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Measurements have been made of the attenuation of the fast and slow shear waves along the (110) di-
rection in an aluminum single crystal in the frequency range from 30 MHz to 170 MHz and in the tempera-
ture range 66°K to 300°K. The attenuation can be divided into a square-law frequency term and a term con-
sistent with the theoretical form of the dislocation attenuation at high frequencies. On account of the fact
that aluminum has three free electrons per atom and a low resistivity, the attenuation due to electron vis-
cosity is large enough to measure at room temperature, and at low temperatures contributes the principal
square-law component. The difference between the measured value and the electron component can be used
to evaluate the phonon-viscosity square-law component. The asymptotic value of the dislocation attenuation
can be used to evaluate the drag coefficient, and for the first time a definite electron drag coefficient is demon-
strated. The measurements can be used to establish a ratio of 3-4 between the limiting nonlinearity radii for
electrons and phonons. While the absolute value cannot be obtained with accuracy by this method—on
account of a lack of knowledge of the number NV of dislocations per cc—theory indicates that the value should
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be between 0.9 and 1.6 X102 dyn sec/cm?, which is a relatively large damping coefficient.

I. INTRODUCTION

N the linear, small-amplitude range of motion, it is
well known!? that dislocations are damped by the
conversion of dislocation energy to phonons. Recently
it has been demonstrated?®* that dislocations are damped
by the conversion of dislocation energy to electron mo-
tion. A theory® of this effect was given which accounted
for the difference in the nonlinear-dislocation breakaway
loss, first observed by Love and Shaw,? and the diverg-
ence between the measured attenuation in the normal
and in the superconducting regions and that calculated
from the Bardeen-Cooper-Schrieffer (BCS) theory. This
evidence is somewhat indirect since it requires some as-
sumptions about dislocation-loop lengths and cutoff
radii. Hence a direct measurement of this drag coefficient
is desirable, and it is the purpose of this paper to present
measurements in aluminum single crystals which allow
such in evaluation.

Aluminum is a particularly advantageous material
for this purpose since the direct electron damping of
acoustic waves is so large that a measurable component
exists even for room temperature. This is partly because
there are three free electrons per atom. Also, according
to the measurements of Lax® and Filson,” the divergence
from a spherical Fermi surface is large enough so that
the measured attenuation is 1.45 times the calculated
attenuation for the free-electron model. Their measure-
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ments for a polycrystalline aluminum show that the
attenuation is consistent with an electron viscosity
determined by the equation

9X 10472
Ne=————(972N)2/3X1.45=
5e’R

3.88X10°8
(aluminum).

®

In this equation 7 is Planck’s constant % divided by 2,
N is the number of atoms per cc (6.11X10% for alumi-
num), e the electronic charge (4.8%X10~%° esu) and R,
the resistivity in @ cm. The resistivity as given in Refs.
6 and 7—low temperatures—and the International
Critical Tables—high temperatures—is shown by Fig. 1.
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Fic. 1. Resistivity of a 99.995% aluminum sample as
a function of the temperature.
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Fic. 2. Square-law attenuation
along a (110) direction for a shear
wave with a polarization along (110)
direction. Circles represent measured
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points. Electron viscosity loss was
calculated from Eq. (1). The difference
between measured loss and electron
viscosity loss evaluates the phonon
viscosity with a nonlinearity factor

D=41.
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Dislocations are damped by interactions with elec-
trons and with phonons. These interactions produce a
drag on the dislocation per unit length which is propor-
tional to the velocity of the dislocation through the
medium. The drag coefficient B, which determines the
force on the dislocation due to interaction with the
electronic shear viscosity of Eq. (1), and with the shear
phonon viscosity discussed in Sec. ITI, has the dimen-
sions of dyn sec/cm?. Besides phonon viscosity another
source of dislocation damping proposed by Leibfried?*—
due to the difference in radiation pressure of phonons
on the front and back sides of the dislocation—takes
the form

TEMPERATURE IN DEGREES KELVIN

where ¢ is the lattice constant, V, the shear velocity
in the glide plane and E, the thermal energy density.
For aluminum this damping has a value 0.55X10~*
which is much smaller than the phonon viscosity drag
term and is here neglected.
The attenuation for electrons, given for the slow shear
wave, is
Anprem=0",/2pV?=2.12X10"7/R @3)
at 150 MHz using the value of p=2.73; V=3.11X105
cm?/sec which result from the constants measured by
Kamm and Alers® given in Eq. (4). By employing the
resistivity given by Fig. 1, the calculated electronic at-

B=aEy/10V,, (2) tenuation in dB per cm—1 Np equals 8.68 dB—is
10
5 O MEASURED POINTS
)
Fi16. 3. Square-law attenuation along 6 Q
a (110) direction for a shear wave with =
a polarization along (100) direction. =
Circles represent measured points. °
Solid lines represent division into elec- 5
tron and phonon viscosity terms as in 24
Fig. 2. w \
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shown by the curve of Fig. 2 marked electron viscosity.
This attenuation is proportional to the square of the
frequency and as discussed in the next section, the
square-law term can be separated from the dislocation
term by employing a sum of two standard forms. The
actual measured square-law terms are shown by the
circles. At very low temperatures the square-law term
is given mostly by electron damping, but at higher
temperatures a damping due to phonon viscosity pre-
dominates. As discussed in the Sec. III, this attenuation
measurement allows an evaluation of the nonlinearity
constant D appearing in the phonon-viscosity term. As
discussed in Eq. (12) this nonlinearity term D is related

to the deviation of the ordinary second order elastic
constants from linearity. For the slow speed shear mode,
the constant D=4.7. A similar measurement was made
for the fast shear mode controlled by the c44 constant—
velocity is 3.41X10° cm/sec—and the attenuation has
the same electronic component but a smaller phonon-
viscosity term with a D value of 2.5 as shown by Fig. 3.

II. EVALUATION OF FREQUENCY-SQUARE LOSS
AND DISLOCATION COMPONENT

The actual measurements from which the square-law
and dislocation components can be obtained were made

Fi6. 5. Normalized curve

for a dislocation loss (after

Oen, Holmes and Robinson).
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by measuring the shear-wave attentuation along the
(110) direction with the polarization along a cube
axis (fast wave) and along the (110) direction (slow
wave). The measured values are shown by the crosses
of Fig. 4. The slow wave is controlled by the elastic
constant %(ci1—ci12), while the fast wave is controlled
by the constant ¢44. Using the elastic moduli and density
determined by Kamm and Alers?, ie., ¢;1=11.428,
€12=6.204, ¢44=3.171X10" dyne/cm?,

p=2.733

the velocities are 3.11X10° and 3.41X10° cm/sec.

As discussed in detail in a previous paper,* the at-
tenuation of an unstrained single crystal, at high fre-
quencies, can be represented by an attenuation pro-
portional to the square of the frequency, due to electron
viscosity, phonon viscosity and thermoelastic effects,
plus a dislocation term of standard form which has the
shape shown by Fig. 5. This curve represents the solu-
tion of the Granato-Liicke theory of dislocation damping
for an exponential distribution of pinning points as ob-
tained by Oen, Holmes, and Robinson,* This solution
neglects the mass term since for all measurements made
the dislocation loops are overdamped and no resonances
are observable. This form of the dislocation loss has been
well verified for copper'®*4 by separating out the disloca-
tion contribution from the other losses by neutron-

4
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irradiating the sample. The success of separating out
the dislocation component from the square-law term
by direct addition of two standard terms was demon-
strated in a previous paper.!!

As shown by Fig. 4, the measured attenuation for
both the fast and slow shear waves can be fitted by
square-law curves shown by the dashed straight lines
and dislocation curves of the type shown by Fig. 5
with the disposable constant w/we=1 for a frequency of
80 MHz. The limiting value for an infinite frequency is
shown by the dashed straight line above each curve.
From Fig. 5 the drag coefficient can be evaluated from
the limiting attenuation from the formula

B=NQub?/24V. (5)

In this Eq. 4 is the attenuation in Np/cm (1 Np=238.68
dB), V is the velocity of the wave, N the number of
dislocations, @ the orientation factor which relates the
strain in the acoustic wave to the average strain in the
glide plane, p is the shear modulus in the glide plane
[3(ci—c1atcas)=2.798X 10" dyn/cm?] and b the
Burger’s vector equal to 2.86)X10~% cm for aluminum.
The orientation factor € has been calculated® for the
two shear waves along the (110) direction to be

Qca=3%[cas/ (ci—c12+¢44) 1=0.126,
Q((cr1—c12)/2) = (ci—¢12)/2(c11—c12+¢c4a) =0.311.

Using the values given above, the two limiting values
determine the drag coefficient to be for the two cases

B=2.08X10° N (slow speed),
B=1.95X10"° N (high speed),

(6)

Q)
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which is a reasonable agreement. Since the slow-speed
wave has the higher attenuation and hence can be more
accurately measured, all the dislocation measurements
are limited to this wave.

To determine the drag coefficient one has to know or
approximate the number of dislocations. In aluminum

this is a difficult matter since an etch-pit technique has
not been developed. X-ray techniques have been used,
but these cannot be applied to a crystal }-in. diam.
Measurements'® for small-size crystals grown at slow
rates show values which increase with the diameter
and are in excess of 10° per cc for a crystal 0.1 in. in
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diam. Perhaps the best estimate for the present purpose
is obtained from an electron microscope examination!®
of a thin section of an annealed crystal which showed
a value of 5X10°¢ dislocation length per cc. With this
value the drag coefficient becomes 1.04X10-% dyn
sec/cm?, which is close to the theoretical values discussed
in Sec. III. This is a rather large value of the damping
constant B but it confirms the large value found by
Dorn, Mitchell and Hauser'” who used a stress pulse
technique. Hence, although an accurate absolute value
of B cannot be obtained by this method, it is possible to
demonstrate the existence of an electron drag coefficient
and obtain an estimate of the ratio of the electron non-
linear radius to the phonon nonlinear radius as discussed
in Sec. III.

Since both the square-law term and the dislocation-
drag term depend critically on the temperature, meas-
urements were made from 66 to 300°K and are shown
plotted on Figs. 6-9 inclusive. The measured values are
shown by the solid lines with crosses, while the separa-
tion into square-law and dislocation terms are shown
by the dashed lines. The position of the arbitrary con-
stant w/we=1 is plotted against the frequency. All of
these measurements are for the slow shear wave. The
fast shear wave was also measured but since it showed
substantially the same results only the square law values
at 150 MHz are shown plotted by Fig. 3.

Using the limiting value of attenuation shown by the
straight line at the right of each figure, the relative drag
coefficients are shown plotted by the circles of Fig. 10.

16 R. L. Segall and P. G. Partridge, Phil. Mag. 4. 912 (1959).
(1;76%) E. Dorn, J. Mitchell, and F. Hauser, Exptl. Mech. 5, 353

In order to agree with theoretical values, the effective
number of dislocations N is taken as 8X10° per cc.
It should be emphasized, however, that direct measure-
ments do not establish the absolute value within a re-
gion which probably is within values from % to 3 times
this value.

III. EVALUATION OF ELECTRON AND PHONON
DISLOCATION-DRAG COMPONENTS

The square-law attenuation of Figs. 2 and 3 is ac-
counted for partly by electron viscosity—Eq. (1)—and
partly by direct conversion of acoustic energy into
phonon energy. For shear waves the only process that
has been suggested for this conversion is the Akheiser
effect which results from a separation of the tempera-
tures of the various phonon modes by a suddenly applied
stress followed by a relaxation of these temperatures to
an average value AT above the ambient. AT is zero for a
shear wave since there is no increase in temperature
associated with a shearing strain. It was shown by the
writer' that the suddenly applied stress causes an in-
crease in elastic modulus equal to

Ac=3 3 : Ei(vi)?, ®
where E; is the thermal energy associated with mode i
and v,/ is the Griineisen number associated with the
particular mode and strain. For the Debye approxima-
tion which was used in deriving this equation, all the
modes have the same variation with temperature as

18 W. P. Mason and T. B. Bateman, J. Acoust. Soc. .
646 (1965, J. Acoust. Soc. Am. 36,
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does the total thermal energy E, and hence Eq. (8)

reduces to
Ac=3E 2 (v /n, : )

where » is the number of modes used to evaluate the
summation. In comparisons with experiment the 39 pure
modes propagated along the (100), (110), and (111)
axes have been used to evaluate this expression.

Maxwell first showed that the product of an increase
Ac of an elastic modulus, produced by a suddenly ap-
plied shearing strain, by the relaxation time required
to equilibrate the motions of the gas molecules to their
average value was equal to the viscosity 7 of the gas.
In the present case the relaxation time to equilibrate
the various phonon temperatures to the average value
is the thermal relaxation time

r=3K/CV?, (10)

where K is the thermal conductivity, C the specific
heat per unit volume and V' the Debye average velocity
which for an isotropic material is

V=[3@2/V3i+1/VHT. (11)

Here V, and V; are the shear and longitudinal velocities
of the medium. For crystalline materials various
methods'® have been used to calculate this velocity and
for aluminum the value is 3.5)X 105 cm/sec. Hence the
“phonon” viscosity associated with a shear wave is

EK _ (v _(E 2i(ve)
Np=9——2.i =D(—); D=—"",
CcVv? n CcVv?
19 G. Alers and O. L. Anderson, in Physical Acoustics, edited by

W. P. Mason (Academic Press Inc., New York, 1965), Vol. III B,
Chaps. I and II.

(12)

n

where the nonlinearity constant D is determined by
the summation of the square of the Griineisen numbers
multiplied by 9/% where # is the number of modes used
to determine D.

As discussed in several publications'® the Griineisen
number can be calculated when the second-order—
ordinary-elastic constants and the third-order elastic
constants are known. This process has recently been
applied® for six crystals for which the third-order moduli
have been measured and the results are in good agree-
ment with the measured attenuations. For the present
case the third-order elastic moduli of aluminum have
not been measured partly because the elastic nonlinear-
ity is combined with a dislocation nonlinearity. How-
ever, the measured shear-wave attenuation of Figs. 2
and 3 allow an evaluation of the nonlinearity constant D.

For a nonconducting crystal all the thermal energy is
carried by phonons and the conductivity K used is the
total thermal conductivity. For a metal, however, elec-
trons also carry thermal energy. In equilibrating the
phonon temperatures, however, it is only the thermal
energy carried by phonons that comes into play. Hence
it is necessary to separate the lattice conductivity from
the electronic. This has been done for monovalent
metals by direct measurement? but not for aluminum. A
theoretical formula due to Leibfried and Schlomann,?
given by the Eq. (13), approximates the lattice thermal
conductivity. This takes the form

K (w/emery=3.6a46*/*T , (13)

(1;)62;' P. Mason and T. B. Bateman, J. Acous. Soc. Am. 40, 852
* G. K. White and S. B. Woods, Phil. Mag. 45, 1343 (1954).
2 G. Leibfried and E. Schlémann, Nachr. Akad. Wiss. Goet-

tingen, Math.-Physik. K1I., ITa 11, 71 (1954).
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where @ is the lattice spacing, 4 a constant equal to
92.9, 6 the Debye temperature, v the Griineisen con-
stant and T the absolute temperature. For aluminum
this formula gives

K=214/T. (14)

According to the measurements of White and Woods?
this overestimates the measured values by a factor of 2.
Hence for aluminum the lattice thermal conductivity
is taken to be

K=107/T=0.36 W/cm°K at 300°K. (15)

By using this thermal conductivity, the ratio of Eo/C
taken from tables, and ¥ equal to 3.5X10° cm/sec, one
can derive a value of D which best fits the difference
between the measured square law loss and the electronic
square-law loss. The top solid lines of Figs. 2 and 3
represent the sum of the two types of losses with a D
value equal to 4.7 for the slow wave and 2.5 for the fast
wave. The measured points are in good agreement with
the sum of terms. At low temperatures the electron
viscosity predominates but it also makes a measurable
contribution at room temperatures. For a shear wave in
the glide plane with an elastic constant (c11— ¢12+-¢14)/3
the effective value of D is

(2X4.742.5)/3=3.95. (16)

Since a dislocation is surrounded by a strain field,
there is an energy loss due to phonon viscosity as dis-
cussed in previous publications.®? For a screw disloca-
tion the expression is particularly simple since only one
shearing strain is involved. Summing all the squares of
the strain rate times the phonon viscosity over space
surrounding the dislocation it was shown8 that the drag
coefficient due to this source is

B= (b2/87l'a()2)7] = sz/81r_ao2 (EOK/CI—”) , (17)

where @, is a nonlinearity limiting radius determined by
the condition that the nonlinear third-order elastic
moduli are sufficiently large to cause the concept of a
phonon as an acoustic wave to lose meaning. As discussed

in a previous publication!! the value ¢o=3b/4 is reason-
able. This value may vary some between crystals, and
for aluminum, which has large nonlinear terms, a value
of a¢p=> may be a better approximation. For an edge
dislocation a similar expression occurs with an added
term due to compressional phonon viscosity. This term
turns out to be small compared to the effect of shear
phonon viscosity and the value for an edge dislocation
is taken to be

=§[0%/8r(1—0)%ar’]

which is very close in value to (17).

Recently it has been shown® that electron viscosity
will produce a similar drag effect and in fact the same
equation—(12)—will account for the effect if we replace
the phonon viscosity of (12) by the electron viscosity
of (1). A different nonlinearity radius ¢, may result
since this is determined by the nonlinearity value of the
Fermi surface rather than the elastlc constants. This
was estimated to be 10~7 cm.

Since both the phonon and electron v1sc051t1es are
evaluated from the square-law frequency losses given
by Figs. 2 and 3 one can calculate the drag coefficients
to be expected for these two effects and determine the
best ratio of the nonlinear radii to agree with experiment.
The values of Fig. 10 are drawn on the assumption that
the phonon radius of 35/4 is correct and the ratio of
electron to phonon radii is

(18)

ratio @o./a0,=3.4

which follows from the.equality of the electron and
phonon drag coefficients at 77°K. On the other hand if
we take the assumed nonlinear electron radius of 10~7
cm as more nearly correct, the phonon radius becomes
2.9X10-% cm which is very close to the Burger vector
b=2.86X10"% cm. For this case the drag coefficient at
room temperature becomes 0.9X10~° dyn sec/cm?
Either value falls within the probable dislocation range
and hence direct measurement cannot discriminate
between the two values.



