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The nature of the electronic phenomena involved in the adsorption of alkali atoms on a metallic substrate
is discussed. The metal-adsorbate system is treated in terms of a simple model which makes possible a self-
consistent calculation of the effective charge on the adsorbed atom. The atom is treated in the Slater approxi-
mation and the metal is assumed to be free-electron-like. Numerical results are presented for K, Rb, and Cs
adsorbed on W in the presence of various electric fields.

I. INTRODUCTION

VARIETY of experiments has been performed in
~ ~

which foreign atoms or molecules are adsorbed
(or desorbed) on a metal substrate in the presence of
very high electric fields. For example, systems consisting
of Ba on W,' Cs on W,' and CO on W' have all been
studied in some detail.

Qualitatively, three types of adsorption are dis-
tinguished: ionic, neutral, and metallic. If the metal
is indicated by M and the adsorbate by A, the first
type corresponds symbolically to a bond M=A+ (or
M+—A ), while the neutral type can be represented
by M'—As. The third (metallic) type is an intermediate
case where only part of an electronic charge has been
transferred from the atom to the metal (or vice versa).
A quantitative distinction between these three types
can be made in terms of the effective electronic charge

q localized in the neighborhood of the adsorbate. In this
fashion,

q
—W

~ e) ~ ionic adsorption,

q
—0 —+ neutral adsorption,

0( [ q ) ( ) e [
—+ metallic adsorption.

Schmidt and Gomer' have recently made a detailed
study of the K on W system, and have estimated the
electronic charge q as a function of coverage for various
exposed crystallographic faces of the W substrate. It is
the purpose of this paper to discuss the nature of the
electronic phenomena which result in a metallic ad-
sorption of atoms and formulate a simple model which
allows an approximate quantitative calculation of q.

We restrict ourselves to electropositive adsorbates in
which q&0; in these cases q/0 results from the partial
emptying of the outermost level of the adsorbed atom.
This partial emptying is due to the extended nature of
the relevant wave functions.
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At large separations, when the overlap between
metallic wave functions and the atom is very small, the
atomic wave function can be considered a good eigen-
state, with a well-defined energy E~. Under these con-
ditions, the occupation of that level is either zero or one,
corresponding to the two extreme types of adsorption
discussed above. At smaller separations the clear-cut
distinction between atomic and metallic states is no
longer valid, and, from the point of view of the elec-
tronic wave functions, the system should be treated as
a whole. The very existence of a charge transfer makes
it necessary to include (at least) self-consistency in any
theory which hopes to provide a method of calculation.

In what follows we confine our attention to a single
adsorbed atom with a single, filled s level in the outer-
most electronic shell. Since the nature of the problem
emphasizes the extended character of the wave func-
tions, we neglect all possible localized surface states.

In Sec. II we define the parameters that are relevant
in the calculation. The effective charge q depends on
these parameters which are, in turn, functions of q. In
Secs. III and IV we arrive at explicit forms for the func-
tional dependence of the parameters and in Sec. V the
expressions are combined to obtain a self-consistent
solution of the problem.

%=IIp(E;,l;,v;;r;),
4

(2.1)

II. FORMULATIOÃ OF THE PROBLEM

The problem under consideration is a many-electron
one. The single-electron wave functions which con-
tribute to the many-electron state are, for the metal-
atom separations of interest, extended throughout the
metal and the atom. In other words, no single electron
state is localized around the atom position (as it would
be in the case of large separations) giving a 6nite con-
tribution to the electronic charge q; thus q is made up
from the contributions of an infinitely large number of
states, each contributing an infinitesimal amount. In the
absence of localized states the Hartree approximation,
which neglects exchange as well as correlation eGects, is
known to be a reasonable one. We then assume that the
total wave function of the system + can be expressed
as a simple product of one electron functions.



151 METALLIC SURFACE —ADSORBATE SYSTEM

n(„(E)dE.
EZv Zv

(2.4)

It is easy now to define the effective charge in a volume

V (which is of the order of an atomic volume) around

the atom:
(2.5)

Zl»
OccllPied
states

I il (E,lp;r) I
'd'r. (2.6)

This last expression can be rewritten as'

p(E)dE

exp
kT.

'

p(E)dE, (2.7)
T—+0

where Er is the Fermi energy (maximum occupied value
of E at zero temperature) and

where each one-electron wave function f is determined

by three quantum numbers: E, one-electron Hartree
energy; /, angular momentum in a direction perpendicu-
lar to the surface; v, a third quantum number which

completes the identification of the state. These quantum
numbers emphasize the cylindrical symmetry of the
problem, the normal to the surface through the atom
center defining the axis. It is not necessary to include

spin explicitly, since by assuming that not more than
one electron can occupy the relevant s state, we have
assumed a strong correlation effect between the spins
close to the adsorbate and in fact restricted ourselves to
only one of the two spin systems.

Each of the f functions satisfies a Schrodinger equa-

tion of the form

Hf(E, l, v) =EP(E,l, v), (2.2)

where H is the self-consistent one-electron Hartree
Hamiltonian obtained by minimizing the total energy

Er=(+I&I+&/O'I+& (23)

with respect to %. In (2.3) R is the total Hamiltonian
for the many-electron system. The Hartree Hamiltonian
B will be discussed in detail in the next section.

It is useful at this stage to define an energy density-
of-states n&„(E) such that any sum over the quantum
number E can be replaced by an integral, i.e.,

p(E) =-
s. (E—E„)s+6s

(2.10)

where 6 is the (positive definite) width of the level and

E„the position of the maximum.
From Eq. (2.7) we have

1 Eg Ey x
q
—=—tan ' '+

2
(2.11)

where we have assumed that the shifted position of the
"atomic level" E„ is always well above the bottom of
the metallic band (U), i.e.,

(2.12)

Figure 1 is a graphical representation of Eq. (2.11);the
family of curves shown corresponds to various values
of A.

If this model is correct, E„and 6 should depend on
the external parameters (atomic number of the nucleus,
metal-atom separation d, applied external electric field

F), as well as on the value of q itself, and the equations
should then be solved in a self-consistent fashion.

In order to justify Eq. (2.10) Lor to find in fact a more
accurate form for p(E)j, and to calculate E„and. the
width 6 we need first an expression for the one-electron
Hartree Hamiltonian H of Eq. (2.2). This Hamiltonian,
obtained by a minimization of the total energy of the
system, is of the form

Before attempting a calculation of p(E), we present
a qualitative discussion of its properties. We first con-
sider the atom at large separations from the metal
surface. Because of the negligible overlap the Hartree
wave functions are in this case the atomic wave function
and the undisturbed electronic wave functions of the
metal. The only contribution to the electronic charge in
the neighborhood of the atom comes from the atomic
level, which has a well-defined energy E~. This means
that

(2.9)

The effective charge is therefore zero or one, depend-

ing on whether E~ is below or above the Fermi energy
EJ.As the metal-atom separation is reduced, tunneling
takes place and the Hartree wave functions become de-
localized. The density p(E) is no longer a delta function;
it spreads and its maximum is shifted. We may assume
that p(E) can be represented by a Lorentzian
distribution

p(E) =—P d'r
I $(E,/, r,r) I

'n(„(E) .
Zv f7

(2.8) H= 2'+ ~sr+ &~+&r+&-, (2.13)

p(E) is the effective electronic charge per unit Hartree

energy.

6 We restrict ourselves to low temperatures T -+ 0; the exten-
sion to 6nite temperatures is straightforward. The effect of 6nite
temperatures on q is of the order of kl'/6, where 6 is the
Lorentzian width Be6ned below.

where T is the kinetic energy operator, V~ is the po-
tential due to the metal ions, V~ is the potential of the
adsorbate ion, Vg is the potential due to an external
electric-Geld F, and V„ is the self-consistent potential
acting on one electron and due to the average charge
distribution of all other electrons. The complete solution
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)t 0 O.g
9

Fxo. 1. The eGec-
tive charge q as a
function of the posi-
tion of E„with re-
spect to the Fermi
level Ey.

I'L,= 1, I'g=0, x&0;
I'L,=O, I'g= I, x)0. (2.15)

Figure 2 shows a pictorial representation of the potential
and de6nes our energy scale and system of coordinates.

III. PERTURBATION THEORY

where U is the constant potential inside the metal and
Vg' is the potential due to the adsorbate ion modi6ed
by the effective charge q of the electrons in its neigh-
borhood. The function Pr, (Pn) takes the value one
inside (outside) the metal, and the value zero elsewhere,
l.e.)

of the Hartree equations is, if not impossible, certainly
an extremely cumbersome numerical problem. We can,
however, make some drastic simplihcations in the form
of (2.13), which, based on the conclusions of previous
work, allow an approximate solution to the problem.
This solution has the right qualitative features and is
also capable of giving fairly accurate quantitative
answers for the values of q .

It has been shown that:

With these approximations (2.13) can be written as

II= T+UPr+$Vo. '+Vs+ Vi jPz, (2.14)

r See, for instance, l. M. Zirnan, Prirseiples of the Theory of
Solids (Cambridge University Press, New York; 1964).

J. Sardeen, Phys. Rev. 49, 640 (i936); P. H. Cutler and J.,J.
Gibbons, chid. ' 111,'394.(1958).

(a) The potential inside the metal is, for the conduc-
tion electrons of simple metals, effectively very smooth~;
it is a good first approximation to assume that V~ can
be replaced by the potential due to a uniform back-
ground of positive charge.

(b) The conduction electrons inside the metal screen
the effect of any 6eld outside. Except for a rather thin
layer where the screening takes place, the total field is
zero inside;

(c) The dipole layer at the surface of the metal, which
is responsible for the screening discussed in (b), is much
narrower than the typical distances involved in our cal-
culations, ' and can be consequently assumed to be of
zero width. -

(d) The effect of V,.for an electron outside the metal
due to electrons inside the metal can be approximately
replaced by a classical image potential V;, which
guarantees a constant potential (taken to be zero) at
the surface of the metal. '

A proper solution of the Schrodinger equation (2.2)
would entail either a complicated numerical procedure
or the matching of analytic wave functions for a variety
of points on the metal surface; this calculation would
have to be repeated for all values of the relevant external
parameters.

We propose here the use of perturbation theory in a
scheme similar to that developed by Fano' "to treat a
rather different kind of problem, i.e., the mixing of a
discrete atomic level with the continuum due to con-
figuration interaction. This problem resembles the one
under consideration in the fact that, in the absence of
interaction, a well-dined quantum level and a con-
tinuum exist, and the interactions broaden the atomic
level into a "resonance" with a .characteristic width.

In order to apply Fano's method we restrict ourselves
to the following manifold of functions:

(a) An atomic s-like wave function q which satisfies
the Schrodinger equation

H~9=(T+V~')@=Ex'q. (3.1)

(b) A continuum of metallic wave functions (XEl, )is
which satisfy the Schror'dinger equation in the metal

HX(E,l,is) =$T+ UPr)—&(E,l,is) =EX(E,l,is) . (3.2)

Here the quantum numbers l and p, are the axial
angular momentum and the radial linear momentum;
they refer to a cylindrical system of coordinates with
axis (y=0, s=0) determined by the normal to the
surface which passes through the atom. The functions
X are all bound to the metal, i.e., they have a negative
energy E(0 and outside the metal (x)0) they decay
exponentially. Without loss of generality, it may b'e
assumed that the set (q,X) is an orthonormal one, i.e.,
all functions are normalized and q is orthogonal" to
all. X's.

' U. Fano, Phys. Rev. 124, 1866 (1961).
ie P. W. Anderson /Physi Rev. 124, 41 (1961)ghas developed a

completely equivalent formulation for treating localized moments;
we follow here the notation and nomenclature of Ref. 9.

~ In the actual calculations all X are orthogonal ainong them-
selves, but q is not orthogonal to the {x}set; the correction to the
lack of orthogonality is straightforward but to avoid unnecessary
complications in, the formulas we do not include this correctiori
here.
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By looking at solutions of our problem which can be
expressed as linear combinations of these functions, we
neglect all contributions for other atomic states as well
as functions which may grow in going from the metal to
the ion. This restriction will then result in mixing of
metallic wave functions of different energies E; such a
mixing would not occur if the manifold is enlarged to
include more functions. For the purpose of studying q,
i.e., for studying the behavior of wave functions close to
the ion, the approximation is a good one and the im-
proper mixing of diBerent E values introduces no sig-
nificant error.

The one-electron wave functions of the system are
now given by

f(E,l,v)= a(E,l, )vp

Fze. 2.A schematic
diagram of the eGec-
tive potential in the
one-electron Hartree
HamBtonian for the
metal-atom system.

E

+Q 4pf dz!b(s, iv;s', l',p)x(z', l',y)si (gs'),
l,l

Here Si (pE') is the density of metallic states with
angular momentum /' per unit radial momentum in the
plane perpendicular to the metal surface and per unit
energy.

Selection rules applied to (3.3) which make use of the
fact that p is an s-like function yield

IV. CALCULATION OF THE PARAMETERS

In order to find E„we rewrite the Hamiltonian (2.14)

&=&~+[& V~'Q— r+P'v+V' ]&a, (4.1)

E; in the same approximation the self-energy shift G(E)
(3.3) vanishes because of the odd character of the integrand

in (3.10).

a(E,l, v) =0 for l/0. (3 4) where H~ is the atomic Hamiltonian of (3.1).
We now make the following approximations:

(i) The self-energy shift G(E) is neglected, i.e.,

E.=(v I&l 9»
a(E,l,v) =0 for v/0. (3.5)

In addition, only one family of states, say v=0, contains
contributions from y, ' i.e.,

(4 2)
Since the metallic wave functions decay exponentially

outside the metal, the only sizeable contribution to (or
equivalently the definition of) the density of charge is

(ii) We confine our attention to those separations d
(see I ig. 2) for which less than ten percent of the charge
associated with

I
yls is inside the metal; it is then

reasonable to negelct the second term in (4.1), i.e., the
term (U V~']Pz. —

(iii) We approximate the energy contribution from
the external field F and the image charge by evaluating
(Vv+V; ) at the position of the adsorbate (x=d,
y=s=0). The error involved here is of the order of the
small shift of the corresponding atomic s level for the
Stark eGect.

(iv) The value of the energy of the atomic level Ez'
is evaluated by means of the empirical formulas pro-
posed by Slater. '~

~(E)=-
I a(E,O,O) I'. (3.6)

Straightforward application of perturbation theory as
formulated by Fano' yields

I a(E,O,O) I
'=

(8—E ps+a
I Vs I

4
(3 7)

where

I vol s= l(x(E,O,p) I HI y) I'Es(14E)dp (3 8)

E.=(~l &I v )+G(E),

G(E)= (P dE',
E—E'

(3 9)
%'ith these approximations,

(3.10) (1—PV) '
—Isla+ (4'3)

2d

Z—Sz—O,r- '

and 6' indicates a principal-part integral. It is im-
mediately seen that (3.7) has a form similar to (2.10) if where R is the Rydberg constant

~= Iv I', (3.11) R=13.6 eV, (4.4)

and
I
Vsls is assumed to be a constant independent of "J.C. Sister, Phys. Rev. 86, 57 (1950).
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Ther.z I. Parameters of the calculation.

Metal: U= —12.0 eV
I=4.5 eV

bottom of the band
average ionization

potential

Adsorbate: K Z —Sz=2.2
Rb Z —Sz=2.2
Cs Z—Sz=2 2

I+=3.7
@*=4
m~=4.2

where ao is the Bohr radius, e* is an effective quantum
number related to the usual principal quantum number,
Sz is an CBectivc shielding constant, and C is a normali-
zation constant. The shielding constant Sg is in fact a
sum over the shielding contributions s; of each of the
individual electrons of the same and inner shells of the
atom. It is important to note that the relevant electron
does not screen itself, but if another electron is present
in the same s shell, the latter gives a contribution" 0.35
to Sg. In allowing for the change in E„due to the effec-
tive charge q, we have chosen to increase the shielding

by an additional term nq . If the CBective charge were
due to a localized wave function (as it is for large
distances d), then n would in fact be zero because of the
lack of self-screening. Since, however, the effective
electronic charge on the adsorbate is due to a sum over
the contribution of many extended wave functions, wc
assume that an individual electron in the vicinity of the
atolll fccls R sclcclllllg glvcll by {Sz+0.35 g ), as lf tile
cGective charge were equivalent to another electron of
charge q

—e in the outer shell. In actual fact e must be a
function of the distance d and arises from nontrivial
correlation CGects which go beyond the Hartrce
approximation.

The second and third terms in (4.3) are, respectively,
the values of Vp and V; at the adsorbate site. The
image term V; corresponds to the interaction of the
electron with the image of the ion, partly screened by
the CBective electronic charge r; we take the constant

P as equal to one, but its actual value is again a function
of distance which depends on detailed correlation CBects.

For a given chemical species (i.e., Z and Sz known)
and known values of F and d, E~ as a function of q is
a quadratic function with negative quadratic cocScicnt
and a maximum at

(4.6)

which ls 1ndcpendent of E.

and Z is the nuclear charge of the adsorbate; all other
symbols will be dc6ncd B11Dlcdiatcly. Thc 6I'st term ln
(4.3) is the energy of the isolated atom in the Slater
approximation, modified by the presence of the CGective
charge q . If for the moment we set q =0, that energy
corresponds to an approximate (Slater} wave function

q =Cr I"' I& e—xp( —[(Z Sz}/n*—ao]r}, (4.5)

(v) cvaluRtloll of the lntcgl'al {3.8).

Some details of the calculation are presented in the
Appcndlx.

The parameters used in the calculation for % metal
and for K, Rb, and Cs adsorbates are shown in Table I.
The calculated widths 5 depend on six variables:

(1) E, the independent variable of integration as
appears in (3.11) and (3.8);
two parameters which depend on the metal substrate,
0

1.C.)

(2}I, the ionization potential,
(3) U, the position of the bottom of the conduction

band;
two parameters which depend on the adsorbate and the
external field, i.e.,

(4) E„, the displaced position of the atomic level,

(5) Z, the chemical species of the adsorbate;
and 6nally

(6) d, the metal-adsorbate separation.

In Table II we give various values of 6 as calculated, for
U and I corresponding to 8", and for E=E~. It is seen
that the typical widths for reasonable distances (~3 A}

TasLE II. The vndth d,.

2.85

6
8

2.85

6
8

2.85

6
8
4

—4.5
—4.5
—4.5
—4.5
—4.5
—4.5
—4.5
—4.5
—5.7

—4.5
—4.5
—4.5
—4.5
—5.7

2.3
1.2
0.22
0.022

2.4
1.5
0.42
0.050
1.6

3.1
2.0
0.67
0.11
2.1

Tile calculR'tlon of tile width (3.11), (3.8) Is a tcdlOus
but straightforward process which involves several
steps:

(i) calculation of the metallic wave function X(E,l,p)
111 (3.2) wltll tl1cll' pl'opcl' Ilorlllallzatloll;

(ii) calculation of the normalization constant Q for
the atomic function y (4.5);

(iii) calculation of the density of states Eo(p,E);
(iv) evaluation of the matrix element
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APPENDIX A: DETAILS OF THE
CALCULATION OF LL

(i) We assume the metal to be a very large cylindrical
sample of length L, in the x direction (perpendicular to
the surface) and radius L, in the radial p direction in
the plane parallel to the surface. The metallic wave
functions, solutions of (3.2) with E(0, are

(p(E U—h'—p, '/2m) ) 'I'
x(E,O,p) =!

)!

I. I-p m

h [2m(E—U) —h'p')'I' (A6)

(iv) From (4.1) we obtain with the same approxima-
tions of Sec. IV

(&(E,O,p) IH! pp)=E„(x(E,O,p) I pp) (A7)

The right-hand side of (A7) has been evaluated by re-
placing Jp(pp) in (Ai) by one; this is justified by the
fact that the major contribution comes from the region

p ~ 0. Consequently,

(iii) The relevant density of metallic states for a
single spin is given by

J,I.,
1Vp(p E)= o(E U——(h'/2m) (kg'+ p') jdk,

X Q

X ——sink, x+cosk,x Jp(pp), x(0;
k,

(p(E U —h' p—'/2m) ) 'i'
e-ax

~&p22n +1(E U hppp/2m)~1/2~E e—ad~&,I (2.*+1)L*L,
I Ul

X e" I'(yx, rp*+1)dx

XJp(pp), x)0; (A1)
where

e "*I'(yx, m*+1)dx
(A2)h'k, '/2m= E—U h' p'/—2m k,)0

h'z'/2m =h' /p2 mEz)0

and Jo is the zeroth-order Bessel function.
(ii) The properly normalized Slater function" is

( (2~)Be*+i ) i/P

p (r) =I
(4pri'(2m*+1))

where
y= (Z—Sz—ng )/N*ap.

(A3) where I'(yx, pp*+1) is the incomplete gamma function. "
(v) The integral over x in (A8) as well as the integral

over p, which appears in (3.8) were performed numeri-
cally with the Titan Computer of the University of
Cambridge Mathematical Laboratory. Results are given
in Table D.

~' See, for instance, E.Jahnke, F.Emde, and A. I.Losch, Tables
of Higher Iilmctiorls (McGraw-Hill Book Company, Inc., Neer

(AS) York, 1960), p. 13.


