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diameters, it is expected that the activation energy
necessary to dilate the indium lattice to allow the solute
atoms to diffuse from one interstitial site to another
will be the same for both atoms. However, in apparent
contradiction of this simple picture, the experimental
diffusion activation energies are 7 kcal/mole for gold
.:and 12 kcal/mole for silver. One model which may ex-
plain this anomaly is that silver solute atoms are dis-
tributed between substutional and interstitial sites
in indium whereas gold dissolves largely interstitially.
Thus the additional 5 kcal/mole necessary for the silver
diffusion would represent the energy that is required to
activate silver from a substitutional to an interstitial
site before silver interstitial diffusion could occur. In
contrast, gold being dissolved entirely interstitially
would need only 7 kcal/mole of activation energy for
diffusion, the work required by both the equally sized

gold and silver atoms to jump from one interstitial site
in the indium lattice to another. Hence, on the basis of
this tentative model, gold would dissolve and diffuse
wholly interstitially while the diffusion of silver in
indium would be best described by the dissociative
mechanism proposed by Frank and Turnbull. '~

As a Anal comment, it should be mentioned that
theoretical considerations and diffusion results for other
systems indicate that copper should also dissolve inter-
stitially in indium and that it should diffuse faster than
both gold and silver.
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A theory of the galvanomagnetic properties of magnesium and zinc is developed. It is restricted to mag-
netic fields parallel to the hexad axis and takes into account the effects of magnetic breakdown. The trans-
verse magnetoresistance shows the expected transition from electron-hole compensation at low fields to a
noncompensated state at high fields, i.e., a transition from quadratic behavior to saturation. The Hall re-
sistance shows the corresponding behavior. In addition, all transverse components of both conductivity and
resistivity tensors show strong oscillations of the de Haas —van Alphen type due to coherent effects in the
tunneling probability through small pieces of the Fermi surface. Theoretical curves are shown for various
components of the galvanomagnetic tensors and compared with experimental measurements. Most param-
eters involved in the comparison are provided, or at least checked, by other experiments; only the breakdown
field strength B0is unknown. It is found that a single Bo suftices for Zn, but that for Mg, B'0 varies along the
hexad axis. With this limited degree of adjustability, good agreement may be obtained between theory and
experiment, though minor discrepancies remain unexplained.

I. INTRODUCTION

'HE hexagonal-close-packed (hcp) metals Zn, ' '
Mg,~' and Be 7 show remarkable galvanomag-
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netic properties which depart drastically from those
usually found in metals. As is well known the trans-
verse magnetoresistance commonly exhibits, for single-
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references quoted there.
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crystal specimens and high magnetic 6eMs, two types
of functional dependence on the 6eld strength: either a
saturation at a constant value (p&~ constant) or a
quadratic increase (p, ~H'). These dependences of pr
on H have been interpreted in terms of the topological
properties of the energy surfaces', the interpretation
assumes a semiclassical approach, i.e. the electrons are
considered as "classical" particles which obey a general
dispersion law e(i'r) and Fermi-Dirac statistics. In addi-
tion, the quantization of the magnetic orbits (Landau
levels) is responsible for the appearance in some cases
of rather weak oscillations (de Haas —Schubnikov
effect), periodic in H '.

The divalent hexagonal metals, magnesium and zinc
in particular, exhibit a very diferent behavior as can
be seen from Figs. 1 and 2. The curves for the trans-
verse magnetoresistance for Gelds parallel to the hexad
axis show an initial quadratic increase up to a maximum
value, reached at about 3—4 kG, and then a decrease in
the resistivity by a factor of about 3 down to an ap-
parent saturation at very high magnetic fields. Super-
imposed on this general behavior there are very strong
oscillations, periodic in H, with an amplitude and
period much larger in Zn than in Mg.

Two features of these curves need explanation: (a)
the transition from quadratic character to saturation,
with the appearance of a maximum, and (b) the
unusually large amplitude of the oscillations. Both
effects can be explained in terms of magnetic break-
down, '~'6 i.e. in terms of a model that allows transitions
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FIG. 2. Experimental curves for the transverse magnetoresist-
ance and the Hall resistance in Zn for a magnetic-field direction
parallel to the hexad axis. The curves were taken by R. W. Stark
(Ref. 1) and correspond to T=1.6'K. (a) Transverse resistivity,
(b) Hall resistivity.
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FIG. 1.A typical experimental curve for the transverse magneto-
resistance in Mg for a magnetic Geld direction parallel to the
hexad axis. The curve was taken by R. W. Stark (Res. 5 and 6)
in extremely high-purity Mg and does not include corrections for
possible Hall eBect contributions.
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Eksperim. i Teor. Fiz. 30, 220 (1955); 31, 63 (1956) /English
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(1961).' E. I. Blount, Phys. Rev. 126, 1636 (1962).
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between various pieces of the Fermi surface. The
probability of transition is given by""

P= exp) —Hp/H),
where

H p= Ehsrrsc/s phe;

ep is the Fermi energy, b, is the energy gap separating
the two energy bands from which the two sheets of
Fermi surface originate, and E is a numerical factor of
order 1. Discussing his zinc data, Stark suggested that
the probability of transition between a large portion of
the Fermi surface and a second small portion might be
moduIated by the quantized Landau levels of the small
piece. He also interpreted the complex structure of the
oscillations in terms of the spin splitting of the Landau
levels. He did not however attempt a quantitative de-
velopment of his ideas.
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(1964).
"A.B.Pippard, Proc. Roy. Soc. (London) A287, 165 (1965)."L.M. Falicov and P. R. Sievert, Phys. Rev. Letters 12, 550

(1964); Phys. Rev. 138, A88 (1965).
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Fxo. 3. Schematic
cross section of the
Fermi surface of the
divalent hcp metals
arith a plane normal
to the c axis. The
full triangles corre-
spond to the
"needles" and the
shaded hexagon to
the "monster. "Vari-
ous possible orbits
are indicated.

I'wo possible approaches to a more systematic study
of the phenomenon can be taken. The first, which has
been followed by one of the authors, '4" starts from a
complete quantum-mechanical description of the
system. This description results in a new magnetic level
band structure, "from which new excitations or quasi-
particles with definite quasimomentum and energy can
be defined; they are responsible for all transport proper-
ties of the material at high magnetic fields. This ex-
treme quantum approach presents two difficulties, one
from the conceptual and computational points of view
and a second of experimental nature. The first problem
arises from the fact that the quasiparticles are only
properly defined when the magnetic Aux contained in a
unit cell is a rational fraction of the fiux quantum hc/e,
and only susceptible of a not too cumbersome computa-
tional handling when it is an integral multiple of hc/e. '4

Recent work'~ on nonintegral multiples has shown
clearly that the original estimate'4 of quasiparticle con-
ductivity was greatly in excess of what may be expected
as an average over even quite a narrow range of mag-
netic field strength. The second difficulty originates
from the fact that a very low density of lattice imper-
fections, particularly dislocations, introduces phase in-
coherence, which results in a partial or total randomiza-
tion of the network, '~ thus scattering the quasiparticles
to such an extent that their very existence is threatened.

The second approach, followed by the other two
authors, "starts from a completely semiclassical picture
in which no phase coherence is taken into account; the
electrons are pictured as Fermi-Dirac particles satis-
fying Boltzmann's equation in a random walk through
a network. At each junction in the network the elec-
trons continue in their free-electron (circular) path
with probability I', given by Eq. (1.1) or are Bragg re-
jected to another free-electron orbit with probability

This approach, which is entirely semiclassical, can thus
give no explanation for the oscillations; it is however,
very successful in explaining the over-all behavior of

'~ W. G. Chambers, Phys. Rev. 140, A135 (1965).

the magnetoresistance and Hall resistance curves. It is
worth pointing out that this picture is probably identi-
cal with the quantum-mechanical picture if complete
randomization is included. "

The experiments reported on zinc and magnesium are
evidently in an intermediate range, where randomiza-
tion has taken place in the large orbits of the network
but coherence effects remain for some very small
orbits, those responsible for the observed oscillations.
This intermediate case can be solved by dividing the
network into two parts, a classical part where the
Boltzmann equation is to be solved, and a small "quan-
tum-mechanical" part responsible for the "switching"
probabilities at the various junctions of the classical
network. Within the small part all coherence effects are
taken into account and consequently the probabilities
of transition are modulated with the characteristic fre-
quencies of the small orbits.

Before entering the detailed description of the theory,
it is worth pointing out that the experimental data at
very high magnetic fields show a rather weak dependence
on either the temperature or the purity of the sample,
indicating that the principal scattering mechanism for
the electrons is provided by magnetic breakdown, '6 so
that the mean free path of the quasiparticles is limited
by efI'ects other than temperature and purity. This fact
also justifies our simplification of assuming that for
those parts of the Fermi surface which break down at
high magnetic field, the intrinsic relaxation time (or
mean free path) can be considered infinite.

In the following section we review briefty those
details of the Fermi surface which are of relevance for
our calculation. Section 3 is devoted to a brief review
of theory of the transverse magnetoresistance and the
Hall e6ect for the hexagonal network in the inter-
mediate regime. In Sec. 4 a detailed comparison with
experiment is carried out.

2. THE FERMI SURFACES OF
MAGNESIUM AND ZINC

The Fermi surface of the divalent hcp metals has
been well established both theoretically' ' and experi-
mentally. '~'2 Of the several sheets of the surface, only
two are of interest for our purposes: (i) A multiply con-
nected region in the second band which contains holes
and has been referred to in the literature as the "mon-
ster"; (ii) two singly connected electron surfaces in the
third zone of elongated shape (longest dimension
parallel to the c axis) and referred to as the "needles"
(Zn) or the "cigars" (Mg).

A schematic cross section of these two pieces with a
plane normal to the c axis and passing through the

'sL. M. Falicov, Phil. Trans. Roy. Soc. (London) A255, 55
(1962).

» W. A. Harrison, Phys. Rev. 126, 497 (1962).' M. G. Priestley, Proc. Roy. Soc. (London) A276, 258 (1963)."A. S. Joseph and W. L. Gordon, Phys. Rev. 126, 489 (1962)."D. F. Gibbons and L. M. Falicov, Phil. Mag. 8, 177 (1963).
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TmLE T. Parameters of the Fermi surface of
magnesium and zinc.&

Fermi momentum
Cross-sectional area of the

Brillouin zone
Cross-sectional area of

the free-electron sphere Ao
Cross-sectional area of the

"needles" A go
Height of the "needles"
Cross-sectional area of

horizontal arms of
"monster"

Approximate height of
"monster waist" 2k,

7 =sA r/8 (kp)

0 727b
1 255b

Zll

0.841a
1 815c

1.66b 2 22e

6.49X10-" 4.24X 10-5

X1p-1b

,. 7.32X10 3~
~12 X10 ''

1.2 X10-"

X10 'g ~4 X10

—2.76X10 I b —1.13X10—& f

—1.77X10~ b

Fzc. 4. A sche-
matic representation
of the hexagonal net-
work in which the
triangular orbits
have been reduced
to a three-way
switching junction.

u plane

All parameters in atomic units.
b Reference 18.

Reference 19.
& Reference 20.
e Reference 21.
& Assuming the needles to be ellipsoidal.
& Assuming a circular cross section.
& Assuming the needles to be the intersection of three spheres.

center I' of the Brillouin zone is given in Fig. 3. It is
seen that it the inner boundary (orbit b) of the monster
is neglected, all the other boundaries can be approxi-
mated by a network formed by circles centered at all
the F points and with radii equal to the free-electron
Fermi momentum. More details of the parameters of
the Fermi surfaces of Mg and Zn are given in Table I.

The points in k space where magnetic breakdown
occurs are those where the corners of the triangular
section of the needles meet the corners of the hexagonal
section of the monster. If no breakdown occurs, i.e.
P=O, only the orbits indicated in Fig. 3 by a and c
(in addition to the orbit b of the inner part of the
monster) exist. In the other limit, i.e. for complete
breakdown P=1, only the free electron circle d is
present. As is easily seen, an electron a orbit and a hole
c orbit change as B increases into one larger electron d
orbit, thus destroying the compensation of electrons
and holes which exists when P=O. It is the failure of
compensation which provides the mechanism for the
unusual magnetoresistive properties.

If successive parallel cross sections are taken at dif-
ferent heights k, from I', similar networks are found only
up to a very small value k, ; there the orbit c meets the
orbit b at their points of closest proximity. For 4,)k,
the "waist" (horizontal arms) of the monster has dis-
appeared, giving rise to six oblique disconnected arms,
and although magnetic breakdown between the needles
and the oblique arms still may occur, the character of
the orbits is no longer changed, i.e. sections with
k,)k, do not contribute to variations in the numbers
of electrons and holes. It can be seen from Table I that
the total height of the monster waist is considerably
smaller than the total height of the needles in both Mg

and Zn, so that only a small central section of the
needles has to be taken into account in analyzing the
consequences of magnetic breakdown.

The orbits indicated u in Fig. 3 are the only ones
which seem in practice to be small enough to retain
phase coherence. The cross-sectional areas of these
triangular orbits Az are orders of magnitude smaller
than any of the other areas involved in the problem,
namely the circular or hexagonal orbits (see Table I).
Consequently only the triangular orbits of the needles
are considered in the small or quantum-mechanical
part of the network, and along them phase coherence
will be fully taken into account. The rest of the net-
work, with the needle orbits shrunk to a point, is the
large, semiclassical network used to solve Boltzmann's
equation. A schematic representation of the semi-

classical network is shown in Fig. 4. Each junction is
now a three-way switch and one electron arriving at the
junction with a total probability 1, may leave the junc-
tion through three diferent paths with probabilities A,
8 and C (Fig. 4). It has been proved" that the addition
of amplitudes and phases" in the triangular "leaky"
orbits yields for the probabilities

A=j —8—C,

P2(1+Q3 2Q3/2 co+)
c=BQ,

(2.1)

where P and Q are given by (1.1), (1.2) and (1.3), and

g is, except for a constant, the phase change of electrons
when traveling around the needle orbit once, i.e.

p(k,)=kcA r/eH &0. —(2.2)

Here Ar(k, ) is the area of the orbit in k space and &0 is
a constant phase. Values of Azo, i.e. Az for k,=0 are
given in Table I.

At this point it is worth noticing that randomization
of the phases in this orbit is equivalent to averaging A,
8 and C over all values of P. This averaging yields
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us to concentrate attention on the network, and as a
Grst approximation express the high-Geld conductivity
of the rest of the electrons by a single empirically de-
termined term n/HP.

In Sec. 4, when comparing our theory with experi-
ment, we have only made use of the data obtained by
Stark, ~' which constitute in our opinion the most re-
liable and detailed set of experimental curves, and the
only ones taken with the necessary sensitivity.

Before leaving this section it should be mentioned
that those electronic states in the Zn structure re-
sponsible for the third-band needles have a very strong
spin-orbit interaction. This results in an anomalously
large g factor" which, as we shall see, leads to the
double-peaked line shape of the oscillations in the mag-
netoresistance at large values of the magnetic field.

Fio. 5. The average value of the conductivity (oH), in units of P
as a function of Q.

immediately
2,= 1—J3,—C„
B,=E'L1—Q'j ',

C,=QB„
(23)

which are identical to the semiclassical formulas (3.4)
of Ref. 16.

We can now define clearly the model that we take to
compute the galvanomagnetic effects in Mg and Zn.
We separate the free-electron sphere into a central
section of thickness 2k, and the rest; the central section
is now replaced by a system of semiclassical networks,
as in Fig. 4, while the rest' is treated in the normal way
as if breakdown did not occur. The probabilities at the
junctions, A, B and C, are given by (2.1), (1.1) and
(1.3). It is found to be adequate to assume that Hp is
constant in zinc throughout the slab, but not in mag-
nesium. In (2.2), however, the area Ai varies with
height k„satisfying a relationship of the form

N=x+iy, (3.1)

3. CALCULATION OF THE GALVANOMAGNETIC
TENSORS

The calculation of the conductivity tensor in a semi-
classical network (or in other words the solution of
Boltzmann's equation for a system with magnetic
breakdown) can be performed by two different methods
which yield identical results:

(a) A matrix modification of Chambers' path integral
method. "

(b) The effective-path method, proposed by one of
the authors'4 in another connection and already de-
veloped for the hexagonal network with inGnite relaxa-
tion time. "

In this paper we use mostly the effective path method
and in particular the results quoted in Ref. 15.

The results of Ref. 15 can be summarized as follows.
If we (1) use a complex system of co-ordinates in two
dimensions (see Fig. 4)

BAp
Ar(k, ) =Ar p+ kP

8(k,')

(2) assume that the magnetic field is in the s direction,

(2 4) perpendicular to the I plane and the electric field in the
x direction, i.e.

for k, &k, . Values of the quadratic coefBcients are
given in Table I. It should be emphasized that the
central section constitutes a very small portion of the
Fermi surface (6% in Mg, 3% in Zn) whose contribution
to the conductivity at low. ,magnetic fields is corre-
spondingly small. At high magnetic fields, however, the
central section dominates the conductivity, especially
for the very pure samples of Stark's experiments. ' ' '
The reason for this is that at high Gelds the conduc-
tivity 0.» of electrons executing closed orbits is inversely
proportional to their relaxation time. The electrons on
the network have a very short effective relaxation time
owing to the choice of paths at each junction, and con-
sequently retain a high conductivity while that of the
other electrons falls to a low value. It is this that permits

E=ReE, (3.2)

and (3) define for that case a complex conductivity o.

0 =0 $0@ =0» 102') (3.3)

where
ri= exp( —in/3) = -', —iv3/2, (3.5)

"A. J.Bennett and L. M. Falicov, Phys. Rev. 136, A998 (1964).
'4 A. B.Pippard, Proc. Roy. Soc. (London) A282, 464 (1964).

then the contribution of each inGnitesimal section dk,
to the conductivity is

haec 3-
"*+ +i dk„(3.4)

H n. 1—v3iB(ri+Q)
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~~m 6mec
0'=

H p

v2+ +i%3 dk, +n/H2.
1—v3i~(n+Q)

(3.6)

The only important dependence of the integrand on k,
is through 8, which depends on g and thus on Ar(k, ).2"

Both 8 and Q may vary slowly with k, if H3 depends
on kg.

Two further points are of interest. The 6rst is the
determination of 0., the conductivity averaged over the
phases. A straightforward but tedious integration yields

(3.7)

and wdk, is the number of electrons per unit volume in
the section. '5 The rest of the Fermi surface, i.e. that
part not involved in magnetic breakdown, contributes
to the conductivity in two ways:

(1) By adding to 0.ii a term which arises from all
closed orbits with 6nite relaxation time. For magnetic
fields such that ~.v))2x this contribution is of the form"
u/H2.

(2) By adding to o.» a term which ensures, for Q-+ 1,
complete compensation of electrons and holes, i.e.,
0» —+ 0. This compensation is achieved in (3.4) by re-
placing the term i within the brackets by i3V3/2r.

Finally the total conductivity of the metal is given by

0.6

0.4

FIG. 6. Funda-
mental amplitude
s(Q) of the oscilla- S
tory part of the
conductivity. 0

0.2-

0.5

than 2x, a condition which, as we shall see in the next
section, applies to the experimental situation in Mg but
not in Zn. In the latter case (3.6) must be integrated
numerically, but in the former the integration can be
done by means of vector addition in the amplitude-
phase diagram (Cornu spiral). " If the area A2(k, )
satisfies a quadratic relationship of the form (2.4), and
if the oscillatory contribution to the conductivity of
any section is a simple sinusoidal function of Az; the
total oscillatory conductivity is the same as if only a
central portion were engaged, and all with the same
phase p(0) —42r. The width W of the central portion is
such that p ranges from p(0) at the center to g(0) —432r

at the extremes. From (2.2) and (2.4)

where
~8~ 6nec

dk, (3.8)
in which

W= (2reH/hey)i@

y= BA 2/8 (k,2).

(3.11)

M = (V3/2)i (g+Q)P'Q ' (3.9)

3 (1+Q3)Q—3/2 (3.10)

A plot of the first term in (3.7) as a function of Q is
given in Fig. 5. It is seen that the real part, (0iiH)
takes the value zero at Q=O and Q=1 and reaches a
ms, ximum s,t Q3r 0.30 which corresponds to
H~=: 2.g2H3. The imaginary part (02iH),„onthe other
hand starts from a maximum value v3p at Q=O and
falls off to zero at Q = 1, reaching half its initial value at
Q„='0.33g, H3='. 2.44Hp. These curves are used in the
next section to determine the parameters Ho, a and P
in the actual cases.

The second point of interest is a convenient approxi-
mate way of evaluating the integral over k, for the case
when H«hcAr/22re, so that p is many times greater

"In (3.4), as elsewhere, e and H are to be taken as positive.
The sign convention adopted in (3.3) does not agree with that of
Ref. 15, but is chosen so that a preponderance of electrons, which
is what we have in Zn and Mg, leads to a positive value of 021.

"See for instance, A. 3. Pippard, Rept. Progr. Phys. 23, 175
(1960)."In actual fact n and Ho are also functions of k,.The depend-
ence of g on k, is very weak and can be neglected. The assumption
of an Hoindependent of k, is only a good Grat approximation which
greatly simpliies the calculations; its validity is discussed in
Sec. 4.

Now in fact the oscillatory term in (3.4) is not sinus-
oidal, and each harmonic should be evaluated sepa-
rately. But because of the rather high frequency of the
oscillations in Mg, and the temperature damping of the
higher harmonics, what is observed is so closely sinus-
oidal that there is no need to consider more than the
fundamental oscillation, 60-, and superpose this on the
average conductivity 0. Hence the bracketed function
(3.4) has been Fourier-analyzed for different values of
Q and its fundamental amplitude s, determined, as
shown in Fig. 6. Substituting W for dk, in (3.4) we have

Hho = 33eCWS COSLg(0) —X'2rj. (3.12)

where
g= X/sinhX, (3.13)

X=22r2233*ck2'/(heH),

and m* is the cyclotron mass of the orbit responsible for
the oscillations (cigar or needle).

This expression has been derived without paying
attention to temperature-damping which, just as in the
de Haas —van Alphen effect, is caused by the Fermi tail
exteriding over more than, one quantized level. The
factor t' by which the oscillatory amplitude ho is to be
multiplied is the same as in the de Haas-van Alphen
effect,
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n =0.17X10s(kG)s/0 cm,
P= 0.67X 10' kG/0 cm, (4.2)

which were also determined by comparison with experi-
ment. If (4.1) and (4.2) are inserted in (1.1), (1.3) and
(3.7)—(3.10), the resulting curves for (oB), are those
s own in Fig. 8. The agreement is not perfect, but in
view of the simplifications used in the theory it may be
regarded as rather satisfactory.

The magnitudes of the parameters deserve comment.
First we note that at 6elds less than 1 kG, where break-
down cGccts are very small, zinc should behave as a
compensated metal with zero Hall angle {as observed)
and ptt ——1/O 11=IP/rr, prOVided O1 or)&1. Thua We eXpeCt
the resistivity in the low-6cld quadratic region to be

parameter enters
) check on this parameter is provided by t e

pos&tron of the maxmtum of (ott+)

use of the oscillations, thc accuracy
mination is not as reliable as what is obtained from

Fi .
asIB, . A value of Ps=2.7 kG gives accord' t
ig. 5 and the discussion of Sec. 3, a value H~= 7.6 kG

for the position of the maximum which d~ w lc ls ln vcly good
agreement with Fig. 7(a). The other parameters needed
are

Flo. 7. The components of the product of cond ti
'

gne 'c e strength for Zn. The curves were obtained
y rect inversion of the experimental results of Fig. 2. (a) The

diagonal components (oIIH)~~=(o»ff)«. (b) The o8-diagonal
components (crIgH)»=( —a21B)». The dashed lines

' d'

(f711 ~» and (0.12K), the saturation value
((o Igff)~~) s atld the IIlldpolnt o ((oloLf)~~) s.

4. CONPAMSOÃ WITH EXPERIMENT

A. Zinc
oIn Flg. 2 we have shown the transverse magneto-

resistivity pqq and the HaB resistivity p~2 in a Zn sample
as determined by Stark. ' Since the calculations are per-
formed ln terms of tbc conductlvltlcs rather than thc
resistivities, we show in Fig. 7 the OH tensor obtained

y inverting Fig. 2. The detailed comparison of these
curves with the theoretical estimates is done in two
steps; by averaging over the oscillations 6rst and de-
termining the parameters He, rr and p, and the
c uding the oscillations in the second step.

o.v-

0.0

O.h

0.3

),o

o.a-

0.5-

O.h-

(o;H)

(s) Nortosesllatory Behassor and Determsmatsol

of the Parameters

In Fig. 7(b) we have plotted, superimposed on rrsIB,
the average value (osIH), obtained numerically from
the experimental data. The curve tends to a saturation
value of 1.10&&10' (0 cm) '. It reaches its half value at
a value of Hq=6. 5 kG. Comparison with th th

'
l

curve (Fig. 3) yields a value

(4 1)

O.Q-

kQ

FIG. 8. The theoretical estimates for the average ~ojj for Z
(a) The diagonal components (ouff), =(
the contribution of the cylindrical slab hi h d
breakdown, 8 is the contribution of the rest of the Fermi su

'n+ av= ~'(oII )~~= (os'),„Experime—ntal aver.age values taken from
Pig. 7, are shown for comparison.

s
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6.0XR H' 0 cm if H is in kilogauss. Unfortunately
the available data are only adequate to show that this
estimate is not grossly in error. As for the magnitude
of n, the following argument shows that it is not un-
reasonable. If zinc were a quasi —free-electron metal,
with all electrons executing circular free-electron orbits
in a magnetic field, the zero-field conductivity ro could
be written as ne'r/m* and the cyclotron frequency co, as
eH/m*c, so that

(~c&)free &OH/Bec,

with a value of 4.0 H for the specimen considered. This
does not agree with the estimated mean value of or,v.

for the electrons and holes in zinc, which is (o.s/n)'I'El,
i.e. 22H, but the discrepancy is of the expected order of
magnitude. In the first place, the Brillouin zones lead
to a reorganization of many of the free-electron orbits
into smaller orbits, so that the average effective ~, is
much larger (probably by a factor approaching 3) than
the free electron ~,. Secondly the Fermi-surface area is
not in reality as large as the free-electron surface, and
the conductivity at) is achieved by means of a value of
r correspondingly greater than the free-electron esti-
mate. According to Fawcett" the real area is only 0.41
of the free-electron area, so that our estimate of co,v

should be increased by a further factor 2.4. These two
factors together could conceivably raise the original
estimate from 4.0 H to 30 H, and there is a third effect
which could raise it still further, the fact that the real
orbits are not circular. This is probably not a very im-
portant effect, and is hard to estimate, but it is clear
that there is no lack of scope to explain the observed
effective co,v.

The value of P is fixed by the unbalance of electrons
and holes when breakdown is complete, and from the
empirical value the total height of the breakdown zone
is determined, using (3.8), as 3.6X10 ' atomic units
(a.u.).This may be compared with the diameter of the
waists of the monster, if these are assumed perfectly
circular, of 3.9)&10 ' a.u. The close agreement between
these figures leaves little doubt of the correctness of
our assumption that, as far as transport is concerned,
it is the waists that determine the thickness of the slab
in which breakdown is influential.

Finally, the breakdown field, 2.7 kG, needs discus-
sion, since it is markedly different from the value of 6
kG estimated'4 from the amplitude of the de Haas —van
Alphen eGect. In fact this earlier estimate need not be
taken seriously, since there is considerable latitude in
the choice of Ho if it is only the field-variation of ampli-
tude that must be accounted for. According to the
conventional theory, as used by Dhillon and Shoen-
berg, "if m is the amplitude of de Haas —van Alphen oscil-
lations mH3/'sinhX should give a linear graph when

'8 E. Fawcett, J. Phys. Chem. Solids 18, 320 (1961).
ss J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc.

(London) A248, 1 (1955).
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FIG. 9. The magnetic 6eld dependence of the amplitude m of
the de Haas —van Alphen e6ect in Zn (Ref. 29). In the absence of
magnetic breakdown the curve should be a straight line. The ex-
perimental curve is corrected for breakdown, with a parameter
IIp ——2,7 ko.

plotted logarithmically against H ', this is well verified
in bismuth, but not in zinc, as Fig. 9 shows. However,
as shown in Refs. 14 and 30, the amplitude is reduced
as a result of breakdown by a factor Q'~s, so that the
ordinates in Fig. 9 should be divided by Q'" to allow
for this. "When this is done, with 80=2.7 kG, a very
nearly linear plot is obtained. The departures at the
highest fields need not cause much concern, since they
might well be due to the needle not being ellipsoidal, as
assumed in the theory of the amplitude, and departure
from the ellipsoid will only appear in the amplitude of
the last one or two oscillations. So we need not worry
that Ho ——6 kG gives an even better fit—with 2.7 kG
the last oscillation has a correction factor of 13 and
still falls off the straight line by only 25%%uo, which is not
unsatisfactory.

(ii) Oscillatioes

The breakdown zone in zinc is so narrow that unless
the field strength is less than 1.4 kG the phase p varies
over the zone by less than 2x. Under these conditions
the integral (3.6) must be computed numerically. This
was done by dividing the complete interval 0&&,pP,
into 20 equally spaced segments in which the area of
the needles varies between 4.26)& 10. ' a.u. and

r-

llo L.M. Falicov and H. Stachowiak, Phys. Rev. 147, 505 (j.966).» Note that in this case the height of the breakdown zone is ir-
relevant; gb reduce the;.amplitude of de Haas —van Alphen oscilla-
tions it is only necessary .that the small orbit be coupled to other
orbits —their character. does not enter.
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FIG. 10.The theoretical curves for o-II in Zn corresponding to only
onephase+0= —3.84. (a) ~11H=o22H; (b) ~12H= —~21H.

3.55)(10 ' a.u. The best 6t to the over-all curves was
obtained for a value of Pp

———3.84. The resulting curves
for 0-B and p are shown in Figs. 10 and 11.Comparison
of these with Figs. 7 and 2 shows that although the
over-all agreement is fair, the amplitude of the oscilla-
tion is larger in the theoretical curves than in the experi-
mental ones. In addition the double-peak structure of
the oscillations in 02~ cannot be reproduced by the
theory as presented so far.

This structure was observed by Stark' and inter-
preted as evidence for a large effective g factor for the
spins. Since then it has been studied in ultrasonic
attenuation, "and a theoretical discussion by Bennett
and Falicov" indicates that a value for g around 90 is
quite plausible. Such a high value is necessary to split
the Landau levels for the needles by anything com-
parable to their spacing, since the effective mass on
these orbits is only 1/133 times the free electron mass.
To incorporate spin-splitting into the theory aIl that is
necessary is to assign half the amplitude of 0B to each
of two sets of oscillations characterized by different
phase constants Itp. Stark's suggestion that g 90 cor-
responds to the two Pp's differing by Dgp=pm. , but this
assignment need not be regarded as more than a rough
estimate.

It is, of course, futile to expect spin-splitting to yield
double-peaked behavior if the oscillations are strictly
sinusoidal; all it can do is reduce the oscillatory ampli-
tude by cos'(Dpp/2). However, if the field is not too
large relative to Bo, the oscillations of Bo are not sinus-
oidal, and the desired character can be produced.
Examples of this are given in Fig. 12 from which it is
clear that so long as Q is greater than about 0.4 a
double-peaked oscillation can be constructed without
too much loss in amplitude. At the lower 6elds, indeed,
the theoretical spikiness is much stronger than what is
observed, as also is the absolute amplitude of the oscil-
lations. Even with the very small effective mass, how-

ever, the sharp peaks are suKciently smoothed out by
the temperature at fields of 2.3 kG for this not to present
a serious problem. What is hard to understand is the
persistence of the double-peaked character up to 15 kG,
where Q=0.16 if Hp 2.7 kG and both O——II and opI
oscillate almost strictly sinusoidally. It would be hard

Q 0.36 Q'0.49 Q.O.8I

5-

IO 20
0 n 2n. 0 n 2n 0 . n

FIG. 11.The theoretical curves for the magnetoresistivity in Zn
for one phase &0= —3.84, obtained by inverting the conductivity
tensor of Fig. 10. (a) pii=p22, (b) p12= —p2i

FIG. 12. The line shape of the oscillatory part of o.»H for various
values of Q and the phase diGerence A&0.

"A. Myers and J. R. Bosnell, Phys. Letters 11, 9 (1965).
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rather wide range of Ho operative. Now the oscillations
are dominated by a thin zone around the plane of ex-
tremal cross section of the cigars, presumably the central
section, and we shall assume Ho to be constant within
this zone, using (3.11) and (3.12) to determine its value.
We shall then attempt to find a plausible variation of
Bo with k, that will account for the nonoscillatory part
of 0.

The cyclotron mass of the cigar orbit is not so small
as to allow temperature damping to be neglected, and
the field variation of the oscillatory amplitude is not a
very good starting point for the analysis. The "phase
angle" of the oscillations, however, Aorr/adopt should
not be altered by temperature effects, and we shall
attempt to 6nd Hoo, the breakdown parameter at the
center of the cigar, from the 6eld variation of this ratio.
In Fig. 18 the experimental curve is shown, together
with a theoretical curve derived from Fig. 6, H00 being
chosen as 5.3 kG. Agreement is only fair, but it must be
remembered that, especially at the lower 6eld strengths,
it is hard to measure amplitudes exactly. Since the am-
plitudes are larger at the higher fields we have chosen
H00 to fit theory and experiment here.

Having chosen Hpp we now use (3.12) to compute the
expected 6eld variation of hfT. Compounding the theo-
retical oscillation amplitude with the actually observed
mean conductivity 0, and inverting, we derive the ex-
pected oscillatory amplitude of p at O'K. The field
variation of hp» (theoretical) is shown in Fig. 19 to-
gether with the observed amplitude. If the major part
of the difference is to be attributed to the temperature
(1.2'K), it is necessary to choose X to be about
15T/H 'K/kG, corresponding to a cyclotron mass of
the cigar orbit of 0.10 times the free-electron mass. This
estimate agrees well with an estimate of 0.09 from tem-
perature-variation of oscillatory amplitudes. "It is clear
from Fig. 19 that over-all agreement is far from perfect,
but without more experimental data it is unwise to
speculate on the reason; one may rest reasonably satis-
fied that the interpretation is basically satisfactory.

The absolute magnitude of the oscillations deserves
comment. It will be seen from Fig. 18 that the choice

8
E 4

0'
p

2-
2K

'b lb
kG

25

Fxo. 19. Experimental and theoretical variations of Ap11 with H.

6=hp(1+uk, '),

and therefore, from (1.2),

Hp ——Hpp(1+akP)'.

(4.6)

(4 7)

We rule out negative values of u on the grounds that
these would lead to a considerable width in the break-
down zone in which Ho was so small that breakdown
was complete even in weak fields. There is no evidence
for such behavior in (oprH)», which would under these

of parameters has ensured rather close agreement
between theory and experiment for ho»/Ao» at 17.5
kG, and from Fig. 19 that this is also a good field
strength at which to fit hp~~. To achieve this fit invo1ves
choosing the constant relating s to Hho, and hence
from (3.12) the width W of the central zone. From
(3.11) y is then determined as 0.22, which may be com-
pared with the free-electron value of 0.254 given in
Table I. In view of the imperfect over-all fit this may
be regarded as remarkable agreement; certainly the dis-
crepancy does not deserve deep scrutiny.

We are now in a position to discuss the nonoscillatory
variation of 0.. If it is assumed that Ho at the center of
the cigars is 5.3 kG, it is clearly necessary, if Fig. 15 is
to be explained, for Ho to take larger values elsewhere .

in the breakdown zone. The next simplest assumption
to taking Ho as constant is to assume that the energy
gap varies quadratically with k,.

&~ii

doai
p»

thcorctlcol

20 Ip 25

FIG. 18.Experimental and theoretical variations
of the ratio do 11/b,o21 with H.

Ib
kG

25

PP R. W. Stark (private communication).
I'xe. 20.Theoretical curves for the oBtensor in Mg for quadratic

variation of Hp(it~). (a) orrH=omPi (b) os= —os&
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From this equation it can be seen that:

(a) If tlm metal is compensated, 1.e. tL, =Bg, the Hall
1cslstivlty ls given by

p
Im —=—(x,—xg)

po-

and its sign is determined by whichever carrier has the
1Mger ~&~. Presumably in magnesium it is the holes
which dominate, probably through the inhuence of the
rather high cyclotron frequencies of the second-zone
hole "monster. "

(b) If we assume that the main effect of magnetic
breakdown consists of a change of character of some
orbits from hole-like to electron-like, 1.e. I, and e& are
functions of the magnetic 6eld, the Hall CBect will

chaQgc sigQ when

e,/Ng ——(xyp/x, 2) (1+x,')/(1+x''). (4.12)

This equation is satisfied by a value of the magnetic
6eld H, which is a function of the cyclotron masses and
relaxation times. It is easy to see that H, increases as r
decreases, i.c. the crossover point in thc HaB resistance
is shifted upwards as the sample becomes "dirtier. "

The model given above cannot of course be applied
exactly to Mg, since at intermediate 6elds the CBect of
open orbits is of great importance, but the qualitative
features arc expected to remMn. In order to prove this
point we have calculated the magnetoresistance and
Hall resistance of a cylindrical slab of hexagonal metal
(Fig. 3) in which (1) the side of the triangular needle
and the side of the hexagonal monster are equal, and
equal to ~'~ of the free-electron orbit; (2) the metal is
compensated in the absence of magnetic breakdown,
the compensating carriers being of the free electron
type, electron-like character; (3) all phase coherence
effects are completely neglected, only semiclassical
effects being considered; (4) the relaxation time is finite
and is the same for the various pieces of Fermi surface.

In this case we have used thc matrix method of solv-

ing Soltzmann's equation'6 and the results are shown in

Fig. 21. The hole-like HaB effect region is apparent and
it is seen that it disappears as v —+~. It should be noted
in passing -that the 6nite size of the needles makes the
over-all shape of the Hall-resistance curve resemble

much more the experimental curve of Fig. 14(b).
The relaxation-time effect explains also why a hole-

like region in the Hall CBect was not detected experi-

mentally by Stark' in Zn) while earlier experiments with
dirtier samples'4 exhibited such a region for 6elds up to
5.5 ko. The second comment worth making is that the
limiting value of (o~qH), at high Gelds determines the
width of the breakdown zone. According to the model

used, (o~~H) should saturate at 3.48X 10' kG/0 cm,
corresponding to an excess of 2.18X10"electrons/cm',
and a breakdown zone of width 0.157 a.u. On the as-

suIDptlon that as in ZQ it is thc thinnest pol tion of thc
horizontal arms of the monster that demarcate the
breakdown zone, we conclude that these arms must be
noncircular; if they are elliptical they must have a
height 2.6 times their width for their area to be con-

sistent with the breakdown zone width. There is no
obvious reason for doubting this result.
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