison, ' and Spector. '

The self-consistent field 8 can be determined by com-
bining the Boltzmann equation, giving the total elec-
tronic current density j,+j&, with the relation

) +)s+ZeSu= —a'sB' 8 (4.7)

as derived by Cohen et al.' from Maxwell's equations.

"The quantity q0 as used in Eq. (4.4) is not strictly equal to
Re(Q" (0)), since Irn(A+), which accounts for the ac (i.e., co+0)
electronic contribution to the dispersion, contains terms which do
not vanish at zero magnetic 6eld. To be precise q0 should be re-
placed by q,t,&;, in Kq. (4.4), where q,t &;, is the sound propagation
constant in the limit as cy -+ 0. The difference between q,t t,, and
q0 is of the order of a few percent or less as determined by noting
the change in the sound velocity between 300 and 4.2'K.

where the quantity E is the number of ions per unit
volume. Equation (4.3) is valid if no magnetic break-
down occurs, and if the sheets of the Fermi surface with
X, electrons and E& holes per cc, respectively, are
energetically separated from each other as well as from
all other bands. The relation F=A u assumes that 8,
F„and FD are proportional to u, thus we are restricting
ourselves to sects proportional to u in erst order.

By inserting Eq. (4.2) into Eq. (4.1) and setting
q~~H~~9, we obtain the solution of Eq. (4.1) for circular
waves to first order in A+/&aM;

Q+(H) =ps[1+i(A+/2cuM)], (4.4)

where qe
——Re(Q(0)) is the sound propagation constant

at zero magnetic Geld" and the complex propagation
constant Q+ is defined by I+=us+ exp[i(Q+Z —~t)]. In
circular coordinates I+=I,~il„and A+=A, &iA~ .
The attenuation n+ and dispersion d,q+/qe are given by

o+= Im[Q+(H) —Q(0)$
= (qp/2M(o) Re[A+(H) —A+(0)] (4.5)

j,=—e v,dk,

js——e vfsdk,

(4.8)

where f, and fs are the distribution functions for elec-
trons and holes having velocity v, and position r. In
this case we assume a single electron sheet and a single
hole sheet. The results can readily be extended to many
sheets.

The quantities f, and f& can be derived from the
Boltzmann equation if one knows the energy expressions
for electrons and holes in the presence of a sound wave.
Following Harrison and Spector, these energies can be
written as

E,(k) =E,s(k) —(q V, (k) u)/eo,

Zs(k) =Es'(k) —(q Vs(k) u)/(o,
(4.9)

The quantities u' and 8' vary as exp[i(q r' —od')] in
the presence of a sound wave. By making the substitu-
tion g=u, t', where d is the polar angle about the )'s,

axis, Eq. (4.10) can be rewritten as

v' — mu q(q V„u)-
ge8+

where
q v"—co 1

dy" i + ——
~

. (4.12)
~oorr/

4' R. G. Chambers, Proc. Roy. Soc. (London) A65, 458 (1952).

Ko($,$') = exp

where V, (k) and Vs(k) are the deformation potential
tensors for electrons or holes at a given point k in the
Brillouin zone, and E,'(k) and Es (k) are the electron
and hole energies in the absence of a sound wave.

Solving the Boltzmann equation by the path integral
method of Chambers, 4' the distribution functions f,
and fs are found to be

Bf ' ' ns,u' q(q V, u')-
fo= — v' ge8'+

BE oo — 7'y RO

t' t)—
Xexp ~dt' (4.10).
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j,=tr ~
' (8 tts u/sr—e)+D e

' ll )

js=«. (8+mu/ers) Ds u, — (4.13)

The quantities 8 and u are in the unprimed coordinate
system. In Eqs. (4.10), (4.11), and (4.12), the quantity
p stands for either electrons (e) or holes (lr), and g= &1
for holes and electrons, respectively. The quantity f„e
jIs the unperturbed distribution function, and r„ is the
particle relaxation time. The term ntu/r~ accounts or
collision drag, as discussed by Holstein. "The mass m
is the free-electron mass.

uation andAs we are only interested in the attentuation an

for longitudinal currents need not be included in q.
(4.10) or (4.11).

ral V (k) depends on k and cannot be takeng
out of the integral in Eq. (4.11).Likewise, e r
Cion time may depend on k. Howeve, yer b assuming that
~n(k) is nearly a constant for a given sheet of the Fermi

(4.11).Using Eqs. (4.11) and (4.8), the current can be
written as

The quantities (v,) and (vs) are defined by ~,= —N,s(v,
and js=Nse(vs). Hence, Eq. (4.17) can be rewritten as

mN, gg m 1 1
F,= ———+—u+ ()s+),) ——

N r, rI, 2eN rQ re

nz. . 1 1
+ (j.-j.) —+—. (4.»)

2eN rp,

Using Eqs. (4.7) and (4.13) the coherent force F,
becomes

F.=—(
—+—)t+ ~

—j—)I

1 1 1 rN rN———+— «+—~.—Ds—D.
I

28 r@ re 8r@ @re

1 1 $1 1
B+I —+—(«—~ )2¹— rs T8 ETs rp

(4.19)
where I is the unit tensor.

For metals having only electrons or only holes,gE j ol' Iile a s
co i

ZNe'r„)Th
' t I over P' in Eq. (4.14) is the path integral

F,= —gzeI ~s IB a
~ m

of the electron or hole at a given velocity v. is
D is defined asintegrated over 0 space. The tensor „is de n

Q ~2

E,(e,e')~~e' (4.15).
Using Eqs. (4.7) and (4.13), the self-consistent field is

+= —L&8+«+Elo'o$

+D,+Ds u . (4.16)~ ZNe—
Cry &rg

F.=——((v.) u)+ ((" ) ") ( )
mN, AN(,

r. N rgN
"T.Holstein, Phys. Rev.e&. Iu 479 (~959).

The anisotropic relaxation time r( ) cou e ep
integral (Eq. (5.11)j and D redefined to inc u e o
(1/r (k))i, where i is a unit tensor.

3. Coherent Force E,

The coherent force arises because the average elec-
tron or hole velocity, (v,) and (vs), before collision

after co ision,
causing a net trans er o mt t fer of momentum to the lattice. In

s v andh f multiple electron and hole sheets, (v,) anthe case o mu i
le velocities(vs) would be the average electron and hole v

for the whole metal.
Following n.arrison,H

' "the expression for the coherent
force can be written as

will give only a small contribution to Eq. (4.2) since
o /(ZNesr~/rN) = 1 and P =10 4. Only when electrons or
holes are simultaneously present does
cant contribution to Eq. (4.2).

C. Deformation Force E~

From the Boltzmann equation Harrison and Spector
were able to show that the force on a carrier due to the
distortion of the Fermi surface by the sound wave is

q(q V, u)/iv).

The power taken from the lattice by the motion of the
carriers under this deformation force is

p= (1/no) q(q V„u) vf,dk.

The integration averages the power ov pr over the article
distribution, w ere „ ish j~ is the distribution function de-
fined in Eq. (4.10). This power represents a complex
Row of energy rom ef the sound wave into the electron
s stem an is equa od

'
l t I" u where FD is the force on

the ions accounting or
y

f the power lost in deforming the
Fermi surface. Solving for the force FD, we get

F&= (1/N) L(q V„)/ural(q v)flak. (4.20)
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Using Eq. (4.11), Fr) can be written as and

m m
pa=(o '—&.')—+ —&'+ &a')

N e7'g e7 g q V„~
X (q v) ~&(P,P')dP' (4.23)

e~ i

where

e
D I

RO

D. So1ution of A+

Bf o $ Having obtained. 8, F„and Fz, we can now derive

(q. &„)~ dk v~(y y')dy' (4 22) the expression for A+. From Kqs. (4.2), (4.16), (4.19),
BE „and (4.21), A+ can be written as

A+=&iMQ, + Ze+
2Ne

1 1 1 1 1
iooP ———+ —+—(o') ++o',+) +—(D) '+—D,'+)

7h 7e Vpe 7e

m m
X ZXe+ o)+ o,~+—D—P D)+-

Ay e7g

1 m m
(&.++o') ++i«P) ———D.'++ D) ++~ ++~) +

I

X er. er),

m N, NI, ZN 1 1 1 1 1 m m
+——+—+ ————+——a'+ —.'-o"-o.*), (4 24)

2 7g g, 2e rg g, e7'g e7',

where Q, =ZeH/Mc is the ionic cyclotron frequency. &*=2Ai+ic»[g(i+1)4']+2 Al+3c»[g(i+3)4']&
We see that A+ is a complicated function of o.+, D+,
D'+, and A+, which in turn depends on H. The H de- pA [ (/+1)p] QA; [ (3+3)y]
pendence of these four quantities will be discussed in
the next section.

o,=P B„c»(ry), (4.26)

e2
4

0 =0 g&10yg=
4m'h2

C—dk,
—

tangy c

X (o.bio„)dy o.'K(y, y')dy', (4.25)
0 00

where E(g,g') is defined by Kq. (4.12) and k, ) is the
maximum extension of the Fermi surface along 0,.

The velocity can be expanded~ in a Fourier series
in@ as

E. Conductivity e+ and, Deformation D+, D'+, and A.+

1. CoedlctivAy

Because of the symmetry conditions imposed by
using circularly polarized sound, it is only necessary to
consider the xx and yx components of the conductivity
and deformation tensors. Following Stolz," the con-
ductivity tensor as defined by Eq. (4.14) can be re-
written in circular coordinates as

where 80——8, and r and l denote the harmonics of the
Fourier expansion of v. For a Fermi surface centered at
F in the Brillouin zone of s-fold rotational symmetry
about the k, axis, l=0, 4, 8 and r=O, s, 2s . , where
s=3, 4, and 6. For Fermi surfaces not centered at F,
the velocity expansion becomes more complicated. . El-
liptical Fermi surfaces, however, are simple to treat and
are dealt with in Appendix A. In the following discus-
sion we treat only those surfaces centered on I'. The
quantity g=+1 for holes, which move clockwise through
their orbit in our coordinate system, and g= —1 for
electrons which move counterclockwise.

To demonstrate the magnetic 6eld dependence of the
conductivity under the conditions of Doppler-shifted
cyclotron resonance, let us first assume that v, is inde-
pendent of P. Thus, we neglect the effects of geometric
resonance. As shown in detail in Appendix A, Eqs.
(4.25) and (4.26) then yield

e2

A )+32A )+32

+
1+io).r(X o)/o).+g(l+3))—1+iv),r(—X—o)/o). &g(i+3))

m, P
1+no.r(X—o)/o), Wg(l+1)) 1+co).r( X o)/o). Wg—(l+—1))

dk„(4.27)

~ H. Aubauer (private communication and to be published).
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where X=qtt, /au. . Using the relationship"

k 8'
5$c'Dg =—

2m Bk,
(4.28)

g
Qkgp =I e

2x'ec Bg

we can write X as
1 88X=-

2xec BBk,
(4.29)

The quantity 8 is the cross-sectional area of the Fermi
surface in a plane perpendicular to H. If 88/Bk. is
constant over an appreciable range of k„ then at cer-
tain magnetic 6elds Bg, there will be peaks in leo+.
The 6elds Bl are given by the relationship

' gk I BC
/x)=

2' eC Hg 8kz
(4.30)

qk 1 gg
[x[=

2mecHgl Bk,
(4.31)

where (BS/Bk.), is the maximum value of BS/Bk..
This edge will occur for any Fermi surface whether it
gives rise to peaks in Reo+ or not. An example is an
ellipsoid whose principal axis is tilted with respect to
H and where 88/Bk, =ck, Then there .will be no peaks
in Reo+ but a series of edges at B~~ where H~~ is

4' . Harrison, Phys. Rev. 118, 1&90 (3.960).

if we assume that thc Fourier coefFicients A ~+i Rnd A~+3
are independent of k, and that the term ~/rv. in Eq.
(4.27), which arises from the finite velocity of sound,
can be ignored. Here (BS/Bk,),.„trepresents that value
of BS/Bk, which is constant over an appreciable range
of k,. In the present case where v, =P„I=1, 3, 5 ~ ~ .

The strength of these peaks will depend on the
magnitude of the corresponding Fourier cocKcients,
and also on ~,~. For those Fermi surfaces having full
rotational symmetry about k„AS=0, A5=0, o»y
the 8'I peak will appear in RefT+. These peaks in Reo+
are known as Doppler-shif ted cyclotron resonance peaks.

Equation (4.30) shows that a plot of peak number
(1,3,5 . ) versus 1/Hr will yieM a straight line whose
slope is proportional to (88/Bk, )„„,t unless the Fourier
coeKcicnts are strongly k,-dependent. A strong k,
dependence of the Fourier coeKcients causes the peaks
in Rea+ to shift from Hr, and Eq. (4.30) will no longer
be valid in determining peak positions.

The linc shRpc of these pcRks %'ill depend on thc
higher derivatives of 0', with respect to k, and also on r.
The peaks will generally be asymmetrical in shape
although shorter relaxation times will tend to smooth
out the peaks and decrease the asymmetry.

In some cases BC/Bk, will not be constant (or nearly
constant) over any part of the Fermi surface. In this
case there will not be any peaks in Reo.+. An edge in
Rcr+ will appear at H~I whenever

For the ellipsoid, the shape of the edge depends on the
principal radii of curvature and relaxation time as
discussed by Kjeldaas.

In the previous discussion we have ignored the ce/t0.

term of Eq. (4.27). This term is related. to s,/vr and
allows one to distinguish between electrons and holes
in 0+. If we rewrite Eq. (4.30) taking into account the
to/&o, term in Eq. (4.27), we get

tlh 1 (88
Wgtd/(d =J

2Ãec Hg(Bkg const

gk 1 Be
&gQ7/Gag =J

2xecHg' Bk, „.g
(4.32)

where J=1,5, 9 ~ ~ and J'=3 7 gg - . For a hole
surface (g=+1) and, a right-handed wave (+), the
Hg peaks are shifted to lower fields and the Hq peaks
to hlghcr 6clds with lcspcct to the corrcspondlng pcRks
at Hq. The opposite occurs for left-handed waves. This
is in agreement with the conditions classifying reso-
nances as Type A or 3, as stated in Eqs. (1.3) and (1.4).

The symmetry relations Reo+(H) =Reo+(—H) and
Imo+(H) = —Imo+( —H) follow from Eq. (4.27).

By assuming that sg= Hg~ 0' tRkcs on thc simple form

given in Eq. (4.27). However, n, may be a function of P.
When s, is expanded in a Fourier series t (Eq. (4.26)j
and inserted into Eq. (4.25), K(Q,Q') after integration
over p", becomes

K(y,y') = exp Z(x—a)/(o, ) (y' —y)+t'(g c, sin(ry')

—c, sin(r@) )+
urer

The quantities c,=qB,/cu. r, co ——0, and X=q8,/ru, . The
term K(qh, g') will introduce Bessel functions into the
integrand of 0+, since expLiW sinpj=g~ (W)e'"&,
where J is the mth-order integer Bessel function and
m=0, +1,&2 . Equation (4.25) can be solved using
the Fourier expansions of s, and v„as before (see
Appendix A). The exact expression of 0" is a compli-

cated expression consisting of summations over 1, l', r,
ml, mi', ~ ns„, and m„'. A typical term in the summa-

tion ls

o+(l,l', r,mg, mt', m„m, ') =
8m'h' p

X„,~,„~,~.„(c,)J.,(c,)]
X

"
(4 33)

1+i(a,r (X co/~. W g (l+ 1)—Q~,r)-—
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TABLE IV. Values of I for which peaks or edges may appear in A.+, D~, D'+, and &+ at Hz or Hzz, respectively (see text).

Tensor
quantity

Condition
(p dependence
of v, and V„)

Fermi surfaces centered at j.
3-fold rotational 4-fold rotational 6-fold rotational

symmetry about k, symmetry about k, symmetry about k,

Fermi surfaces not
centered at F

(elliptical pieces)
3, 4, or 6-fold

rotational sym-
metry about k,

v, =8.
v.=f(@)

v, =8„V,~ =const
v.=e., V,=f'(y)
v, = f(qb), V„=const
v. =f(@),V. =f'(4)

v, =S„V„=const
v.=o., V-=f'(4)
v, =f(@), V„=const
.=f(~)', V.".=f (~)

v, =e„V„=const
v, =e„V„=f'(y)
v, =f(p), V„=const
v.=f(4), V.*=f'(4)

3 5 ~ ~ ~

I=1, 2, 3

D+= 0
I=3, 9, 15
I=1 2 3j
I 1j 2j 3

D/+ 0
I=3, 9, 15
I=i 2 3
I=1 2 3

&+=const
I=3 69 ~ ~

I=3, 6, 9 ~ .
I 3 6 9 o ~ ~

I=1,3, 5
I=1,3j 5

Dk —0
Dk —0
D~=o
D+=0

D'+=0
D'+=0
DI+=0
D'+=0

A+=const
I=4, 8j 12 ~ ~

I=4, 8, 12
I=4, 8, 12

I=1,3, 5 ~ ~

I=1,3, 5

D+=0
D+=0
D+=0
D+=0

Dl+
D'+ =0
D'+=0
D'+=0

A+ =const
I=6, 12, 18
I=6 12 18
I=6, 12, 18 ~ ~

I=1 only
I—1, 2j3

D~=O
I=1 only
I=1,2, 3. .
I=1,2, 3 ~

D'+=0
I=1 only
I=1 2, 3 ~

I=1,2, 3 ~ ~

A+ =const
I 1j 2 j 3
I=1, 2 3 ~

I 1j2 3'''

If the k, dependence of the Bessel functions and
Fourier coefficients in Eq. (4.33) can be neglected, then
for 4-fold rotationally symmetric Fermi surfaces cen-
tered on F, peaks in Reo-+ will again occur at Hj, H3,
H5 as in the case of e,=H„because r=0, 4, 8 ~ .
However, for other symmetries additional peaks may
be introduced when e, is a function of P, as seen in
Table IV. If the Bessel functions are k,-dependent,
then the peaks arising at Hz, will be shifted in addition
to any peak shift caused by the Fourier coefficients.

In addition to possibly shifting the Doppler-shifted
cyclotron resonance peaks in Reo.+, the Bessel functions
may themselves cause oscillations in Reo.+, since at
low magnetic fields the Bessel functions oscillate sinus-
pidally. These oscillations are known as geometric
resonance. Since c„does not depend upon the polariza-
tion of the sound wave, there will be no diKerence in
the sects of right- or left-handed waves on geometric
resonance. There will also be no diBerence in the geo-
metric resonance between longitudinal and shear waves,
since c, is the same in both cases. This is confirmed by
the agreement between our results and those of Beck-
man et al. in Sb.

The denominators in the integrand of tT+, which give
rise to Doppler-shifted cyclotron resonance, also cause
rapid variations in o+ at low magnetic fields, as dis-
cussed earlier, so that Doppler-shifted and geometric
resonances may simultaneously appear. In some cases
the denominator may remain constant as a function of
H and k,. In this case only the Bessel functions cause
o+ to vary. In particular, this happens when 8,=0, and
then X=O. An example of this is a cylinder whose axis
is tilted with respect to H and where 8,=0 over all k,.
Then c„=qB„/cu,r is finite and only geometric resonance
will be observed.

Z. Deformatioe Terms D+, D'+, A+

The deformation tensors given by Eqs. (4.15), (4.22),
and (4.23) can be written in circular coordinates
analogous to the conductivity given by Eq. (4.25). In
evaluating these deformation terms, the g dependence
of the components of the deformation potential U„and
V,„must be taken into account. The deformation po-
tential can be expanded in a Fourier series as

V„=PE„c sr',
(4.34)

V,„=gE„' sinrp,

where E„=E„'and r =0, s, 2s ~ ~ for s-fold rotationally
symmetric surfaces centered on I', and E„+E„' and
r=1, 2, 3 ~ ~ for elliptical surfaces not centered at I'.
Using Eqs. (4.26) and (4.34), the deformation terms can
be evaluated and result in an expression similar to o.+.

The final expressions for D+, D'+, and A.+ show that
Doppler-shifted cyclotron resonance and geometric reso-
nance occur. The allowed peaks at HI and edges at H~~
are given in Table IV. The geometric resonances occur-
ring in D+, D'+, and A+ are the same as those occurring
in o+ since the function E(P,p') appears in the expres-
sions of all four quantities.

The ReD+(H) =ReD+(—H), ImD~(B) = —ImD+
&((—H), etc , can be sh. own to hold as in the case of o+,

The quantity A+ is proportional to V.,', and since
V„ is zero for spherical Fermi surfaces" and small for
nearly-free-electron metals, one expects A+ to be very
small for most metals. The total magnitude of the shear-
deformation contribution to the attenuation can be

'J. M. Ziman, Electrons and Phonons (Clarendon Press, Ox-
ford, England, 1963), p. 216.
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estimated for certain metals from measurements of the
temperature dependence of the attenuation in the
normal and superconducting state. From measurements
on the attenuation of shear waves in Al by David et al. ,4'

Liebowitz" has shown that 10%%uo of the total attenuation
for shear waves propagated along the L1107 direction is
due to deformation eBects. In Sn, Liebowitz" has found.
the deformation contribution to be about 30% of the
total attenuation for shear waves propagating along
the L0017 direction.

F. Discussion of A+

It is possible to draw some general conclusions re-
garding A+ from the properties exhibited by 0-+, D+,
D'+, and A.+. From the symmetry properties of these
quantities we can show that

Re[A+(H) —A+(0)7= ReLA+( —H) —A+(0)7

Im(A+(H) —A+(0)7= —Im(A+ (—H) —A+(0)7.

This is in agreement with the Kjeldaas theory and,
confirms Eq. (3.4).

We have seen that the conductivity and deformation
terms give rise to geometric resonances, which vary
sinusoidally with respect to 1/H, and Doppler-shifted
cyclotron resonance which causes asymmetric peaks
nearly periodic in 1/H. The sinusoidal oscillations
coming from the geometric resonances will suffer only
amplitude and phase change, when combined in Eq.
(4.24) to form A+. Thus, by measuring the period of
the oscillations in 1/H of n+, the amplitude of o, as a
function of p can be determined.

It is possible that the Doppler-shifted, cyclotron
resonance peaks may also be periodic in 1/H, in which
case one can also analyze the period as determined from
n+, and obtain the value of (88/Bk, )„„„.This assumes
that the peaks in Reo-+, ReD+, ReD'+, and Reh.+ all
occur at the same Bl. In general, this periodicity in
1/H will not be present because of the Fourier coeffi-
cients or the Bessel functions, or it may be extremely
dificult to identify peak positions in H because of the

asymmetry of the peaks. Sometimes only the first peak
in a family will appear (e.g., tin) in a . In any of the
above cases the only way to relate these peaks (or
peak) to (88/Bk, )...& is through Eq. (4.24). Under
certain conditions it is possible to relate a single peak
in n to (88/Bk,)„,t, without having to explicitly
evaluate Eq. (4.24), as will be shown later.

The symmetry of the Fermi surface plays an im-
portant role in the form of Eq. (4.24), through the P
depend, ence of e„and t/'„. For example, a Fermi surface
centered on F with 4- or 6-fold rotational symmetry
about k, would cause A+ to depend upon 0-+ and A.+
only. If o, and V„are independent of p, then A+
depends only on 0-+, since h.+ would be independent of
H as seen in Table IV.

The way in which the conductivity and deformation
terms are combined to form A+ depends upon the con-
stants in Eq. (4.24) (e.g., N, N„N&, etc.). In this
relationship, the number of electrons and holes present
in the metal play a very important role, giving us three
cases to consider: (1) both electrons and holes present,
but N, +NI„(2) electrons and holes present, and
N, =NI„(3) only electrons or holes present.

Case f. There can be no simplification of Eq. (4.24).
It should be noted that A+ is proportional to D+, D'+,
A.+, 0+, and the cross products D+D'+, 0-+D'+, etc.,
while it is inversely proportional to 0+. Thus, the Geld.
dependence of A + will depend upon the relative strength
between the deformation and conductivity terms, which
in turn d,epends upon the Fermi surface in question.
Unfortunately, in this case the deformation and con-
ductivity terms must be evaluated before they can be
compared with experiment.

Case Z. When N, =N&, then Z=O and Eq. (4.24) can
be simpliGed somewhat. A+ is proportional to such
terms as o.+, D~, D'", 4+, a+/(a. ++ay+), a."ax+/
(a,++a@+), a+D+/(a, ++aq"), etc., if aop&(a+ is neg-
lected. . For those Fermi surfaces where o-+, D", and, D'+
all have the same B' dependence, we would expect the
H dependence of A+ to be nearly proportional to the
conductivity and deformation terms.

Case 3. If only electrons or holes are present, then
Eq. (4.24) reduces to

(Ze ig(mo 0/Ner—„)P+(g/N)Do'+)(ZNe+g(mo „+/er„) gDo+) 1 mD—'+
A+= +A„&iQ~

o o++spap E er„
(4.35)

Equation (4.35) shows that a peak in Rea+ will result
in a dip in ReA+, while a peak in ReD+, ReD'+, and,
ReA.+ will give a peak in ReA+. The resulting A+ de-
pendence will depend upon the relative strength of the
various terms.

4' R. David, H. R. Van der Laan, and N. J.Poulis, Physica 29, .

357 (1963).
8 J. R. Liebowitz, Phys. Rev. 136, A22 (1964).

49 J.R. Liebowitz, Phys. Rev. 136, A84 (1964).

For a spherical Fermi surface, Eq. (4.35) reduces to

(Ze ig (mo o/Nero)P—)(ZNe+g(mo „+/ero) )A+=
a,"+ipao

+iMQ, (4.36)

since D+, D'+, and h.+ are then zero. Here A+ is pro-
portional to 1/ao+ and a peak in Reo+ will result in a
dip in ReA+.
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For a free-electron spherical Fermi surface, Eq.
(4.36) can be shown to yield the Kjeldaas result.

on the ellipsoid. The velocity of the holes can bc
written as

V. DISCUSSION
v= (k/m)n lr (5.2)

We have seen how the compensation (E,—X~) affects
the relationship between A+ and 0-+, D+, D'+, and A",
and the following discussion treats our results, and those
of others, according to the compensation. =Pik, '+Pzky'+Pzk, z (5.g

Each of the electron surfaces can also be characterized.

by an ellipsoid having the energy equation

A. Comylete Comyensation N, = N~

Metals which have an even number of electrons per
unit cell, such as antimony with ten and tin with eight
electrons per unit cell, are compensated.

1. Aetimoey

The Fermi surface of Sb is composed of electron and
hole pieces which are nearly ellipsoidal. Windmiller35

and. Falicov and Lin" have shown that there are six
hole surfaces with mirror symlnetry, whose principal
axis is tilted at 53' away from the trigonal axis, and 3
electron surfaces located at the point I.of the Brillouin
zone, whose principal axis is tilted at 88' from the
trigonal axis. Each of the hole surfaces can be char-
acterized by an ellipsoid with the following energy
equation:

=zz114 +zr22ky +&zzkg +zzzzkpkg p (5 1)

written in the coordinate system of the crystal centered

For simplicity we have neglected the 2' deviation be-
tween the principal axis of the electron surface and the'
binary-bisectrix plane of the crystal.

For the hole surface, e, will vary through the orb(4
due to the 53' tilt from the trigonal giving rise to
geometric resonance. From Table IV we see that
Doppler-shifted cyclotron edges will occur at H&I,
where I=1, 2, 3 ~ ~ in Reo.+, ReD+, ReD'+, and ReA+.
The velocity e, on the electron surface will be constant
through the orbit and will give no geometric resonances.
From Table IV edges will occur at H~' in Rea-+, ReD+,
and ReD'+ and at II~' II~' B~' ~ in Reh+ for the
electron surface. Those results apply to the most
general case where V, and V,„are functions of k.

Let us Grst consider the geometric resonances arising
from the hole surface. By solving the equation of motion
for holes in the presence of a magnetic Geld, the ve-
locities ~„e„,and e, can be determined by using Eqs.
(5.1) and (5.2) as seen in Appendix B. Using these
velocities in Eq. (4.25) yields the solution (see Ap-
pendix A) for the k, =0 orbit

(3 e' 2Er ) Jazz 2mEp '"
e+=

~

— m,
~

Jz' (niz+azz)Ak, 1+z~r,
E 16 k'm' m m~, „nzz

(5.4)

where J& is the first-order Bessel function, and co,
= (eH/mc)(czzznzz)'' Since we a.re only considering the

k,=0 orbit (v, =0), integration over k, was not per-
formed. The quantity hk, is the width of the band of
electrons at k, =0 participating in geometric resonance.
There are other terms in Eq. (5.4) but they have
factors of co,v in the denominator, and since co,v =100,
we have neglected them.

The quantity J&(W)=cos(W —fzr) for W)3 and
hence Jzz(W) becomes amaximum at W= —4zr, (7/4)zr
Thus, the Bessel function is periodic in 1/H with a
period of

t(1/E) =—
( ) (5.5)

which is identical to the condition derived by Beckman
et aL and Quinn. "Using the values nzz ——0.965X10i4Ez,
a2g=0.426X10"Eg o. 3=0.588)(10"Ep, and, o,23=0.576
&(10'4Ep, as derived from Windmiller's data, and Ep
=18.6)&10 '4 erg from Schoenberg, " in Eq. (5.5) gives
6 (1/H) =0.00472 G ', which should be coinpared to our
experimental value of 6(1/H) =0.00442~0.0002 G '.

To determine where the Doppler-shifted cyclotron
resonance edges occur, we need to compute (88/cjk, ),„.
as seen from Eq. (4.31).From the value of X as deter-
rnined in Appendix B, we find that, (88/Bk, )
= 2zr(nzz —nzz/nzz) k, p for the hole surfaces, and

(cjS/cjk,) =2zrPz k,r for the electron surfaces. For
the hole surfaces k,p= 5.36&(10' cm ', and for the elec--

tron surfaces k,p ——8.38&&10+' cm '. Using the previous-
values of zzzz Qzz (xzz Qzz and Ez, Eq. (5.30) gives a
value of H~ as

H„r 280/I G

for holes. Since /=1, 2, 3 ~ ~ we would, expect a series
of edges periodic in 1/H to appear in the attenuation
because n+ is proportional to Re(o++D++D'++A+)
in a compensated metal. Similarly by using the value;

of Pz
——0.236X10z4Ez we get

H~'=350/I G

for electrons. The fact that there is no experimental'

evidence of.these edges, as seen in Fig. 11, implies that
Doppler-shifted cyclotron resonance is weak in this case
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(5.6)

which follows from Eqs. (4.28) and (4.32). This means
that if the product m, 8, is constant over an appreciable
range of the Fermi surface along k, a peak. will occur at
H~+ in Red+. By taking the sum and difference of the

+ and —parts of Eq. (5.6), we get

(5 7)

Vz &s ~

H+—H
(5.8)

Here m, and v, are the cyclotron mass and average
velocity along s belonging to that part of the Fermi
surface giving rise to the peak at Hj+. Applying Kqs.
(5.7) and (5.8) to peak number 10 (the strongest peak)
in Fig. 4 gives

sN, /m=0. 64&0.03 and
~
0,

~

= (0.133+0.007)X10'.

This peak arises from a slice of the Fermi surface where

8, is much less than the Fermi velocity e+.
The weak peaks in Fig. 4 (Nos. 5 through 9) are

caused either by geometric resonance or by the higher
harmonics of the Doppler-shifted cyclotron resonance

peaks, but it is dif5cult to determine which one is
responsible because of the many processes which occur
simultaneously.

B. Zero Compensation

The metals which have zero compensation are the
alkali metals and nobel metals, in particular, copper.
In this case A+ is given by Eq. (4.35) and is propor-
tional to the deformation terms and inversely pro-
portional to the conductivity. Copper has 4-fold

Z. Tie

The detailed structure of the Fermi surface of Sn
indicates a complicated topological figure which makes
any computation of a+, D+, D'+, and A+ nearly im-

possible. However, for Sn, which has 4-fold rotational

:symmetry about H, 0, is proportional to ~+, D+, D'+,
.and h,+ since 0+, D+, and D'+ all have the same H
dependence (see Table IV). This holds for the surfaces
centered on I' and not on F.

Figure 6 shows that certain peaks (1, 10, 11, 19, 24,
and 32) are Doppler-shifted cyclotron resonance peaks
because of their sharpness, asymmetrical character, and
diQerence in H for the (+) and (—) wave. They are
probably H& peaks because of their strength. If so, and
if we assume that the position of HI is unaffected by
the Fourier coeScients and Bessel functions in the inte-

grands of 0.+, D+, D'+, and A+, then we can state the
following condition for the maximum in ReA+:

rotational symmetry about L1007 and is centered on
F, so one would expect the first-order deformation terms
D+, and D'+ to vanish when q~~L100]. However, the
necks introduce complications and these two terms are
probably present. "

By using the Fermi surface of copper as computed,
by Roaf, "Gavanda and Boyd" were able to predict
that H& in o+ should occur near 4 kG for g~~L1007. This
peak. comes from the region of the Fermi surface where
the necks join the belly. They then compared this peak
directly with their measured attenuation peak at 4.3 kG.
This agreement is surprising since it implies that A+
is proportional to o+ instead ot 1/o+. However, A+ is
proportional to D+, D'+, and A.+, and in general all
these terms will give rise to a peak at H~. It is probable
that the deformation terms are large since the region
where the necks join the belly in copper is extremely
sensitive to any strains induced by the acoustic wave.
Thus, one expects that ReD+ and especially ReA.+ to
dominate the attenuation.

C. Incomplete Compensation N, / Nh,

Incomplete compensation occurs in polyvalent metals
having an odd number of electrons per unit cell, such
as Al.

In a preliminary calculation, Aubauer has obtained
0+ for the second zone holes in Al using a nearly-free-
electron model. He included the Fourier coefficients of
the velocity expansion in his calculation but assumed
e,=8,. For the Reo-+ he found a family of peaks periodic
in 1/Hz having a period of 1.15X10 4 G ' with the H,
peak occurring at 9 kG. By calculating Re(1/o+), he
also found a family of peaks periodic in 1/Hz having a
period of 1.15)(10 'G ' as before, but now the H~
peak occurred at 3.9kG. The H dependence of Re(1/o +)
resembles Fig. 7 and Im(1/o. +) resembles Fig. 10 very
closely except for the exact peak positions and perio-
dicity. This suggests that A+ is nearly proportional to
1/o+ in Al. The discrepancy between the observed and
calculated. periodicities might be resolved by using a
more accurate model for the Fermi surface of Al."A
more complete calculation including the effects of the
Bessel functions is now in progress.

It is surprising that Jones, ' by assuming that the
attenuation was proportional to the conductivity, "

~ If one treats the necks in the Fermi surface of Cu as cylinders
centered on I., they will have the same properties as ellipsoids at
L with regard to which peaks are allowed hy symmetry (see
Table IV)."D.J. Roaf, Phil. Trans. Roy. Soc. London A255, 135 (1962).

"Phonon renormalization corrections will enter both 8, and
co,. If the two corrections are identical, they will of course cancel
out in the determination of the peak position leaving only the
geometric quantity BS/BE,. If not, there could be an eftect of
phonon renormalization on the period. However, it seems unlikely
that it is able to account for the discrepancy of a factor of 1.5;
an explicit theoretical investigation of this problem would be of
value. M. H. Cohen (private communication).

'8 Jones actually did not assume that a„was proportional to
&„.He derived a quantity from energy considerations which had
the same form as cr..and set this proportional to 0,.
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accounted for his attenuation results as being due to
the second zone hole surface in Al. He propagated
longitudinal waves along the $100] axis of Al with

q~)H and found that the first peak in a family of peaks
(periodic in 1/H) occurred at 0.65 kG.

For longitudinal waves the substitution A+ —+ A„,
0+ ~ 0.,/1 R.—.. D+ -+ D„, D'+ —+ D'„and h.+ —& h.„
can be made in Eq. (4.24). The diffusion term E., arises
for longitudinal waves and is proportional to 0.„.By
assuming A„~a„, Jones found, using the relations
given in Eq. (4.30), that the peaks were caused by a
region of the Fermi surface where (88/Bk.).,„„=3.3ko,
where ko ——2~/a and u is the lattice spacing. From the
free-electron Fermi surface of Al he found a region of
constant slope in the second zone of about 3.3kp from
k, =0.35kp to 0.50kp. He suggested that this region of
the Fermi surface was responsible for his peaks. This
region is also responsible for the 9-kG peak in Reg~
calculated by Aubauer.

The fact that Jones can explain his data by assuming

A„ is proportional to o-„might be explained if D„,
D'„, or A„become the dominant terms in A„, since
Reo-„, ReD„, ReD'„, and ReA„all have peaks at
H4, B8 . It is not unreasonable to expect that the
longitudinal deformation terms may be large, because
even in the case of a sphere where D+, D'+, and 4+=0,
I7„,D'„, and A.„are finite.

VI. CONCLUSIOÃ

The attenuation and dispersion of circularly polarized
sound has been measured as a function of magnetic
Geld oriented parallel to the sound propagation by
using the method of split receiving transducers. This
method eliminates any ambiguity in the measurement
of the attenuation that might be caused by rotations
of the plane of polarization of the sound wave. A further
advantage of this method is that information can be
obtained about the sign of the carriers contributing to
the structure in the magnetoacoustic attenuation caused

by Doppler-shifted cyclotron resonance.
There are two mechanisms responsible for the at-

tenuation: Geometric resonance and Doppler-shifted
cyclotron resonance. Geometric resonance appears in
the attenuation as a damped sinusoidal oscillation
periodic in 1/H and is independent of sound polariza-
tion. The period can be related to an orbit on the
Fermi surface where the average velocity 8, along II is
nearly equal to zero and whose instantaneous velocity
e, is nonzero. Doppler-shifted. cyclotron resonance ap-
pears in the attenuation as families of asymmetric
peaks or absorption edges each of which is nearly
periodic in 1/H. This periodicity can be related to that
section of the Fermi surface where 88/Bk, or m, V, is

constant over a wide range of k,.
When electrons and holes are present the observed

structure in the attenuation, such as peak position or
peak shape, cannot simply be related to the Fermi

surface. Instead, the expression for the attenuation de-
pends in a complicated way on the components of the
conductivity and deformation tensors, which in turn
depend on the details of the Fermi surface. Such details
include the k dependence of the Fermi velocity and the
deformation potential over the entire Fermi surface.

The Fermi surface of Sb consists of ellipsoidal pieces
which should give rise to Doppler-shifted cyclotron
resonance edges. However, no edges were observed. In-
stead, a damped sinusoidal oscillation periodic in 1/H
was seen and identified as geometric resonance. The
observed period of (0.44&0.02) X10 4 G ' agrees with
the period 0.47&10—' G—' expected from the k, =0 orbit
of the tilted hole surface of Sb.

Over thirty peaks in the attenuation for Sn could be
identified, many as Doppler-shifted cyclotron resonance
peaks. Unfortunately, because of the complicated Fermi
surface of Sn, no relation between the peaks and the
Fermi surface could be made.

For Al the measured. attenuation peaks were nearly
periodic in 1/H having a period of (1.8&0.04) && 10 4 G '
with the high-Geld peak occurring at 3.2 kG. By ob-
serving the relative peak shift of the right- and left-
handed waves, it was established that these peaks were
caused by the second Brillouin zone hole surface. By
assuming that the attenuation is inversely proportional
to the conductivity, the attenuation was calculated
using the nearly-free-electron model for the second, zone
holes. It was found that the calculated attenuation has
peaks which are periodic in 1/H having a period of
1.15)&10 4 G ' with the high-Geld peak occurring at
3.9 kC. This calculated attenuation is similar to the
measured attenuation except for the exact peak position
and periodicity. This discrepancy in the period remains
unexplained, . In Al the majority carriers are the holes
and the hole surface does not satisfy the conditions for
geometric resonance. It is, therefore, not surprising that
geometric resonance was unobserved.

In this analysis we have shown that the longitudinal
case (q~~H) is much more complex than the perpendicu-
lar case and, notwithstanding the strong attenuation
peaks, is unlikely to yield much information about the
Fermi surface.
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APPENDIX A

1. Fermi Surfaces Centered on F
The conductivity tensor can be written [see Eq.

(4.25)] as

rotationally symmetric Fermi surfaces about k, cen-
tered on F, IC(p, p') can be evaluated and becomes

Pq8, co ')t

&(4A') =exp il ——l(4' —4)
(MAL Mgl

+ —P c, sin(rp')+P c„sin(rp), (A2)'
COc

where c„=qJ3„/co,r, and co =0. Remembering that.
exp[iW sing]=g J„(W)e'"&, where J is the mth-
order integral Bessell function, we can write Eq. (A2) as.

X(y,y') =exp[i(X co/—(o,) (y' y)—]
XII [Z J-(")c '""']II K J- (")c'"'"'], (A3)

m'

e ~~' mc
o+= — —dk

4K h y~ GOc

("~',)d~

X & X (g,p')dQ', (A1)

where X=qv, /or, and II„is the product sign. Equation
(A3) can be simplified using the identity

Iran~-, =zz err~„
m1 m2

where E(p,p) is de6ned in Eq. (4.12). Using the and then inserted into Eq. (A1), which afterintegration
velocity expansions given by Eq. (4.26) valid for s-fold over P' yields

0 = m, rdk, (v,ai()„)dy Q Q p Q Q [IIJ„„(c„)][IIJ„„(c,)]exp[i p(m„' m„)ry]—
8% h Ic~+ p m1ml' mr mr' l r r r

e'('+')&Al S e-'«+»~a„,
x

1+no,r(X cv/&v, +i+—1 Pm„r) —1+us,r(X (d/&o, (1+1—)—P m—„r)

e'«+»~A„, e
—s«+»yg

1+no,r(X co/0). +—1+3 gm, r—) 1+ice.r(X 0)/u, (i+—3)—P—m„r)
(A4)

Finally putting

into Eq. (A4), 0+ becomes

e2 kgb'

~i() Q g( c+ii(i+la)$ Q g( acing((+8)P
l l

0
8x'It2 p

m.r Z Z Z E E Z Z E ~ )(IIJ-J-, ) (~) +ic..~'+~ v+8D. .~')
e 5 l l' m1m1' mr mr'

X dk„(A5)
1+iv),r(X—(o/(a, +a(l+b) —g m„r) 1+~,r( X co/(0, +—a(l+—b) Pm„r)—

where a=&i, b= j., 3, and 1=0, 4, 8, and r=s, 2s, ~ for s-fold rotational symmetry. The constants C, ~+
and D,~+ are

1 if a(l+b)ag(l'+1)+P(m, '—m„)r=0

0 otherwise

1 if a(l+b)Wg(l'+3)+Q(m„' —m„)=0

otherwise,

where g=+1 for holes and g= —1 for electrons.



MAGNETOACOUSTIC ATTENUATION

When s,=8„r=0 and c„=0 and then J„,(0)=0 except for J0(0)= 1. Thus, Eq. (A4) can be evaluated, using
the values of w,&zv„stated earlier, to give Eq. (5.27).

2. E11iysoidal Fermi Surfaces Not Centered on F
For ellipsoidal Fermi surfaces not centered on F, the velocity expansion becomes

s,=A cosQ, and e„=Bsing, and u, =v,+c sing,

written in the coordinate system of the crystal centered on an ellipsoid. Since we are dealing with crystals having
3, 4, or 6-fold rotational symmetry about k„ there will be e. ellipsoids about k„2s/N, rad apart, where e, =3,
4, 6, 8, or 12. The velocities for the other ellipsoids can be obtained by the following axis transformation:

2n.P 2m.P 2mP 2~P
s,~=a, cos +n„isn, v„&= s,—sin +s„cos, and e,~=v, ,

Ne Sg S$ Ã$
(A7)

where P= 1 2 ~ ~ n, The .conductivity 0+ is

e e ~'~ m,
0.+=+ o„~afo.„J'= dk, dy—(v,aim„) v, 'E(y, y')dy'+

—kg c- 0

(~u~~")&4 su&(4A')4' (A8)

and by using Eq. (A6) and 0+ can be evaluated and becomes

e,P '*& — (B'—A')J (G)J R(G) (B'—&')J-(G)J~Q(G)
dk,m. P +

m 1+~~r(X—6&/6&, +1+ted) 1+'c(d~7 (X 07/(dc —1+tH—)

(AwB)'J '(G) (A +B)'J„'(G)
(A9)

1+~,r(X a&/(o, +1+—m) 1+iv&.r(X &o/~, 1—+m)—

where G= gG/co, and X=g8./&o, . If the ellipsoids are not tilted with respect to the k, axis, G=O and. the only non-
vanishing terms are those having Jo in them, then Eq (A9) reduces to

~ ~2 hazy'

NzWc
8x'A'

(A HB)' (2&B)'
)

1+iv&,r (X td/a&, +1) —1+$N &r (X ~/~~ 1)——
which is similar to the result obtained by Kjeldaas.

APPENDIX 8
The energy equation for the hole Fermi surface in Sb is

2mEp =+uk '++22k„'+n33kp+0. 23k,k„

and the energy equation for the electron surface is

28$Ep
= peak. '+p2k„'+p8k, 2. (B2)

The Lorentz force on the holes when B~~s is

8 ek
kk=-vXH= —e KXH,

C SEC
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using v= (k/m)e k. Solving for k we get

egg 0 0
C= 0 G&2 G&3

0 tX23 CE33

Cg3
k,=k,o cosQ, k„=k„osing ——k., k.=const,

0,'22

where p ~,t and ra, =eH/mc(n»+22)'~'. The quantities k,o and k„o can be solved for using Eq. (81) and are given by

@28 1 f &22&ii &11+22 &33 8&ll&RR +Em
k. 1+-I 1+4 + +

2a220lu - 2 ~ e2p a23 k &23 km

aug 1 8n22Epm 4n2p 'I'
, k„,= k. 1—+- — . {Il6)

2 A Q.qe k, o,23

Finally, the velocity is

tt'+Uk A22A &23k hk,
'v =~ k 0 cosp, w„= k„o sing, and w, = k„0 sing+ (~„—~„'/~„)

km m fg m

The conductivity is then given by Eq. (A9) where 2 = (n~~h/m)k, o, 8= (ns~k/m)k„o, X= (n3~—F23'/n~~) (k/m)k„
and G= (qaq3k/(mo&, ))k„0. The equivalent solution for the electron ellipsoids can be obtained by substituting P,
for n~~, P2 for nmq, and Ps for n33, and by taking into account the fact that there are three electron ellipsoids per
Brillouin zone.

For these orbits where k, =0 (i.e., geometric resonance condition),

1 2mZp '~2 1 2mEp)'~' z
k„o———,k.o=- i, and G= (qa23/(m(o. ))

k +22 k nag ) n22 )

Also, X=O, so that 0+ LEq. {A9)]will be a maximum when m= +1, since &o,r = 100 at 1 kG. Hence o + becomes

3 8 2Ep JP(G)
m. (nu+u22) — ak„

16 II2m 3 m gO&

vrhere hk, is the band of electrons contributing to the geometric resonance at k,=0.


