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Band-structure calculations for hexagonal close-packed rhenium have been performed using the relativistic
augmented-plane-wave (APW) method. From these energy-band results, a theoretical model for the rhenium
Fermi surface has been determined. This Fermi surface is found to consist of five sheets, including closed-hole
sections in the fifth, sixth, and seventh zones, an open eighth-zone electron sheet, and a closed ninth-zone
electron piece. The detailed size, shape, and general topology of this Fermi surface appear to be in reasonable
quantitative agreement with de Haas —van Alphen, magnetoacoustic, and magnetoresistance data. Spin-
orbit coupling is found to play an essential role in determining the Fermi-surface topology in rhenium, since
it is responsible for changing the connectivity of several sheets of the Fermi surface. The density of states
exhibits some interesting structure, most of which lies below the rhenium Fermi level. Assuming a rigid-band
model for the density of states, the specific-heat data for hexagonal W-Re and Re-Os disordered alloys are
found to be in good agreement with the calculated density-of-states when the experimental results are cor-
rected for phonon-enhancement eBects, as calculated by McMillan.

I. INTRODUCTIOÃ

'HE simplest approach to the theory of elec-
trons in metals involves the one-electron or

independent-particle model. It is now generally believed
that this model is valid for transition as well as simple
metals. Now that detailed experimental Fermi-surface
information is becoming available for transition metals,
it is important to determine whether or not these ex-
perimental results are consistent with the predictions of
this model. Of all the transition metals, the experimental
Fermi-surface data for bcc tungsten appears to be the
most complete at the present time. In this case, it has
been possible to obtain quantitative agreement between
band theory and experiment regarding the size, shape,
and topology of the tungsten Fermi surface. ' ' Exten-
sive experimental Fermi-surface information is also be-
coming available for hexagonal close-packed rhenium,
which is situated next to tungsten in the Periodic
Table. The purpose of the present paper is twofold:
(1) to present a theoretical model for the rhenium
Fermi surface that has been derived from relativistic
band-structure calculations; and (2) to compare this
theoretical Fermi surface with the available experimen-
tal results.

The most precise experimental information about the
rhenium Fermi surface has been provided by Joseph
and Thorsen' from an analysis of their low-field de
Haas-van Alphen (dHvA) data They G.nd that two
small closed Fermi-surface segments, located along the
Al. symmetry line of the hexagonal Brillouin zone, can
account for most of their data. These segments consist
of an ellipsoid nested within a dumbbell-shaped piece,
such that the two sheets contact along the Al. line,
thereby leading to magnetic-breakdown phenomena.
The magnetoacoustic data of Jones and Rayne' yield

' L. F. Mattheiss, Phys. Rev. 139, A1893 (1965).'T. L. Loucks, Phys. Rev. Letters 14, 693 (1965); Phys. Rev.
139, A1181 (1965); 143, 506 (1966).

'A. S. Joseph and A. C. Thorsen, Phys. Rev. 133, A1546
(1964).' C. K. Jones and J. A. Rayne, Phys. Rev. 139, A1876 (1965).
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caliper dimensions for some of the smaller as well as the
larger sections of the rhenium Fermi surface. These re-
sults are supplemented by the more extensive magneto-
acoustic data of Testardi, ' which yield caliper dimen-
sions which range in size from those of the ellipsoid and
dumbbell to dimensions which are several times larger.
The extremal areas of these larger pieces have been ob-
served also in the pulsed-6eld dlvA data of Thorsen
and Joseph. s Finally, the high-Geld magnetoresistance
measurements by Reed, Fawcett, and Sodenv indicate
that the rhenium Fermi surface supports open orbits
along the $0001$ and (1010) directions, the latter re-
sulting from magnetic breakdown. In addition, they
find two-dimensional regions of aperiodic open orbits
when the magnetic Geld is near the (1120) axes.

In order to provide a theoretical model for the rhenium
Fermi surface, the rhenium band structure has been
calculated using the augmented-plane-wave (APW)
method. Although the initial calculations were nonrela-
tivistic, it soon became apparent from the nature of the
results that relativistic sects (especially spin-orbit
coupling) would play an important role in determining
the Fermi-surface topology. Consequently, the calcula-
tions were repeated using a relativistic variation of the
APW method that has been proposed by Loucks. '

It is possible to rewrite Loucks' expressions for the
relativistic AP% matrix elements so that the relation-
ship between the relativistic and nonrelativistic APW
methods is more transparent. These results are included
in the following section. Section III contains the details
of the calculation, including a discussion of the potential,
lattice constants, and computational techniques. The
results of the calculation are presented in Sec. IV, in-
cluding the energy bands, a density of states, and the
Fermi surface for rhenium. These results are compared

'L. R. Testardi (to be published).
s A. C. Thorsen, A. S. Joseph, and L. E. Valby, Phys. Rev. (to

be published).
7 W. A. Reed, E. Fawcett, and R. R. Soden, Phys. Rev. 139,

A1557 (1965).' T. L. Loucks, Phys. Rev. 139, A1333 (1965).
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with experiment in Sec. V. The Gnal section contains a
discussion of the results.

II. METHOD OF CALCULATION

Using a variational procedure, Loucks has derived a
relativistic variation of the APW method which is
useful for calculating the band structures of heavier
elements and compounds. ' Loucks' work represents a
natural extension of the nonrelativistic APW method
that was proposed by Slater in 1937.' In both cases, the
crystal potential is approximated by a "muon-tin"
potential. This "muffin-tin" potential consists of spheres
surrounding each atomic site within which the potential
is assumed to be spherically symmetric and regions be-
tween the spheres where the potential is assumed to be
constant. The solution to the Schrodinger equation (or
its relativistic equivalent) isrepresented by a linear com-
bination of APW basis functions, the coeKcients and
eigenvalues being determined from the appropriate
secular equations. In both the relativistic and nonrela-
tivistic methods, these basis functions are composite in
nature, consisting of central-Geld expansions inside the
spheres and a plane wave in the region between the
spheres. In the relativistic APW method, the solutions
inside the spheres are expanded in terms of four-
component central-field orbitals of the Dirac Hamil-
tonian. In the region between the spheres, the wave
function is a Dirac plane wave. The coeKcients for the
upper two components of the central-Geld orbitals are
determined by the condition that they match the upper
two components of the Dirac plane wave at the sphere
radii.

Using Green's theorem, an expression equivalent to
that derived by Loucks for the relativistic APW
matrix elements has been obtained. In this revised form,
the relativistic AP W matrix element between basis
functions with wave vectors k;, k; and spins p, v is
given by

(a—E) "=(k; l —E)S S"

+g—1+ ci(ti ti) rnF .—.pv (1)

where

ji(l»—k'IR. )
„F"&=vm 4„R' —(k;k;—E) b„„

Ik;—k;I

+& D.'""ji(lk'IR )ji(lkilR. )& (R. E) (2)

and

g„(R„,E)=cf„(R„,E)/g„(R„,E) I-(~+1)/R„]. (3)—
In Eqs. (1)—(3), which are written in atomic units, r„ is
a vector from an arbitrary origin to the nth atom in the
unit cell, whose sphere radius is R„.The unit cell volume
is 0, and j&(x) are spherical Bessel functions. The quanti-

J. C. Slater, Phys. Rev. 51, 846 (1937).

ties D„;;&"and cf,(R„,E)/g„(R„,E) have been de6ned by
Loucks. ' The latter quantity represents the velocity of
light times the ratio of the large to the small components
of the Dirac central-Geld orbitals, evaluated at the
sphere radius R„ for energy E. The indices on (H—E)
and D„have been transposed in Eqs. (1) and (2) so
that (H E);;—&v and D„,;;&v are equivalent to

kill kipi

in Loucks' notation. Also, the present equations de-
scribe the general situation where the crystal structure
contains an arbitrary number of atoms per unit cell
at vector positions r„.

For purposes of comparison, it is useful to write down
the corresponding expressions for the nonrelativistic
APW method':

(H—E)g=(k; k;—E)8@+0 'Q e''"v "i& "F—„'i, (4)

where

ji(Ik;—kIR )
F";;=4xR„' —(k; k;—E)

Ik;—k;I

+~(2i+1)F&(k"»') ji(lk'IR )j~(lk IR )
l=o

Xg.i'(R„,E)/N„, (R„,E) . (5)

In Eq. (5), k; signiies a unit vector and the quantities
I i'(R,E)/e i(R„,E) represent the logarithmic deriva-
tives of the (el) solution to the radial Schrodinger equa-
tion for energy E, again evaluated at the sphere radius
R . The relationship between the relativistic and non-
relativistic APW methods becomes more transparent
when the detailed expressions for F„„;++and F„,;;+
are examined:

j,(Ik;—k, IR„)
F "+-=4vrR„' —(k; k;—E)

Ik;—k;I

+2 ~i(k' »)ji(lk IR.)ji(l»IR.)

XL4i-(R.vE)+(i+1)e+(R-vE)]

+i(»x&;).2 &i'(k; »)ji(lk;IR.)
5=0

x j&(Ik;IR )Lg&+(R",E)—p& (R„,E)]; (6)

Fn, 'g+ =4~R-'{(kixk')„+i(kiXI'i) ~)

x{z Fi (k; »)ji(lk;IR.)ji(lk;IR.)
l-0

xLgi+(R.,E)—gi (R.,E)]). (&)
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and (7) was motivated by a desire to understand the
relationship between these two approaches,

S'

Frc. i. The Brillouin zone for the hexagonal structure with
symmetry Points and lines labeled according to the standard
notation.

In Eqs. (6) and (7), sit+(R„,E) correspond to states with

j=l~—„and the primes indicate differentiation with re-
spect to the argument. As Loucks has pointed out,

cf,(R„,E) try+1 re„g'(R„,E)
hm

" "' —
~

=-" "' . (8)
g, (R„,E) k R„No)(R~,E)

Therefore, in the nonrelativistic limit,

r„=stt+sts+4ts. (12)

Using the primitive lattice vectors of Eq. (11), the wave
vectors K„have the form K =ntbr+sssbs+sssbs, where
the n; are integers and

III. DETAILS OF THE CALCULATION

For the hexagonal close-packed structure, energy-
band calculations are simpli6ed when the origin of the
unit cell is chosen to be at the center of inversion rather
than at an atomic site. With this choice, the structure
factors are real and Eq. (1) can be written

(8—E) "=(k; k —E)5 „3;

+20 ' cos(k,—k;) rJi,"&". (10)

Here, r is a vector from the inversion center to one of
the six pairs of neighboring atoms. The index e has been
dropped from F;,&" in Eq. (10) since the atoms within
the spheres at +r„are identical in the hexagonal close-
packed structure. If the primitive lattice vectors are
written

tr ——(a/2) (v3i+j), t, =aj, t,=ck,

then one choice for r„ is given by

gg+(R„,E)= g) (R„,E)=N„t'(R„,E)/N„i(R„,E), bt ——(4sr/V3a)i; . bs= (2sr/V3a)(i+v3j);

be= (2sr/c)k.

(13)

Ii„g+ =0.
The above expressions for E,;;++and F„,;;+—have been
used in the present calculations.

These expressions for F„,,;++ and P„,;;+—are useful
from another point of view. Namely, in these equations,
the various relativistic effects are distinguished clearly.
The Darwin and mass-velocity effects are included in the
relativistic equivalent to (2l+1)g„r'(R„,E)/u„g(R„,E),
which is Dr)~ (R„,E)+(i+1)ri~+(R„,E)j. As a result, it
is possible to include the Darwin and mass-velocity
corrections in a nonrelativistic calculation simply by re-
placing (21+1)u„g'(R,E)/I ~(R,E) with pirl~ (R„,E)
+(1+1)r)g+(R„,E)j, provided one is willing to neglect
the spin-orbit terms. Since the Darwin and mass-
velocity corrections are expected in many cases to be
much larger than the spin-orbit corrections, "this allows
one to obtain rather simply a good erst approximation to
the relativistic band structure of a metal or compound.
When necessary, spin-orbit sects can be estimated by
means of perturbation theory.

Expressions similar to Eqs. (6) and (7) have been de-
rived previously by Dimmock, "who introduced rela-
tivistic eBects using the Pauli rather than the Dj.rac
theory. As a matter of fact, the derivation of Eqs. (6)

"F.Herman, C. D. Kuglin, K. F. Cu8, and R. L. Kortum,
Phys. Rev. Letters ll, 541 (1963)."J.O. Dimmock (private communication).

The Srillouin zone for the hexagonal structure is shown
in Fig. 1.The various symmetry points and lines in 1/24
the Brillouin zone are labeled in accordance with the
notation of Herring. '~

Using the room-temperature lattice constants and
the linear expansion coeQicients for rhenium that are
tabulated in Pearson, " the lattice constants at 4.2'K
have been estimated. The following values have been
used in the present calculations:

a= 2.758 A =5.211 atomic units(a. u.)
c=4.447 A=8.404 a.u.

Since the c/a ratio (1.613) is less than the ideal dose-
packed ratio (1.633), the maximum sphere radius R„ is
2.584 a.u. rather than a/2.

Essentially, two separate relativistic energy-band
calculations have been carried through for rhenium. In
the first calculation, spin-orbit coupling has been
omitted, though the Darwin and mass-velocity correc-
tions have been included by replacing

(2l+1)se„((R„,E)/N„s(R„,E)
with.

D&, (R.,E)+g-+1)»+(R„,E)j,
"C.Herring, J. Franklin Inst. 233, 525 (1942)."W. B.Pearson, A Handbook of Lattice Spucings and Structures

of Metals and Alloys (Pergamon Press, Inc, , New York, 1958).
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as discussed in the previous section. In this approxima-
tion, the symmetry of the energy-band states can be
represented in terms of the single-group notation of
Herring. "The symmetrized version of the APW pro-
gram that has been used in this calculation is similar to
that described by Wood for the fcc and bcc cubic
structures. '4 The fact that the space group for the
hexagonal close-packed structure is nonsymmorphic
introduces only minor complications. By choosing the
origin of coordinates at the center of inversion, the APW
matrix can be made real at all points in the Brillouin
zone. However, for states wi'th reduced wave vectors
lying in the ALII plane, it was necessary generally to
utilize only a subgroup of the wave-vector group to ob-
tain a real matrix.

When spin-orbit coupling is included in the calcula-
tions, it is clear from Eqs. (6) and (7) that the APW
matrix is inherently complex. Furthermore, the size of
the matrix is doubled for a given set of nonrelativistic
APW basis functions. For convenience, the fully rela-
tivistic calculations have been carried out using Un-

symmetrized basis functions. Consequently, it has not
been possible to label the symmetry properties of the
individual states. Such a limitation would be rather
serious in a nonrelativistic calculation, where the energy
bands with diferent symmetries frequently cross along
symmetry lines and in symmetry planes, leading to
accidental degeneracies. However, as Elliott has shown,
the double group for the hexagonal close-packed struc-
ture contains relatively few "extra" representations
along symmetry directions. " This result reduces the
possibility of accidental degeneracies caused by crossing
bands in symmetry directions and determines the con-
nectivity of the bands in most cases, According to
Elliott, there is only one "extra" representation in the
'Z, T, T', and E. directions of the Brillouin zone, so that
band crossings are forbidden in these directions. Acci-
dental degeneracies caused by crossing bands are possi-
ble in the 6, I', S, and S' directions, however.

A similar simplihcation occurs in the symmetry
planes of the hexagonal close-packed Brillouin zone
when spin-orbit coupling is introduced. Falicov and
Cohen have analyzed the situation in the ALII plane. "
According to their results, band crossing are possible
anywhere in the ALB plane, except along the E. direc-
tion. A similar analysis for the other symmetry planes
of the Brillouin zone shows that band crossings do not
occur. Spin-orbit coupling removes the accideotal
degeneracies which exist between the nonrelativistic
states that are even. and odd under refIection in these
symmetry planes.

The increased size and complex nature of the rela-
tivistic APW matrix require efFicient computer pro-
grams, even on a high-speed computer like the IBM
7094. Most of the calculation time is spent eva1uating the

"J.H. Wood, Phys. Rev. 126, 517 (1962).
'~ R. J. Elliott, Phys. Rev. 96, 280 (1954)."L.M. Falicov and M. H. Cohen, Phys. Rev. 130, 92 (1963).

determinant of (H—E) as a function of energy to deter-
mine the roots or eigenvalues at a given point in the
Brillouin zone. A convenient technique for evaluating
the determinant of this complex matrix has been
suggested by Soven. '~ The present calculations have
included about (40)&&(2)=80 basis functions, except
in the vicinity of the Fermi energy, where this number
has been increased to about 100 or 120. In calculating
the matrix elements, a total of seven terms were in-
cluded in the sum over /. At a given point in the Brillouin
zone, the calculations have been carried out on a uni-
form energy mesh, with an energy interval DE=0.02
Ry. Slightly less than 3 min of computer time was re-
quired to set up and evaluate the determinant of an
80)&80 matrix for a total of 60 energies. In order to
determine the spin-orbit splittings accurately, it was
often necessary to carry out the calculations on a Gner
energy mesh.

The calculations have been carried out on a discrete
mesh within the Grst Brillouin zone, the mesh interval
hk; being given by

d kt ———,', bt, hks ——tss bs, hks ——s bs.

This corresponds to 1152 points in the first Brillouin
zone an.d involves 95 calculations in 1/24 the zone. Of
these, six are at the symmetry points, 27 are along
symmetry lines, 41 lie in symmetry planes, and 21 are at
general points in the zone.

The calculations have been carried out using a
"muKn-tin" potential that has been provided by J. T.
Waber. This potential has been derived from self-
consistent Dirac-Hartree-Fock-Slater atomic calcula-
tions using an assumed atomic configuration of (5d) s(6s) '
for rhenium. "The "mufFin-tin" potential has been cal-
culated by spherically averaging the superposed atomic
potentials, using the same techniques that have been
described previously in an energy-band study of the 3d
transition series. "

IV. RESULTS

A. Energy Bands

The relativistic energy bands for rhenium are plotted
along the symmetry directions of the hexagonal Brillouin
zone in Figs. 2 and 3. In both 6gures, the zero of energy
coincides with the constant potential between the APW
spheres. The results shown in Fig. 2 include the Darwin
and mass-velocity corrections, but not spin-orbit cou-
pling. The symmetry characteristics of the various
states are identified using the single-group notation of
Herring. "The corresponding results for the complete
relativistic calculations are shown in Fig. 3. The latter
results have been obtained from calculations involving
unsymmetrized basis functions. As mentioned in the

» P. Soven, Phys. Rev. 137, A1706 (1965).
"-D, Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.

137, A27 (1965)."L.P. Mattheiss, Phys. Rev. 134, A970 (1964).
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Fro. 2. The relativistic energy bands for rhenium, plotted along symmetry directions of the
Brillouin zone, with spin-orbit coupling neglected.

previous section, the proper connectivity of the bands
in most symmetry directions is assured by the fact
that there exists only one "extra" representation for the
double group. Since band crossings are possible in the 6,
I', 5, and S' directions, the connectivity of the bands in
these directions in Fig. 3 is somewhat uncertain. How-
ever, by performing calculations at closely spaced in-
tervals along these directions, it has been possible to
determine the proper connectivity, especially near the
Fermi energy, which is indicated by the dashed horizon-
tal line in Fig. 3.

The results shown in Figs. 2 and 3 include all of the
rhenium Sd bands as well as the lower portions of the
6s and 6P bands. ln both 6gures, the Sd bands extend
roughly from 0.35 to about j..15 Ry, yielding a Sd
bandwidth of something like 0.80 Ry. Although the
wave functions which correspond to the results of Figs.
2 and 3 have not been calculated, certain aspects of
these results are clear. The lowest Fi+ state in Fig. 2
represents the bottom of the 6s conduction band. The
next state at F has F4- symmetry. This state presumably
represents a combination of antibonding 6s-type orbitals
plus Sd-type states. The remaining states at I' are un-

doubtedly rather pure Sd-type states, with the exception
ot Fe+, which is 6p-like.

Detailed expressions for the tight-binding wave func-
tions which exhibit the proper symmetry characteristics
for the hexagonal single-group have been tabulated by
Altmann and Bradley. "These results are summarized
in Table I, where the angular momentum content of the
various representations is indicated. Since the hexagonal
close-packed structure contains two atoms per unit cell,
there are ten rather than the usual 6ve d bands. This is
consistent with the results of Table I. By comparing the
results of Table I with those of Fig. 2, it is clear that the
proper number of states having the proper symmetry
exists within the energy range of the rhenium Sd
bands.

The e8ects of spin-orbit coupling on the rhenium band
structure are quite obvious from a comparison of the re-
sults shown in Figs. 2 and 3. Except along the Al. line,
spin-orbit coupling reduces all fourfold degeneracies to
pairs of doubly degenerate states. The magnitude of the
splittings depends on the position of the wave vector in

~' S. L. Altmann and C. J. Bradley, Rev. Mod. Phys. 37, 33
(1965).
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FIG. 3. The relativistic energy bands for rhenium, including the sects of spin-orbit coupling.
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T~r.E I. The angular-momentum content of the AP%' wave
functions at symmetry points in the hexagonal Brillouin zone.
Blank entries indicate spherical harmonics which are absent be-
cause of symmetry. The dimension of the various representations
D is also given.

the Brillouin zone as well as the detailed symmetry of the
states in question. Klliott has mentioned that the four-
fold degeneracy along E is a consequence of time
reversal. "It should be pointed out that although there
are no splittings along E. due to spin-orbit coupling, this
interaction is not zero in this direction. In Fig. 3, spin-
orbit coupling is responsible for uncrossing the E~, E3
and R2, R4 (time-reversal-degenerate) states near 0.840
Ry in Fig. 2.

By comparing the results of Figs. 2 and 3 at the center
of the zone I', it is clear that spin-orbit coupling causes
some important changes in the distribution of states in
the vicinity of the rhenium Fermi energy. These changes
can be understood qualitatively in terms of the tight-
binding approximation. If it is assumed that the states
with I"6-, F&+, F&+, I'6+, and I'&- type symmetry are pure
5d states, then the tight-binding wave functions for
these states can be determined from the work of Altmann
and Bradley. "The Fa+ state is assumed to be a 6p-type
state. The spin-orbit matrix elements between these
symmetrized states are easily calculated by applying the
appropriate unitary transformations to the full spin-
orbit matrix for d-type states, as tabulated by Friedel
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l.0—

lower bands in Fig. 3 are converged to within about 0.03
and 0.003 Ry, respectively. In order to obtain an accu-
rate estimate of the Fermi surface, the results between
0.8 and 0.9 Ry in Fig. 3 have been calculated using
about 100 basis functions. These results appear to be
converged to within a few thousandths of a rydberg.

r, +

0.8—

0.7—

{a) (b) (c) (d)

Fxe. 4. The eBects of spin-orbit coupling on the energy-band re-
sults at the center of the Brillouin zone. In (a), spin-orbit coupling
is neglected. Using tight-binding theory, the effects of diagonal
spin-orbit matrix elements are shown in (b), assuming psq=0. 03
Ry. The additional effects of oB-diagonal matrix elements are
shown in (c). Finally, the results of the present APW calculations
are shown in (d}.

et al."If the Sd spin-orbit parameter (~e is assumed to be
0.03 Ry,"the results of Fig. 4 are obtained. In Fig. 4(a),
the results of Fig. 2 (where spin-orbit coupling is
omitted) are reproduced. In Fig. 4(b), the diagonal spin-
orbit matrix elements are taken into account. Including
the effects of the off-diagonal matrix elements produces
additional small shifts in the energies of the various
states LFig. 4(c)j. The distribution of states that has
been obtained from the fully relativistic calculation
LFig. 4(d)] is in good agreement with the results of this
simpliled spin-orbit calculation, as the dotted lines
suggest. As we will mention later in the discussion, part
of the discrepancy between Fig. 4(c) and 4(d) appears
to be due to the fact that the spin-orbit parameter $qq

is energy-dependent.
The results of Fig. 2 have been obtained from sym-

metrized combinations of approximately 60 or 70 APK
basis functions. The corresponding results of Fig. 3 have
been obtained from 80 unsymmetrized basis functions
(involving 40 inequivalent spatial functions). Con-
vergence tests at various points in the zone indicate. that
convergence depends not only on the wave vector k
but also on the band index n. As a result, the upper and

"J.Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids
25, 781 (r964).

~' In bcc tungsten, a spin-orbit parameter (5& of about 0.03 Ry
produces changes in the Fermi surface that are consistent with ex-
periment. (See Refs. 1 and 2.}

B. Density of States

The fully relativistic energy-band results of Fig. 3
have been extended to include a total of 95 points in
1/24 the Brillouin zone, which correspond to 1152
points in the full zone. Since the accuracy of the density
of states which is calculated from this sparce sampling of
the Brillouin zone is limited by poor statistics, a simple
interpolation scheme has been used to calculate a more
meaningful density of states. This scheme is analogous
to that used in previous calculations for body-centered
cubic tungsten. ' In the hexagonal zone, it is convenient
to subdivide the full Brillouin zone into small parallele-
pipeds, having equal sides in the basal plane (m/3V3a)
and a height which is about 20% smaller (s./4c). This
interpolation scheme approximates the nth band eigen-
values for a state whose wave vector lies within a given
parallelepiped by a weighted average of the eth-band
eigenvalues at the eight corners. The method is such
that along the edges of the parallelepiped, the interpola-
tion is linear, on the faces it is planar, and at the center
the weighting factors are equal.

The results of such a calculation involving 144000
points in the Brillouin zone are shown in Fig. 5. The
histogram represents 2$/AE, where hE is 0.005 Ry.
The appropriate units for the differential density of
states are shown on the left. The dotted line represents
the integrated density of states, with the units shown
at the right. The Fermi energy for rhenium occurs at
approximately 0.825 Ry.

C. Fermi Surface

Using the fully relativistic energy-band results (Fig.
3), the intersections of the Fermi surface with the sym-
metry planes of the Brillouin zone have been calcu-
lated. These results are shown in Fig. 6(a). The closed
hole pieces centered about the point L on the surface of
the Brillouin zone have been labelled h5, h6, and h7
since they correspond to holes in the fifth, sixth, and
seventh zones. Similarly, those sheets labelled e8 and
e9 correspond to electrons in the eighth and ninth zones.
Since the hexagonal close-packed structure contains
two atoms per unit cell, the total number of electrons
and holes must be equal. An approximate calculation of
the volumes of the various pieces of Fermi surface sug-
gests that this is very nearly the case here. It is found
that h5, h6, and h7 correspond to about 0.0007, 0.017,
and 0.15 holes/atom, respectively, while es and e9

represent about 0.16 and 0.0006 electrons per atom,
respectively.
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Several aspects of the rhenium Fermi surface are very
sensitive to the exact value of the Fermi energy, which
may deviate from 0.825 Ry by several thousandths of a
rydberg. This is clear from Fig. 6(b), where a constant-
energy surface is plotted for an energy which is 0.005
Ry higher than that assumed in Fig. 6(a). Those fea-
tures of the rhenium Fermi surface which change dras-
tically in going from Fig. 6(a) to 6(b) are considered to
be less reliable than the more stable features. These less
reliable features include the existence of the small closed
pieces of es along the AH direction.

The larger pieces of Fermi surface are sketched in
Fig. 7. They consist of an open cylindrical eighth-zone
electron sheet, centered about the I'A axis and a closed
seventh-zone sheet centered about the point I. on the
surface of the Brillouin zone. The two sheets contact
along the AI. line. A roughly ellipsoidal segment of this
eight-zone sheet has been scooped out at the center of
the zone F. It is clear from Fig. 3 that the rapid varia-
tion with energy of the eight-zone surface in the AI.H
plane is due to the Battened bands in the AH direction
near the Fermi level. As a result, the ratio of the cyclo-
tron to the free-electron mass for an orbit in this plane
is estimated to be very large, on the order of 10.

The smaller segments of Fermi surface are contained
within these larger seventh- and eighth-zone pieces.
These include h5, h6, and e9. Sketches of h5 and h6
are shown in Fig. 8(a) and 8(b), respectively. While hs
appears to be nearly ellipsoidal in shape, h6 is similar
topologically to the dumbbell that Joseph and Thorsen'
have proposed LFig. 8(c)7, though it is indented in the
AL or I 10107direction. The sheets hs and hs touch along
the AI. line, which is also true for the ellipsoid-dumbbell
model of Fig. 8(c). The ninth-zone electron sheet tends
to have the topology of a torus. However, it is uncer-
tain whether this surface is actually multiply connected
or not. LCompare Figs. 6(a) and 6(b).7

As an aid to understanding some of the more unusual
aspects of the results shown in Fig. 6 and to summarize
the importance of spin-orbit coupling in a rather graphic
manner, the rhenium Fermi surface that is obtained by
neglecting spin-orbit coupling is shown in Fig. 9. In
this case, a fourfold degeneracy exists everywhere in the
AI.H plane so the double-zone scheme is appropriate.
To simplify the comparison with Fig. 6, the single-zone
scheme is used here, however. The points of contact
between the various sheets of the Fermi surface are the
result of accidental degeneracies at the Fermi level for
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es

ALII plane. Finally, spin-orbit coupling removes the
tenth-zone electron piece a~0 and drastically alters the
size and perhaps even the topology of e9.

V. COMP&GDSOH VGTH EXPEMMEHT

A. Low-Field de Haas-van Alyhen Data

It is clear from Fig. 8 that the hole sheets hs and h6

are similar topologically to the ellipsoids and dumbbells
that Joseph and Thorsen have proposed to explain their
low-6eld dHvA data for rhenium. ' The main difference
between the two models concerns the detailed shape of
the dumbbell, According to the present calculations-
the dumbbell 1s deformed by protrus1ons and lndenta-

es

FIG. 6. Intersection of the rhenium Fermi surface with sym-
metry planes of the hexagonal Brillouin zone. The sheets h5, h~,
and hv correspond to holes in the fifth, sixth, and seventh zones,
while eg and t.9 represent electron sheets in the eighth and ninth
zones. The results in (a) correspond to a Fermi energy of 0.825 Ry.
The corresponding results in (b) indicate the changes which occur
when the Fermi energy is raised 0.005 Ry.
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Fro. 7. Three-dimensional drawing of the seventh-zone hole and
eighth-zone electron sheets for rhenium.

states w1th even and odd symmetry 1n the var1ous sym-
metry planes. Spin-orbit coupling introduces off-diagonal
matrix elements between these states, thereby removing
these degeneracies, except along the AI. line. As a result
of spin-orbit coupling, the connectivity of k5, h6, and hv

is changed in the various symmetry planes. In addition,
spin-orbit coupling pinches o6 the arms of es which con-
tact the zone boundary along the AII directions in the

L0001j

LM&0j

hg

h6

hs

hg

88

88

8g

es

hs

hs

h8

h7

hy

&s

Orbit plane

(ALH)
(ALH)

j/(AI. H)
(ALH)
(ctI.H)

f)(ctIH)
(rue)
(r3EE)

(MELH)
(MELH)
rot. 60'
(MELH)
rot. 60'
(MXLH)

Area in A~
Kxpt. Theory

0.0434' 0.046
0.072' 0.068
0.149' 0.157

0.880
1.706
0.703

0.883b 0.935
0.038

0.00735 0.007
0.154' 0,168
0.136 0.152
0.758b 0.861
0.617b 0.663

0.049

L1120j hs

hs

hs

h7

h'7

8g

h7 —es

(ALA)
(r3ELA)
rot. 60'
(rmLx)
rot. 60'
(r%LA)
{raLA)

0.025.
0.129'
0.147~

2.86b

0.024
0.136
0.156
0.648
0.697
0.049
2.80

a See Ref. 3. b See Ref. 6.

tions in the MLEB plane, as shown in Fig. 8(b)
/versus Fig. 8(e)j.

The dimensions that are calculated for kt; are in ex-
cellent agreement with the experimental values for the
elhpsoid axes, as determined by Joseph and Thorsen.
The experimental values are a=0.219 A ' along $1010$,
b=0.063~ ' along L1210lt and i=0.037~-' along
5001j. Tile corresponding theoretical values are
@=0220A—' b=0066A ' and c=0033A—'

Table II contains a comparison between the cal-
culated extremal areas of he and the experimentaj, re-
sults for magnetic Gelds along t 0001j, L1010], $1120$.
The discrepancy between the theoretical and experi-
mental results is generally less than about 10%. AI-

TABLE II. Extremal Fermi-surface areas for orbits which
occur when the magnetic 6eld is oriented along various symmetry
directions.
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FIG. 8. Three-dimen-
sional drawings of the
6fth-zone (a) and sixth-
zone (b) hole sheets that
result from the resent
calculation. In c), the
ellipsoid and dumbbell
model of Joseph and
Thorsen is sketched. fioio]
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though this discrepancy is somewhat larger than that
found for the ellipsoids, the general shape of h6 appears
to agree quite well with the angular dependence of the
dHvA data.

The interpretation of the low-field dHvA data in
terms of hs is analogous to that described by Joseph
and Thorsen for the dumbbell. These data contain some

aspects which are consistent with the modifications to
the dumbbell that are suggested by the present cal-
culations. First, as the field is rotated from [0001]
towards the basal plane in either the (1210) or (1100)
planes, a maximum extremal area occurs between 45'
and 55' from [0001].According to the present model,
this maximum occurs when the extremal orbits pass over
the protrusions in the MLS plane, which are about
50' from [0001].A rough estimate of the maximum area
enclosed by such an orbit suggests a value of 0.24 A ',
which is about 25% larger than the experimental value
of 0.19 A '. This suggests that these protrusions are
somewhat smaller than the calculations indicate.

Second, the dHvA data with the magnetic field in the
basal plane indicate that the extremal area of the central
orbit around the dumbbell decreases continuously
from the MLS to the PALM planes. Such a con-
tinuous decrease in area is not obvious from the dumb-
bell model of Joseph and Thorsen without a distortion
in the MLS plane, as the present calculations predict.

Third, a topology similar to that of h6 permits a second
set of noncentral extremal orbits, in addition to those
which exist on the dumbbell when the field is near the
[0001] direction. This second set of noncentral ex-
tremal orbits can explain the period I'q that is observed
when the magnetic field is near (or in) the basal plane.
In Fig. 8(b), these noncentral extremal orbits would

occur in a plane parallel to PALM when the magnetic
field is along the LH direction. The calculated shape of

h6 suggests that this maximum extremal area coincides
with the saddle point that occurs along the LH line,
in which case this period presumably would not be
observed. "However, the dHvA data indicate that this
maximum extremal area occurs before the saddle point,
again implying a slight modification to the shape
of h6.

~'I. M. Lifshitz and M. I. Kaganov, Usp. Fiz. Nauk. 69, 419
(1959) LEnglish transl. : Soviet Phys. —Uspekhi 2, 831 (1960)j.

B. Pulsed-Geld de Haas-van Alphen Data

The pulsed-field dHvA data of Thorsen and Joseph'
reproduce much of the low-field data that have been
discussed in the previous section. In the present dis-
cussion, we shall confine our attention to some of the
shorter periods that have been observed and discuss
their interpretation in terms of the Fermi surface sec-
tions hy and es of the present model. One of the more
interesting aspects of the high-field data is the period
of 3.34' j.0 ' 6 ' which is observed when the field is
along the [1120] direction. This period is readily
interpreted in the present model as a closed double-zone
orbit formed by es and h& in the PALM plane. This
corresponds to the orbit labelled P in Fig. 10. The cal-
culated area of this orbit is 2.80 k, which is in ex-
cellent agreement with the experimental value of
2.86 A-'.

Most of the remaining periods that have been ob-
served can be interpreted in terms of the seventh-
zone hole piece hv, although a few periods that are ob-
served when the magnetic field is near [0001] seem to
be associated with e8. The calculated areas are com-
pared with the experimental results in Table II.
The shape of h7 is similar to that suggested by the ex-
perimental data. Starting from the PALM plane, and
rotating in 30' increments, the area enclosed by a
central orbit of h7 increases continuously from 0.648
to 0.663, 0.697, and 6nally to 0.861 A ', the Gnal value
occurring in the MLHE plane. The dHvA data sug-

e9 e9 T'

Fxo. 9. Intersection of the Fermi surface for rhenium with
symmetry planes of the hexagonal Brillouin zone, neglecting spin-
orbit coupling.
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Fxo. 10. Sketch of the larger sections of the rhenium Fermi
surface in the

FALAK'

plane, showing the projection onto this plane
of an open orbit a along (1010) and a closed double-gone orbit P
which lies in this plane.

gest a slight decrease in area over the first 40, fol-
lowed by a more rapid increase. The calculated area
associated with a central orbit in the MLHE plane of
0.861 A ' is 15% larger than the experimental value.
One interesting aspect of the dHvA data is the implica-
tion that the area enclosed by a central orbit on h7

in the MLHE plane is almost exactly equal to that in
a plane chic.& is mtateQ by 60 .

When the field is rotated in the (1010)plane, Thorsen
and Joseph observe only one period. This corresponds
to the central extremal of h7 that is rotated by 60'
from I ALA. They also observe slightly longer periods
over limited angular ranges which could correspond to
noncentral orbits. The corresponding orbit in the PALM
plane is not observed. In the low-field data, smaller
orbits passing through similar degeneracy points were
found to be weak. In general, the form of the dHvA
data in the (1010) and (1120) planes is qualitatively
similar to that expected from the present model for
h~. In both planes, the periods associated with this
piece vrere found to disappear when the field was
within 10' or 15' from [0001].This behavior is con-
sistent with the shape of h~ near the ALH plane.

C. Magnetoacoustic Data

The magnetoacoustic data of Jones and Rayne yield
a limited number of extremal dimensions for some of
the smaller pieces of Fermi surface in rhenium. ' They
have interpreted this data using the ellipsoid-dumbbell
model of Joseph and Thornsen. ' They have also ob-
served oscillations which correspond to extremal
dimensions which are several times larger than those
expected for the ellipsoids and dumbbells. However,
these oscillations were poorly defined and the cor-
responding dimensions were somewhat uncertain. Some
of the smaller dimensions were found to be consistent
with the ellipsoid-dumbbell model, others vrere not.

Recently, Testardi has obtained much more detailed
magnetoacoustic data for rhenium. ' In addition to the

dimensions that were found by Jones and Rayne,
Testardi has observed other extremal dimensions, both
large and small. The larger dimensions range roughly
from 0.45 to 0.55 A ', and agree quite well with the
dimensions and shape of the seventh-zone hole sur-
face. Most of the smaller dimensions seem to be con-
sistent with the size and shape of the fifth- and sixth-
zone hole surfaces, the ellipsoids and dumbbells of the
Joseph-Thorsen model. There are some exceptions,
two of which are tabulated by Jones and Rayne. These
include the dimension of 0.12 A ' which is isotropic in
the basal plane and a dimension of 0.08 A ' near the
[0001] axis in the (1120) plane. In the present model
for the rhenium Fermi surface, these dimensions must
be associated either with the small ellipsoidal pocket at
I' or the ninth-zone electron sheet ee.

D. Magnetoresistance Data

The Fermi surface shovrn in Fig. 7 supports two sets
of open orbits. The first set, which is directed along
[0001], occurs on the cylindrical eighth-zone electron
sheet es whenever the magnetic field is in the (0001)
plane. The second set of open orbits are along the (1010)
axes and result from magnetic breakdown between es
and h7. This latter set of open orbits occurs when the
magnetic field is in the (1010) plane, but not in the
[1210] direction. With the field along [1210], the
breakdown orbit closes, leaving only the [0001] open
orbits.

The nature of the open orbits along (1010)is shown in
Fig. 10. The open orbit labeled n results when the
magnetic field is in the (1010) plane, but not along the
[1210]axis. The dotted and solid portions of the orbit
represent its projection on the (1210) plane, the orbit
passing over the rear of es and the front of hy. %hen the
field is precisely along the [1210]axis, these open orbits
close, yielding the orbit labelled P, which has been dis-
cussed in Sec. B. The present theoretical model for
rhenium also predicts the possibility of small regions of
aperiodic open orbits when the field is near the (1210)
axes since the open orbits along the [0001] and (1010)
axes occur on the same Fermi-surface sheets.

These results are in substantial agreement with the
high-field magnetoresistance data of Reed, Fawcett, and
Soden. r They find open orbits along [0001]and (1010),
the latter resulting from magnetic breakdown. They also
find two-dimensional regions of aperiodic open orbits
when the magnetic field is near the (1120) axes.

Reed e$ aL suggest that there are two separate sheets
that are open along [00017. This second set of open
orbits along [0001] has been introduced to explain a
very narrovr maximum in the magnetoresistance that is
observed when the current is along [0001]and the field
passes precisely through the basal plane.

The present calculations predict only one surface that
is open along [0001].Since this narrow maximum repre-
sents a change in the magnitude of the magnetoresist-
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ance rather than a change in its field dependence, it
could result from a change in the eQective mobility that
coincides with the transition from extended orbits to
open orbits along the axis of the cylinder es. According to
the present Fermi-surface model, when the magnetic
Geld is near the basal plane, there exist extended orbits
along the axis of the cylinder t,8. These orbits pass
through many AI.II zone faces, each of which contain
regions where the electron velocity is small (near 5) as
well as regions where interband matrix elements are
expected to cause local variations in the relaxation time
(near R). When the magnetic field is precisely in the
basal plane and the orbits are open, a few electrons will
pass through all these regions, but most will pass through
none. It is reasonable to expect that the effective
mobility and therefore the magnitude of the mag-
netoresistance might reQect such a change in the orbit
characteristics.

From the low-field behavior of the magnetoresistance
data, Reed et aL have estimated several properties of
the rhenium Fermi surface. First of all, they predict that
the $0001] open surface is nearly cylindrical. in shape.
Furthermore, they predict that the carriers on this
cylindrical surface are electrons, in agreement with the
present results. They estimate that this surface con-
tains about 0.09 electrons per atom, a result that differs
by less than a factor of 2 from the 0.16 electrons per
atom that are calculated. They estimate that the ratio
of the number of electrons enclosed by the cylindrical
surface to the remaining electrons and holes in closed
pieces is 0.71.The present calculations indicate that this
ratio is very nearly equal to 1.0. Their model also pre-
dicts that the mobility of electrons on the open sheet
is about 13 times smaller than that of the electrons and
holes of the closed sheets. Since the sheets e8 and hv

have essentially the same dimensions and their model
takes into account the extended orbits that are possible
on the cylinder, this large difference in mobility is not
yet understood.

E. Syeci6c-Heat Data

The specific heat of rhenium has been measured by
Morin and Maita, '4 who find that y=5.9&10 4 cal
deg ' mole '. This corresponds to a density of states at
the Fermi energy of 0.52 states of one spin per eV atom.
The calculated density of states is 0.37 in these same
units. It is well known that the heat-capacity density of
states is enhanced by electron-phonon interactions.
McMillan has calculated this renormalization factor for
rhenium, as well as for other transition metals and
transition-metal alloys. 2' He finds a renormalization
factor of 1..48 for rhenium. Using this value, the heat-
capacity results of Morin and Maita imply a "band"
density of states of 0.34 states of one spin per eV atom,

'4 F. J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963).
~'%'. L. McMillan (to be published).

a value which is in excellent agreement with the present
calculations.

VI. DISCUSSION OF THE RESULTS

Considering the complexity of the rhenium band
structure, the agreement between the present theoretical
Fermi-surface model for rhenium and the experimental
data is considered to be quite good. In general, the
extremal areas of this model agree with the dHvA data
to within 10%. Part of this discrepancy may be due to
an uncertainty in the calculated Fermi energy, even
though this is estimated to be less than 0.005 Ry. It may
also be due to the graphical-interpolation procedures
that have been used to determine the Fermi-surface
shape in the various symmetry planes. This is particu-
larly true for the sheets hs, h6, and hv that are centered
about L The energy bands in this region are rather
complicated. Many of the bands in symmetry planes,
which cross when spin-orbit coupling is neglected. , are
uncrossed by this interaction. These eGects complicate
the band shapes, thereby decreasing the. accuracy of
the graphical-interpolation procedures that have been
used to determine the Fermi surface.

In a band-structure calculation for a transition metal
involving an gd hoc potential, one of the less reliable
results is the relative position of the s-p bands with re-
spect to the d bands. This parameter may be incorrect
by several eV. This discrepancy is usually attributed. to
a lack of self-consistency in the potential or the approxi-
mate treatment of exchange effects. The size, shape, and
topology of the Fermi surface often provide indirect
information regarding this parameter. For example, in
the case of tungsten, the dimensions of the ellipsoids at
the point A are related directly to the energy difference
between the Fermi energy and the 6p-type state with
X~ symmetry, which is a few tenths of an eV above the
Fermi energy. '

Fortunately, a similar situation exists in rhenium.
It has been found that 'the dimensions of h~ and h6

depend rather critically on the relative positions of the
6s-6p bands with respect to the Sd bands. This is
illustrated in Fig. 11, where a limited portion of the
rhenium .energy bands alorig the AI. line are shown.
The results of Fig. 11(a) have been obtained from a
nonrelativistic calculation involving a potential de-
rived from atomic, self-consistent, Hartree-Fock-Slater
calculations. "The results shown in Fig. 11(b) and 11(c)
are identical to those of Figs. 2 and 3, respectively.
The triangles and dashed lines in Fig. 11(c) indicate the
behavior expected for fully converged results. The
horizontal dashed lines represent the approximate Fermi
energy in each case. Starting at I., the dimensions of h5

and h6 along the E direction are determined by the inter-.

section of the Grst fourfold degenerate band with the
Fermi level. It is clear that these dimensions in Figs.

26 F. Herman and S. Skillman, Atomic Stricture Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).
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11(b) and 11(c)are about half the size of that shown in
Fig. 11(a). According to our interpretation, the energy
difference between I.~ and the Fermi level is less in Figs.
11(b) and 11(c) than in 11(a) because the Darwin and
mass-velocity corrections have lowered the 6s-6p bands
with respect to the Sd bands. The sensitivity of this I &

state to variations in the relative energies of the s-p
and d bands has also been observed in unpublished non-
relativistic calculations for titanium. Since the dimen-
sion of h5 in the Al. direction agrees almost exactly with
the corresponding ellipsoid dimension of Joseph and
Thorsen, this implies that the 6s-6p-Sd bands are posi-
tioned accurately with respect to one another in the
present calculation.

Nevertheless, there is one feature of the present
theoretical model for the rhenium Fermi surface that
must be regarded as uncertain. This concerns the size,
and perhaps even the existence of the ellipsoidal pocket
at I'. This section is formed by a 6p-type state which is
about 0.025 Ry above the Fermi energy. In the nonrela-
tivistic calculation that has been described in connection
with Fig. 11(a), the corresponding state was about 0.15
Ry above the estimated Fermi level. Since this piece is
closed, it should easily be observed in dHvA data re-
gardless of the magnetic-Geld orientation, The absence
of such evidence suggests that the 6p state I'q+ actually
lies below the rhenium Fermi level.

It is interesting to examine the effects of the Darwin
and mass-velocity corrections on the band structure of
rhenium, since our interpretation of the results of Fig.
11 suggest that they are important. The most funda-
mental way of looking at these relativistic corrections
is to consider their effect on the logarithmic derivatives.
This is shown in Fig. 12. In Fig. 12(a), the logarithmic
derivatives (2l+1)g„p(R„,E)/N„~(R„,E) are plotted as a
function of energy for the rhenium 6s, 6p, and Sd
bands. The relativistic equivalents to the logarithmic

derivatives Lnamely, ling (R„,E)+(l+1)gq+(R„,E)j are
plotted in Fig. 12(b) (solid lines). The latter values have
been used in calculating the results of Figs. 2 and 3. In
both cases, the zero of energy coincides with the constant
value of the "muon-tin" potential. The main effect of
the Darwin and mass-velocity corrections is to lower the
energies of the 6s-6p bands with respect to the Sd bands.
The Sd bands extend roughly from the energy where the
l=2 terms become negative to the singularity in the
logarithmic derivative. This singularity occurs when the
function Nzz(R„,E) (or its relativistic equivalent)
vanishes at the sphere radius.

To a good approximation, the bottom of the 6s con-
duction band is determined by the condition that

ril=o+(Rt4/E)/E= (0/8n R, R,/3)/8% R —(14)

a result which follows from Eqs. (6) and (10)if k,=k;= 0.
The energies at which Eq. (14) is satisfied are repre-
sented by E.(6s), near the bottom of Figs. 12(a) and
12(b). The difference in energy, 0.272 Ry, represents
the shift in the bottom of the 6s band due to the Darwin
and mass-velocity corrections. Herman and Skillman
have obtained atomic estimates of these corrections
using Grst-order perturbation theory and self-consistent
Hartree-Fock-Slater wave functions. " They Gnd a
value of about 0.13 Ry, which is about half the value
found above. This factor of 2 difference appears to
be due to renormalization e6ects as well as changes in
the 6s radial charge density that result from solving the
Dirac rather than the Schrodinger radial equation. The
renormalization factor is expected to be appreciable
since the 6s nonrelativistic wave function is quite ex-
tended; the outermost maximum in the radial wave
function occurs outside the APW sphere radius.

In addition to the effects of the Darwin and mass-
velocity corrections on the logarithmic derivatives, it is
also interesting to examine the energy dependence of the
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spin-orbit terms Lg~+(E„,E)—q~-(E„,E)j. These terms
are shown by the dotted. curves in Fig. 12(b) for /= 1
and 2. The corresponding values for higher angular
momenta fall off very rapidly, the 3=3 value being two
orders of magnitude smaller than those for /=1. Note
the sharp rise in the l=2 term near the top of the Sd
band. Although the 1=1 term is relatively Qat in this
energy range, it exhibits a similar behavior near the top
of the 6p band.

Despite the fact that the spin-orbit parameter $sq
is related to Lg~+(R„,E)—g~ (R„,E)], is it not clear how
one can extract an estimate of this parameter from the
results of Fig. 12(b). However, an estimate for the spin-
orbit parameter $s& can be obtained by applying the
tight-binding model to interpret the spin-orbit splittings
that are calculated via the APK method. The results
of Fig. 4 represent such an attempt for hexagonal
rhenium, where $&z is assumed to be 0.03 Ry. The cal-
culated spin-sp1ittings appear to be larger near the top
of the Sd band, implying that the spin-orbit parameter
is energy-dependent. The energy dependence of $sz
is evident also in the results of a relativistic band-
structure calculation for tungsten by Loucks. ' Calcula-
tions for hypothetical body-centered rhenium (using the
same sphere radius and the appropriate lattice constant
to assure touching spheres) plus the present hexagonal
results suggest that ass varies from about 0.035 Ry near
the middle of the Sd band to about 0.043 Ry near the

top of the band. This behavior seems to be consistent
with the energy dependence of the 5d wave functions.
Wood has shown (in the case of iron) that although the
d radial wave functions are rather di6use near the
bottom of the d band, they become more localized than
the corresponding atomic states near the top of the
band. '7 This variation in the radial character of the Sd
wave functions could easily lead to an energy-dependent
spin-orbit parameter $ss.

According to Fig. 5, the density-of-states for rhenium
exhibits several peaks below the Fermi level (0.825 Ry).
Above this energy, there is a broad minimum followed
by maximum near the top of the Sd band. Assuming a
rigid-band model for the hexagonal Sd transition metals
and their alloys, it is interesting to plot the values for
the band density-of-states that have been calculated by
McMillan for these materials. "McMillan has carried
through such calculations for Hf, Re, and Os, as well as
the disordered hexagonal alloys WQ. »Rep. », Rep, 7QOsp. ep,

and Rep, 3QOSQ. 7Q These results are shown by the 611ed
circles in Fig. 5. The agreement between the experimen-
tal points and the theoretical curve is well within the
accuracy of the calculated density-of-states. Equally
good agreement has been obtained for the 5d body-
centered cubic metals and their alloys, using a density
of states that has been calculated for tungsten. "These

"J. H. Wood, Phys. Rev. 117, 'I14 i1960l.
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results clearly suggest a rigid-band model, not only for
transition metals, but for their alloys as well.
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Different approaches in 6nding selection rules for scattering processes in crystals are discussed. It is shown
that both the subgroup and the full-group procedures lead, not only to the same selection rules, but also to
the same formula for Gnding them. The Anal result is expressed in terms of characters of small representations
of the groups of k, and it is a matter of taste which procedure to use in deriving the formula for selection rules.

I. INTRODUCTION

'HERE are four diferent results in the literature
for 6nding selection rules for transitions between

diGerent points in a Brillouin zone. The 6rst one is by
Klliott and Loudon' and is based on the use of sub-
groups, connected with speci6c vectors k, of the full
space group. Very soon afterward, another paper on
selection rules was published by Lax and Hop6eld. '
The derivation in this paper was also based on a sub-
group method, and their 6nal formula contained the
characters of the groups of k only. According to Lax
and Hopfield the purpose in writing their paper was to
show that the selection rules can be derived using only
existing character tables, while Elliott and Loudon's
procedure may require character tables other than
those of the groups of k.

The next paper on selection rules in crystals was
published by Birman. ' He applied the conventional
group-theoretical method for deriving selection rules by
using the characters of the full space group. The formula
derived by this method contains characters of the whole
space group, and sums over the whole space group. The
same full-group method w'as used in a paper by Zak, 4

but the 6nal formula was reduced to a form where only
the characters of the groups of k appear, and where
the summation is on a very small number of elements.

The purpose of this paper is to show the connection
between the four existing results for finding selection
rules in crystals. As was pointed out, the first two are

' R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 146
(1960).

~ M. Lax and J. J. Hopfield, Phys. Rev. 124, 115 (1961).
3 J. L. Sirman, Phys. Rev. 127, 1093 (1962).
4 J. Zak, J. Math. Phys. 3, 1278 (1962).

based on subgroup techniques, while the last two use
the conventional full-group method. There has been a
discussion recently in the literature" about the ad-
vantages and disadvantages, and even about the correct-
ness or incorrectness, of the subgroup and full-group
approaches.

To settle this problem we have proved that both
methods (subgroup and full group) lead not only to the
same selection rules, but also to the same final formulas
according to which the rules are found. Even more, we
show that no two methods in fact exist, and that the
subgroup method is just an advanced calculational stage
of the full-group method. The 6nal formula for the
selection rules that is derived in this paper was already
obtained before, ' and it is shown that the formulas
obtained by the other three methods' ' can be reduced
to it. In particular, it is proved that there is no need
for additional representations (other than the repre-
sentations of the groups of ir) in the 6rst method, ' ' and
as a consequence of this the formula derived in the
note4 becomes identical with the results in the paper by
Elliott and Loudon. ' In Sec. II a description of the
different approaches to selection rules is given. In Sec.
III it is shown that all of them lead to the same formula.

II. DIFFERENT APPROACHES TO
SELECTION RULES

In various transition processes in crystals an excita-
tion (electron, phonon, exciton, etc.) is scattered from

~ Melvin Lax, Phys. Rev. 138, A793 (1965).
6 J. L. Birman (private communication).
7 Dr. Elliott has kindly approved this point in a private

communication.


