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A power series for the free energy is derived in the linear anharmonic approximation. This free energy is ex-

pressed in terms of a complete set of microscopic order parameters which determine the ionic displacements

in the ferroelectric transition. In general this complete set of microscopic order parameters is larger than the

set of order parameters used in the phenomenological free energy of Devonshire. However, for those ferro-

ele'ctric crystals which are characterized by only one soft optical branch, this'larger set may be reduced to
the same number as used by Devonshire. Such a reduction is explicitly carried out for the perovskite struc-

ture and the resulting expression is the same as that derived phenomenologically by Devonshire with the

coefBcients expressed in terms of microscopic lattice parameters.

I. INTRODUCTION
' ~~ERROELECTRIC crystals may be conveniently

separated into two classes according to the nature

of the phase change occurring at the Curie point. '
The first group is characterized by an order-disorder—

type transition, e.g., triglycine sulfate. The second

group is characterized by a displacive-type transition

as exemplified by BaTi03. In this paper we shall confine

ourselves to a study of the displacive ferroelectrics since

its nature is better understood.

The main properties of ferroelectrics may be under-

stood with the aid of a single phenomenological fi e-

energy function describing both the paraelectric and the
ferroelectric phase. Such a free energy was first in-

troduced by Devonshire. ' This free energy is a power-

series expansion in the macroscopic order parameters:
the polarization per unit volume P and the strain
tensor S. The coeKcients of the power series are phe-

nomenological constants which may be determined

from the properties of the paraelectric phase. The
essential validity of this free energy has been confirmed

by numerous experiments. '
The understanding of ferroelectrics from a micro-

scopic approach was developed in the work of several

authors. Slater pointed out that the dielectric catas-

trophe at the Curie point of perovskite-type ferro-

electrics may be understood to be a consequence of an

unusually large Lorentz factor between a pair of atoms

in this structure. 4 A further advance was made by
Cochran, ' Anderson, ' and Landauer et al. ,~ who put
forward the idea of an anomalously soft and tempera-
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ture-dependent transverse optic branch to explain the
origin of displacive ferroelectrics. The temperature-
dependent soft transverse optic branch was subse-

quently observed by infrared-reQectivity measurements
and inelastic-neutron-scattering experiments. These
fundamental ideas provided a firm basis for further
quantitative and more detailed studies of ferroelectricity.

One line of development of a quantitative micro-

scopic theory of ferroelectrics has been devoted to the
study of the properties of the paraelectric phase. For
example, Silverman and Joseph" and also Cowley"
have investigated the temperature dependence of the
lattice-vibration frequencies arising from anharmonic
interactions between the normal modes in the para-
electric phase. Another line of development is the
derivation of a single free-energy function which may be
used to describe both the paraelectric and ferroelectric
phases. Cowley" has indicated'how this may be carried
out using a diagrammatic technique, and Doniach has
outlined a derivation of the free energy based on a
variational principle. ."

The purpose of this paper is to approach the problem
of displacive ferroelectrics along the latter line of
development mentioned above and to present a de-
tailed and explicit derivation of the free-energy func-
tion from a microscopic Hamiltonian describing the
lattice dynamics of the anharmonic crystal. One obtains
in the linear anharmonic approximation a free energy
which is a power series in a set of microscopic order
parameters. The set of microscopic order parameters
consist of (a) the thermal-expectation values of the
normal coordinates of all the optical branches in the
long-wavelength limit which determine the change of
the equlibrium ionic positions in the ferroelectric transi-
tion, and (b) the thermal-expectation values of the

SA. S. Barker, Jr., and M. Tinkham, Phys. Rev. 125, 1527
(1962).

'R. A. Cowley, Phys. Rev. Letters 9, 159 (1962); and R. A.
Cowley, Phys. Rev. 134, A981 (1964)."B.D. Silverman and R. I. Joseph, Phys. Rev. 129, 2062
(19%);R. I. Joseph and B. D. Silverman, iMd, 133, A207 (1964);
and B. D. Silverman, ibid. 135, A1596 (1964)."R. A. Cowley, Phil. Mag. 11, 673 (1965).

~' S. Doniach, in Proceedings of the International Conference on
Lattice Dynamics, edited by R. F. Wallis (Pergamon Press, Ltd. ,
London, 1965).

387



388 P. C. KWOK AND P. B. M ILLER

normal coordinates of the acoustic branch in the long-
wavelength limit which determines the spatially uni-
form strain tensor. This is a more general free-energy
power series than the phenomomenological free energy
introduced by Devonshire because the latter is expressed
in terms of a smaller set of order parameters, i.e., the
entire set of optical branch order parameters is replaced
by the polarization per unit volume. However, it is
shown that when the frequency of the soft optical
branch (in the long-wavelength limit) is much smaller
than the frequencies of the other optical branches the
general free-energy function reduces to the Devonshire
form. The coefBcients of the free-energy function are
then explicitly evaluated in terms of anharmonic
couplings parameters.

In Sec. II we discuss the Hamiltonian describing the
ionic motion of the ferroelectric crystal. In Sec. III
we derive the equations for the thermal expectation
values of the normal coordinates and their correlation
function (i.e., the phonon Green's function). In Sec. IV
a general power series for the free energy in terms of all
the microscopic order parameters is derived in the
linear anharmonic approximation. In Sec. V the general
free energy is evaluated for the perovskite ferroelectrics
and is shown to reduce to the Devonshire form. Finally
in Sec. VI the results are summarized and discussed.

II. HAMILTONIAN FOR FERRO-
ELECTMC CRYSTAL

Ke wish to construct a Hamiltonian for the nuclear
motion which is able to give rise to a ferroelectric
transition and which also incorporates most of the im-
portant properties of ferroelectric crystals. These
properties include a large dielectric constant, spon-
taneous polarization, electrostriction, as well as many
other properties, all of which are conveniently con-
tained in the phenomenological power series for the
free energy devloped by Devonshire. '

In the adiabatic approximation an effective potential
function C exists for the nuclear motion. The nuclear
Hamiltonian may then be expressed as a power series
in the nuclear displacements of the kth atom in the /th
unit cell LN(lk)j from its equilibrium position x3(lk).
The equilibrium position is defined as the position where
the potential energy has an extremum so that H has
no linear terms in the displacement,

1
H=p 2333314(lk)'ll(lk)+g @ala2(flkl l2k2)S 1(llkl)

2!
1

Xga2(4k2)+ Q C'aya2a3(llkl j 4k2 j 4k3)
3l

XNa, (llkl)ga3(l2k2)ga3(13k3) . (1)

Ke use a notation which is the same as that of Born
and Huang, "except where other symbols are explicitly

"M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(The Clarendon Press, Ltd. , Oxford, England, 1954).

noted. Thus C', ... „(llkl l„k„) is the 13th derivative
of the potential with respect to the displacements in-
dicated in the arguments of the function. The Einstein
summation convention is also used where convenient.
It is important to recognize that the equilibrium posi-
tion which has been used for the expansion of H is only
an extremum of the potential energy Li.e., C (lk) =0j
and not necessarily an absolute minimum. To describe
a solid which undergoes a ferroelectric transition from a
paraelectric to a polar phase it is convenient to choose
the equilibrium positions as being the atomic positions
in the paraelectric phase. The success of the single
free-energy function of Devonshire in describing the
properties of both the paraelectric and the ferroelectric
(polar) phase suggests that the expansion of H about the
equilibrium positions in the paraelectric phase will
enable us to describe both the paraelectric and the
ferroelectric phase.

We define normal coordinates Q(jP) by

p2

XexpLiy xl3+iy x&'j, (2)

where mj, is the mass of the 4th atom, E is the number
of unit cells in the volume, x&' denotes the equilibrium
position of the 1th unit cell, and xI, the relative position
of the kth atom in the cell and x'(lk) =x13+x2'. Also
the polarization vectors e2(jP) are the eigenvectors of
the harmonic dynamical matrix corresponding to branch
j and momentum p. The eigenvectors satisfy the
orthogonality and completeness relations

Z" (jy)~ *(j'y)=~;;;

Z ~3 (jy)~2'*(i,y) = &-s~»'

The Hamiltonian may be expressed in terms of normal
modes as

&=-. Z LQ(jy)Q(j —y)+~'(jy)'Q(jy)Q(j —y)3

1
+ 2 ~2U i22l2i ~ ~ 2 1 "'QUly2)

~t ~=3

XQ(j y ) Q(j y.), (4)

where the squares of the harmonic frequencies L~3(jy)j2
are the eigenvalues of the harmonic dynamical matrix
and the anharmonic coefficients are dered by

Cala2. . aa(flklj f2k.2' ' 'faka)
. (~)—W—~/2 Y

+P121eP292 i ~ .Pn jr3

(m2, 2N23 m2„)'I'

Xe2, '(jlyl)e232 '(j2y2) e2„»(j„y„)

XexpLiyl x'(llkl)+iy2 x'(l2k2)+ iy x'(f k„)j.
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The anharmonic coefBcients are nonvanishing only
when the wave vector sum

Ps

is a reciprocal lattice vector or zero.
It has been pointed out by several authors~' that the

behavior of ferroelectrics may be understood in terms
of an optical branch with an anomalously low frequency
near y= 0. The soft optical modes near p= 0 arise from
a close cancellation of short-range repulsive forces and
of attractive Coulomb forces. ' ' It has also been shown
that the renormalized frequencies of the soft optical
modes near p=0 are strongly temperature-dependent
owing to anharmonic effects. ~ ' The temperature
dependence of the renormalized frequencies has been
directly observed in SrTi03 by Barker and Tinkham
from infrared reQectivity measurements and by Cowley
from inelastic scattering of neutrons. ' Thus, to describe
a crystal which makes a transition from a paraelectric
to a polar phase we characterize it by imaginary
harmonic frequencies for some soft optical branch near
p=0.~ ' On the other hand. a crystal which is para-
electric at all temperatures is characterized by positive
harmonic frequencies for all branches. '4 Since our main
interest here will be to describe both the paraelectric
and the ferroelectric phase we will usually think of the
soft mode optical branch with imaginary harmonic
frequencies near p=0, i.e., for the soft mode near
p= o, ~'(Ju)'&o.

In choosing the anharmonic terms for our model
Hamiltonian we may be guided by the phenomeno-
logical Devonshire free energy. The total Hamiltonian
given by Eq. (4) includes anharmonic terms of all
orders and we include in our model only the orders
which are needed to derive the phenomenological
Devonshire free energy. Thus, the cubic anharmonicity
(san=3) is retained because it leads to an electrostrictive
coupling between the strain and the polarization in
addition to the usual thermal strain. The quartic anhar-
monicity (m= 4) is retained because it leads to a P' con-
tribution to the free energy which appears in the Devon-
shire free energy. The fifth-order anharmonicity (n= 5)
will be dropped because it leads to a contribution to the
free-energy linear in strain and quartic in polarization.
Such a term does not appear in the Devonshire free
energy and represents a correction to the electrostrictive
coupling between the strain and the polarization. We
retain the sixth-order anharmonicity (N =6) because it
leads to a E' contribution to the free energy which is
essential in describing a first-order transition. Accord-
ing to Devonshire no terms beyond. E' need be retained
in the free energy so that we drop all anharmonicities
of order n&6.

'4A small correction to this classification arises because the
zero-point motion of the atoms renormalizes the frequencies even
at zero temperature as shown in more detail in Sec. III.

The Hamiltonian we have discussed so far has
neglected the interaction of the lattice vibrations with
hte macroscopic electromagnetic field produced by the
lattice vibrations themselves. The local field has of
course been included in the definition of the harmonic
frequencies. We may separate the macroscopic field R
into a solenoidal part (Ei) and a irrotational part
(E»). The transverse part E& is readily shown to be
strictly a retardation field, "which vanishes in the static
limit. Therefore, it does not play a direct role in
determining the ferroelectric transition in which only
the appearance of static-order parameters like the static
polarization per unit volume are considered. Neverthe-
less, E& has an indirect eGect on the transition because
of its coupling to the transverse optic lattice vibrations
which give rise to the well-known change, in the phonon
and photon dispersion curves in the long-wavelength
region of momentum space" (p&10' cm '). In our
formalism this corresponds to a change in the phonon
Green's functions for the transverse optical phonons
in the small region near y=0. As the coeKcients of the
free energy contain these Green's functions, E, has a
finite eGect. However, this eGect is negligib]y small
because as we shall see only the averages of the Green's
functions over all momentum space appear in the
coe%cients. Thus, we are justified in neglecting the
transverse macroscopic Geld entirely. For the longi-
tudinal macroscopic Geld Elt, one can shown that it is
essentially electrostatic in nature. "Although the de-
composition of E into solenoidal and irrotational parts
is not unique it is convenient to make the choice that
El& be the instantaneous Coulomb Geld of the charge
distribution. "For wavelengths short compared to the
size of the crystal (but still large compared to the
interatomic distance), E is given by —4z.p, ~, where P
is the polarization per unit volume. This leads to the
familiar separation of the frequencies for longitudinal
and transverse optical vibrations. On the other hand,
when the wavelength is comparable or larger than the
size of the crystal, E„ is no longer equal to —4zP, f

since surface effects must also be taken into account.
The effects of E~, on the optical vibrational spectra
cannot be determined. explicitly as easily as before. But
for our purpose we shall simply assume that the con-
tribution of the longitudinal macroscopic field is in-
cluded in the harmonic frequencies and rely on macro-
scopic syinmetry principles to determine the nature of
these frequencies in the long-wavelength limit.

III. DERIVATION OP EQUATIONS FOR THE
PHONON GREEN'S FUNCTIONS AND THE

THERMAL EXPECTATION VALUES OF
THE NORMAL COORDINATES

In this section we will derive the necessary equations
to determine the lattice free energy. Ke begin by Gnding
the equations of motion for the normal coordinates
Q;~. For the purpose of formal manipulation we in-
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1—(~'/~r') &Q.(r)&~+~"&Q.(r)&~+ 2—fJ
2. 8182~8=2 J(jp; t)Q„(t) (6)

troduce an additional 6ctitious "source" term in the from (8)
Harniltonian (4) that has the following form:

we obtain

i[Q,,(t),QI';(t) j= b;,'bPI. ,

1
(~'/»')Q. (t)+&."Q.(t)+—& fJ-.,. ."'Q. (t)Q. (t)

2 ~ It litt 2

J is to be set equal to zero after the desired equations are
generated. Then from (4) and (6) and the canonical
commutation relations

1
X (Qui(T)QI33(r)&&+ Z fJ I3, In—ge I33

3, PlP2P3

1
X(Q„( )Q„,( )Q„,( )) +—P U „,„,, ...,„, '

I lit] ~ ~ ~ P5

X(Q (T) Q. (T)&~=-J-.(r) (13)

The phonon Green's functions which describe the
vibrational excitation spectra are defined in the pres-
ence of J as

1
+—Z fJ-.,. . ."'Q. (t)Q. (t)Q. (t)

3, PlP2P8

D..(,.'; J)=-«LQ.()-&e.()&.)
Xte (r') —(Q (T))~j)+b

=-«e.( )e. (.)),).
+&Q.( )) (Q'( ')& &14)

1
+ Z —I3 Pl ~ ~ ~ 33 Qgl(t) QP3(t) J I3(t) I—

(g)
Equation (14) can be written equivalently in the
following formal way upon using the definition (9)
and the fact that boson operators commute inside the
time-ordering sign

where the subscript t3 is used to denote the pair (j,p)
and —p, denotes (j, —p).

We will now dehne in the usual manner" the thermal-
expectation value of any operator A(t) in the presence
of the source J as D.,'(, ' J)=(&/~J-. ( '))(Q.( )&

=(blbJ. ( ))(Q-'( ')) (15)
Tre e~(SA)+

Tre P~S

82

D„,„(r,r'; J)+Id„oeD„,„(r,r'; J)
87'

(A) g ——
This allows us to write down immediately the equa, -

tions for the Green's functions by taking the functional

where P=1/knT, T being the temperature; H is the
derivative of Eq. 13 We get

Hamiltonian (4); and S is given by

S= exp~ —i (10)
1

y—Q U I ~I ~3
'

&Qw(T)QI, 3(r)&g
2j PI/4, 3 8J—p'(T )

Thus, r is real and runs from 0 to P. Equation (10)
for S then becomes

P

S= exp — d7 J~ 7

0 +
(12)

The equation satis6ed by the thermal expectation
values &Q„(t)&z or &Q„(r)&z can be directly obtained

» L. P. Kadanoff and G. Baym, Quantum Statistica/ Mechanics
(W. A. Benjamin, Inc. , New York, 1962).

All times are purely imaginary and restricted to the
interval &0,—iP), and + denotes a positive time order-
ing in this interval. Note that the definition (9) reduces
to the definition of thermal-equilibrium expectation
value when J is zero. For convenience we will make the
substitution

t= —ir.

+—z IJ.,....,..ti, &e.,()e.,()e..&)&.
3. PIPIIt3 tIJ—p'(T )

1
+—Z fJ ...... . ,..', (e.,()" e..()&.

5. PI'''P3 oJ I3&(T)—
=-S„„.S(r-r'). (16)

Our next step is to .express all expectation values of
more than-one normal coordinates and their functional
derivatives in (13) and (16) in terms of the phonon
Green's functions and their functional derivatives.
This can be readily done by using (9), (14), and (15)
systematically. For example, we have

&e.,( )Q..& )&.=-D.. .,( J)

+&e.,&».&e..&»., (ln
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, (Q. ( )Q. ( )& =—,D. .—..(;&)
SJ „(~') SJ „(r')

+(Q. (~)&~D-.'(~,~'; J)

The result is a set of very complicated coupled equations
for the phonon Green's functions and the thermal-
expectation values (Q„)g. These equations in principle
give a complete description of the system. The free
energy may be obtained by integrating Eq. (13) in the
limit of J—& 0 with respect to the (Q„). A power-series
solution to the free energy will result if we expand the
exact Green's functions in (13) in terms of the harmonic
Green's functions and the anharmonic coupling parame-
ters. However, such an expansion cannot be made for
the soft-branch Green's function because the harmonic
frequencies are imaginary. Thus for our purpose of
deriving a free-energy power series of Devonshire

form we must drop the Green's function for the soft
branch. Furthermore, to simplify our derivation it is
convenient to consider that all the anharmonic coupling
parameters are small and hence that we need to retain
only terms linear in these parameters. This linear
anharmonic approximation is not necessary for ob-
taining a power series for the free energy but greatly
simplifies the derivation. In some crystals such an ap-
proximation may -not be valid because the anharmonic
coeKcients are not small so that for example' the
anharmonic correction proportional to fU&2&j2 is com-
parable to that proportional to U(".Our formalism can
be readily extended to treat this more complicated
situation. The linear anharmonic approximation is
obtained erst of all by neglecting all the anharmonic
terms in (13) and (16) that contain the functional
derivatives of the phonon Green's functions since
these lead to terms which are nonlinear in the U("'.

When we drop all the terms that contain 8Dj8J,
Eqs. (15) and (16) become

1 1."(Q.)+—, —.. -'"((Q. )(Q")— .,—.(o))+—, —.. .,."'(&Q. )(Q.2)(Q. )—3(Q. &D. .—.(o))
2. II lp R 3 . plpsps

+—r. &-.,. -"'((Q. & &Q")—10(Q"&" (Q. &D. ,=(0)+13&Q.)D. ,—.(o)D. ,—.(o))=o
5t uI" us

(19)

82

gy'( )+ y VV'( ')+ Z —yWV2 &Qyt& WS'( ')+ 2 —SWV2VS
87 Il IP '2 2 1 P IlM gy,

1
&&((Q. )(Q. )—D-,—..(0))D. , '(r —r')+—E &-.,. ."'((Q. ) &Q. )—6&Q. )&Q. )D. .—.(o)

4f PI ~ ~ ~ P5

+3D„,, „,(0)D„,, „,(0))D„,,„(r—r') = 8„„8(r r'—), (20)—

where we have let the external source J go to zero and used the fact that as a result the thermal-equilibrium ex-

pectation values of the normal coordination become time-independent, i.e., &Q„(2)&q=2=(Q„& and the phonon
Green s Functions become functions only of the rela, tive times. D„, »(0) is used to denote D», »(r, r) It is now mo.re
convenient to describe (19) and (20) in terms of the Fourier transforms of Green's functions D„,„(&0 ) defined
according to

1
D„,„.(2 2')= Pe '"& "~—D (co-) (21)

where

&0 = (22r/p)n; n= integer. (22)

From (20) we see that in the harmonic approximation D„,„.(&d„) is given by

D.,"(~-)=4'
2+~ 02

(23)

which is diagorial in p, where we recall that p, denotes the pair of quantum numbers jy. In the. presence of anhar-
monicity the Green s functions are no longer diagonal. However, one can easily verify from (20) that the off-

diagonal Green's functions are small compared to the diagonal ones and may be neglected. UVe then 6nd that
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D;p,; p (lp„) reduces to an identical form as that of (23), namely

—1
»., "(~.)=b '4'I

141114 +Gljy 3
(24)

The co;,' are the squares of the renormalized phonon frequencies and are given by

21P1
44ljp =44ljy +Z +j y,iy,il—yl &Qjlyl&+2 Z U'j yjp—jI,PI, ,jl ul —

I + I+2
jIP I Ip I 1240jI PI 443jI PI

&j piy—,ilplily3 &Qilpl)
122P 2

t 1 E(MjIPI)) 1 E(Nj323)1
+(Qj3P2)+ 8 Z +I—p, jy, jlpl ll—Pl, 1llp3, 13—pl 'I + I + I+4 Z

jlpljIP3 I24ujlpl 40jIPI 3 24ej3P3 44lj3P3 IIP3' j P 33

1 1V(4pj,y,) 1
p lp jlyl llp2 13p3 jl—pl &Qjlpl&&Qj3p3) + + Z ~j—p, jp llyl ~ ~ .j4P4 &Qjlpl) &Qj4P4) (25)

2MJ8P8 GOJ8P8 24 ilP1" i4P4

We have made use of the identity

Diy iy(0) =. Djy. jy(r r) = Z Djp. jp(4pII)

t
1 X(4djp) )+

(2411jp Gljy )

(26)

$(4pj )= (ee"jp—1)-' (27)

is the equilibrium phonon-distribution function. The equations satisfied by the thermal-expectation values of the
normal coordinates are readily obtained from (19) to be

+(441jlpl) )~ j"p&Qj)p=-'2+ fj'I P jIPI jl Pl I + I+2 Z ~3 P jlylllP3 &Qjlpl)&Qj3P3)
jIPI (24ujlyI 44ljlpl jIPII3P3

1 X( 4,pjy))+2 Z +j—p jlpl j3p3 j3—pl &Qjlyl) + I+ 44

jlylj3P3 24djlpl Gljlp3 jig 1' ' ' j8P 3
P jlpl j3P3 jIP3 &Qjlyl)&Qjlp3)&Qj3P3)

llgl'' 28P8

( 1 N( 4,Pj)y3j' 1 E(4yjlp3)) 1
&j—p, ilpl, ilpl, il—pl, ilul, i3—ul &Qilul&l + I + I+

12Njup3 4ejlpl I240jlp3 40j3P3 ] 12 jlpI 'j4p4

&(441j4P4) &&«;,,;„,.. .;...,;.„,;.—..&'&&Q,„,)&Q;„,)&Q;...) +
244lj424 40j4P4

+ Z ~j-y. u. .. p"'(Q p&" (Q u& (23)
120 ~1P1" ~5PS

To complete the linear anharmonic approximation we
replace the renormalized phonon frequencies co;„ap-
pearing in (25) and (26) by the harmonic phonon
frequencies co;~'. This cannot be done for the soft
phonon modes, i.e., those with an imaginary co;~'. These
soft modes, as discussed in the Introduction, belong
to certain optical branch and occur near y=0. We
therefore omit all the terms in (25) and (26) that con-
tain the factor (1/240jp+E(4pjp)/4pjp), where J corre-
sponds to this soft branch. As discussed earlier such a

step is necessary to obtain a power series for the free
energy. The essential validity of the Devonshire power-
series expansion has been verified by a considerable
amount of experimental data. For example in a first-
order transition the power series for Ii implies a rela-
tion between the dielectric constant of the two phases
at T 6p =4ef o This relation has been experi-
mentally verified. ' On the other hand, it is of consider-
able theoretical interest to retain and examine the
soft-mode terms which give rise to extra terms in the
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free energy that have no power-series expansion in the
(Q) which may play a significant role at temperature
close enough to the transition temperature. In the
present analysis we shall not investigate the implica-
tion of these terms.

IV. ORDER PARAMETERS AND FREE ENERGY

In this section we examine the equations derived in
Sec. III for the thermal-expectation values of the nor-
mal coordinate displacements (Q;6) in the linear anhar-
monic coupling approximation. From these equations
for the normal coordinates (Q;,) we shall also derive
the free energy by integration. We shall refer to the
thermal expectation values of the normal coordinate
displacements as simply microscopic order parameters
for reasons which will become evident from the sub-
sequent discussion. The relation between the micro-
scopic order parameters (Q;6) and the macroscopic order
parameters appearing in the Devonshire free energy
(Iin) will also be derived.

The macroscopic order parameters appearing in F~
are a spatially uniform po1arization vector per unit
volume P and a spatially uniform strain tensor whose
components are denoted as 5 p. We may relate the
macroscopic and spatially uniform strain to the micro-
scopic order parameters of the acoustic branch by

S p=(cV3E)—'I'Q —,
'

X()e (pj)ps+6 (pj)p )ip(Q, ,))„~,„6, (29)

I',= (w piV) 'P Zg~-(g (N)), (30)

where ZI,* is the e6ective charge of the kth atom in a
unit cell and e0 is the volume of the unit cell. By using
the expansion in normal coordinates [Eq. (2)j this may
also be written as

e,-(jp)
I' = (116''~') 'P Z6 (Q;—6) (31)

mfa
I/2

lim p-+0 ~

In the long-wavelength limit we may use the method
of Born to expand the eigenvectors as a power series
in p along some 6xed direction of the vector p denoted

where M is the total ionic mass in a unit cell and e
is the polarization vector normalized to unity. The
uniform strain is thus related to the limit of the order
parameters as y ~ 0 and depends on the direction of y
in which this limit is taken. We shall subsequently hnd
that the equations for the order parameters imply
that P(Q;~)1; ~ 6 remains finite for the acoustic
branch only so that only the acoustic order parameters
contribute to the macroscopic strain tensor. We may
also relate the macroscopic order parameter P to the
microscopic order parameters by

as p 16

e& (jp) =W,6&6&(jP)+iPW,6&'&(jP)+ . (32)

For the acoustic branch W„,6&+(jP) is proportional to
m~' ' so that this term does not contribute to I'
because of charge neutrality, i.e., P&Z6*——0. The
polarization may then be separated into a sum from
optical and acoustic branches as

Z s|c

&.=(&6&'") ' Z W .6"'(j)(Q1)
»-OI e. m~~~2

Z~
+("~ I )- Z -&'p(Q;,» '-. ~

»-«m&'I'

XW. ,6"'(jP), (33)

where we have made use of (P(Q;6))1; ~ 6=0 for the
optical branches. The symbol (Q;) is an abbreviation
for (Q;~ 6). For any crystal with inversion symmetry
about every atomic position (e.g., perovskite structure)
W„6&'&(jp) vanishes so that the acoustic branch does
not contribute to the polarization.

From the discussion of the microscopic and macro-
scopic order parameters it becomes clear that a spatially
uniform ferroelectric transition may be described by the
set of order parameters (Q;,) in the limit p-+ 0. We
also note that the microscopic set of order parameters
is more complete than the macroscopic set because the
macroscopic polarization P lumps all the optical-mode
order parameters (Q;) together rather than specifying
the value of each optical-mode order parameter
separately.

Consider the equations for the microscopic order
parameters in the linear anharmonic approximation.
As discussed in Sec. II this amounts to replacing all
renormalized phonon frequencies ~;, appearing in the
anharmonic terms of Eq. (28) by the harmonic fre-
quencies co,~0 and omitting all anharmonic terms on the
right-hand side of (28) which contain the factor (1/2&6;6
+X(&6;,)/66;,) when j corresponds to the soft optical
branch. The 6rst term on the right-hand side of Eq.
(28) is proportional to V&6& and describes the ordinary
thermal expansion of the crystal. For many crystal
structures, including, for example, the perovskites, the
thermal expansion only contributes to the acoustic
branch displacements, i.e., the contribution of thermal
expansion vanishes when j is an optical branch. This
is shown explicitly for the perovksite structure in Sec. V
and Appendix A. For simplicity we shall limit our dis-
cussion to those crystal structures where this holds,
although the discussion may be extended to other
crystals by subtracting out the contribution of thermal
expansion to the optical-mode displacement. The solu-
tion of Eq. (28) for all the optical modes that cor-
responds to the paraelectric phase is then (Q;)=0.
However in general there are other solutions of Eqs.

"See Ref. 13, p. 229.
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(28) which correspond to the ferroelectric phase, i.e. ,
&Qj)WO for some optical branches. The conditions
necessary for a ferroelectric phase solution to exist as
well as its relative stability with respect to the para-
electric phase are most easily discussed from the free-
energy function to be derived later in this section. We
6rst wish to note two important properties of the'solu-
tion corresponding to the ferroelectric phase obtained
from the Eqs. (28) for all branches J.

(a) Let us consider Eq. (28) for the acoustic-branch
order parameter, i.e., (Q;„,„) in the long-wavelength
limit. A general property of the anharmonic coefficient
involving the acoustic branch is that Uj@o,p j2p2. ..j„p„"
vanishes at least linearly in p. This property follows
directly from translation invariance and the properties
of the eigenvectors of the acoustic modes in the long-
wavelength limit. Thus, the right-hand side of Eq. (28)
vanishes linearly with p. Since the square of the
harmonic frequency for the acoustic branch vanishes
as p' we conclude that (p(Qj.„u))1; p 6 is finite. The
corresponding strain is given by Eq. (29) and is also
finite in the limit p —+ 0 as one would expect. In order
to describe the most general strain the limit p —+0
must be considered along three diferent axes. The
character of the solution of Eq. (28) for an optical-
branch order parameter is quite different since neither
the square of the harmonic frequency nor the anhar-
monic coefFicients vanish in the long-wavelength limit.
This implies that (Q;., y 6) is finite so that

(p&Q;....)) '-.-.=0

(b) The particular optical branch index J enters in
the right-hand side of Eqs. (28) only through the

anharmonic coefIj.cients. Therefore, it we make the
reasonable assumption that the average anharmonic
coeScients for the diferent optical branches are
of the same order of magnitude we see' that the left-
hand side of Eq. (28) is of the same order of magnitude
for all optical modes j. This implies that in the ferro-
electric phase the ratios of the optical-order parameters
are roughly inversely proportional to the squares of their
harmonic frequencies

(Q,&/&Q'&= (~j,')'/(~')'. (34)

Since for most ferroelectric crystals the square of
harmonic-frequency of the soft optical branch is much
smaller than the remaining optical branches we con-.

clude that the largest order parameter (i.e., displace-
ment coordinate) in the ferroelectric phase is the soft
mode (Q,) (which may be degenerate) and the dis-
placements of all other optical modes j are smaller by
the ratio =Is,PS/Iujpy This i.mportant conclusion will

be further discussed and compared with experiment in
the application of the general theory to the perovskite
structure (Sec. V). This conclusion will also enable us
to eliminate the nonsoft optical modes and thus derive
a greatly simplified form of the free energy which will

reduce to the phenomenological Devonshire free-energy
(~-)

We may derive the Helmholtz free-energy F by
integrating Eq. (28) for the order parameters. The
integration is particularly simple in the linear anhar-
monic approximation because all the frequencies ap-
pearing in Eq. (28) are harmonic frequencies and
hence independent of the order parameters. The
integration yields a free energy given, by

P Zr (Mj. pl ) (Ql'lpl)(QII pl)+ Q Vj14 pl j222 (Qllpl)(QI'2P2)+ Q Ujl+Pl;12P2; j2 P2 +
2! 2! 2 . 2Goj2p2 (0j2p2

1 1
X(Qjlpl)+ Z jl+Pli jSPSi jSPS (Qllpl)(QI2P2)(QjsyS)+ Z Vjl+PI; jSPS:jSPSi j4P4 (Qjl &&QPIj &&SQPSj &&SQPSj4 4)P

31 I

j.
+ 2 ~jl+PlijSPSi jSPSil4P4115P511626 (Qjlyl)(QjSPS)(QjSPS&(Qj4P4&&QjSPS&&QjSPS)+&(T) (35)

6!

The coefricients U"' and U"' are linear combinations of the anharmonic coefFicients U(", U(4), and U(') given by

1 N(ipjy')
(2) 1 ~ yp (4)Ujl+p1; j2p2 2 ~ ~ j1+pli j2p2ijpi2 —p ,+ ",')

2cojp G)jp

1 1V(4ujp')
t

1 X(40j y')
+2 Z +jl+pl; jSPS;jy;j y;j'u', j' y'

l
— + —

1
+ ~ (3fi)

241jp 13Mjp &2Mjlp~ MPy. 0 . 0 &2 . 0 . 0

Vjl+pli jSp2' jSpS'j4p4 ~jl+p1' j2p2
' jSpS' j4p4 +2 2 +jl+pl' jSp2' j3pS'j4p4i jpil p 'I +

42M jp Njp
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In the linear anharmonic approximation we recall
that the sum over branches will exclude all terms which
contain the factor

,+
1 N(so;oo) )

(2poto eotp

when j is a soft mode. Also since R(T) denotes an
arbitrary function of temperature which is independent
of the order parameters it plays no role in determining
differences between the fer'ro'electric and paraelectric
phases. In our approximation the free energy given by
Eq. (35) is linear in the anharmonic coupling coeK-
cients.

In order to transform the free energy into a more
meaningful physical'form we proceed in the general
case as follows.

(a) Since the ferroelectric phase is spatially uniform
then for the optical modes only the p=0 order parame-
ter'is nonzero, i.e., (Q;., o)= S, ,p(Q;.,).

(b) To describe a spatially uniform strain inthe
ferroelectric (and paraelectric) phase we assume as
discussed earlier that only the limit (p(Q;,p))i; „p
is nonzero. Also the most general strain tensor may be
described by taking the limit of (p(Q;...p))o p along
three orthogonal directions for each of the three polariz-
ations specified by the index j„.

This procedure will thus enable us to express Ii in
terms of (3np —.3) microscopic optical order parameters
and nine microscopic acoustic-mode order parameters
(which combine to make up six independent elements of
the symmetric strain tensor) where np is the number of
atoms per unit cell. In general, this will be a larger num-
ber of order parameters than used in the phenomeno-
logical free energy of Devonshire (P, S ts). However,
we may use the result obtained earlier that (Q;) is
small for all optical branches which diGer from the
soft branches to reduce the number of microscopic order
parameters to the same number as the macroscopic
order parameters. We may then also eliminate the
microscopic order parameters in favor of the macro-
scopic ones by using the relations between them
)Eqs. (29) and (33)j. This procedure will pro-
duce a free energy with the same order parameters as
the phenomenological free energy of Devonshire (Iirs)
but with the coefficients expressed in terms of micro-
scopic temperature depended, t parameters.

The general procedure outlined above for reducing
the free energy' is further clarified by considering a
specific example. Since the best known class of dis-
placive ferroelectrics have the perovskite structure we
shall consider this structure explicitly in the next sec-
tion. We shall explicitly carry out the general steps
outlined above for the perovskite structure and show
that it leads to the free energy of Devonshire with the
coefficients expressed in terms of microscopic para-
meters.

V. APPLICATION TO THE PEROVSKITE
STRUCTURE

In this section we apply the general procedure
described in Sec. IV to derive the free energy, and other
ferroelectric properties of crystals with a perovskite
structure. This structure includes such well-known
displacive ferroelectrics as BaTiO3 and KNb03.

The perovskite structure belongs to the cubic space
group Em3nz when the crystal is in the paraelectric
phase. We recall that our Hamiltonian has been ex-
panded about the equilibrium atomic positions in the
paraelectric phase so that all the coeKcients of the free
energy will have the symmetry of the paraelectric
phase. The ions are located on Gve interpenetarting
simple cubic lattices so that there are Gve atoms per
unit cell. For our purpose the most important sym-
metry property of this space group is the nature of the
lattice vibrations at zero wave vector y=O. The group
of the wave vector at p=O (i.e., the little group) is
m3m and the lattice vibrations may be classified in
terms of the irreducible representations of the little
group which are 4Fip+I'sp. Each of these representa-
tions is threefold degenerate. '~ The five diBerent
lattice vibration branches will be specified by a branch
index (b) and each threefold degenerate branch will be
further specified by a polarization index o. )Thus, in
the notation of Sec. IV the index j represents the pair
of indices (b,o).] The eigenvectors which form the
basis for the. irreducible representations 4I"~5 and F25
are polarized along a cubic axis and therefore may be
written as

e (bp, o; y=O) =ms' 'op(b)e(o),

where e(o) is a unit vector lying in turn along each of
the three cubic axes as the index 0 runs over the values
1, 2, 3. tsp(b) for the acoustic modes is simply M 't',
where M is the total mass in a unit cell. So far we have
not considered the e8ect of the macroscopic electric
field accompanying the lattice vibrations at p=0
on their symmetry. However, we recall from Sec. I
that only the longitudinal and static part of the
macroscopic electric Geld enters into the equations for
the (Q)'s and the expression for the free energy. There-
fore, to retain the full symmetry of the cubic group we
shall assume that the shape of the crystal is such (e.g.,
a cube or a sphere) that at p=0 the electric field does
not destroy the cubic symmetry.

Our method for simplifying the free energy and the
an'hai'monic coupling coefhcients by symmetry argu-
ments wi11. make explicit use of the symmetry property
of the eigenvectors given-in Eq. (38). One may also
reduce the free energy for theperovskite structure to
the form giv'en by Devonshire by the use of very general

»The irreducible representations of this group are discussed
in most books on group theory, e.g., H. Jones, The Theory of
Brillogim Zosses and Electrorsic States sss Crystals (North-Holland
Publishing Company, Amsterdam, j.960).
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group-theoretical arguments. "However, these general
arguments do not of course express the coefhcients
of F in terms of the microscopic anharmonic coefficients.
Since we wish to exhibit the explicit relations between
the coeKcients in Il and the anharmonic coefBcients
we shall And it more convenient to use symmetry prop-
erties such as Eq. (38) explicitly in our considerations.

The microscopic order parameters that are necessary
to describe the ferroelectric transition from the nonpolar
cubic to the ferroelectric phase are the same as those dis-
cussed in the previous section. They are the thermal
average values of the optical normal coordinates at
p=o(Qgog&, where bo denotes the optical branches, and
the uniform strain tensor S p. For the perovskites the
strain tensor as given by (29) can be written in the
following manner with the help of (38):

S s= lim g ~~(e (0)ps+es(0)p )ip(Qq, ~&, (39)
(XM)'i'" ' "

where b refers to the acoustic branch and the summa-
tion for the unit vector p is over the three cubic axes.
One can now obtain from Eq. (25) the free energy
involving all these order parameters. However, this
more complete form of the free energy is usually not
necessary for the description of the general properties
of the ferroelectric transition. The reason is that all
optical-mode order parameters except the (Q...) for
the three degenerate soft optical modes are unimportant
and may be neglected. From the discussion in Sec. IV
we see that the ratio of the order parameters (Qq, ~...&/

&Q...& in the ferroelectric phase is given approximately
by

&Q~,*..&/&Q, ")=I (~.')'/(~~, *.')'I «1 (4o)

As the magnitude of the harmonic frequency for the
soft mode is usually much smaller than that for the
other modes this ratio is very small. When we neglect
the eBects of all the nonsoft optical modes the relative
atomic displacements in a unit cell in the ferroelectric
phase is then simply

1 eg~(s, o)

have been de6ned in Sec, II as the eigenvectors of the
harmonic dynamical matrix. However, from straight-
forward perturbation theory it can be readily seen that
the mixing of the eigenvectors of the other optical
modes in the renormalized soft-mode eigenvector due
to anharmonicity is small as long as the anharmonic
dynamical matrix elements are small compared to the
differences of their frequencies squared (~&,~,0)'—(co,o)'
or simply (~q,~. )'. Consistent with our linear anhar-
monic approximation we shall assume that the above
condition is satisded. This is borne out by the experi-
mental observation of the relative temperature in-
dependence of the renormalized nonsoft optical-mode
frequencies. Thus, the anharmonic corrections to the
dynamical matrix renormalize the soft-mode frequency
but do not appreciably change the eigenvector; i.e.,
in Eq. (41) we may identify»N(s, o) with the experi-
mentally observed soft-mode eigenvector in the
paraelectric phase.

The conclusion we can draw from Eq. (41) and the
subsequent discussion is that the ionic displacements in
the (tetragonal) ferroelectric phase are proportional to
the ionic displacements of the soft optical mode. This
conclusion has previously been suggested by several
authors. ' "The ionic displacements in the tetragonal
phase of BaTi03 have been observed by x-ray diBrac-
tion. '9 However, a direct comparison between this
observation and the theoretical conclusion is not
possible because the eigenvector of the soft mode in the
paraelectric phase of BaTi03 has not been measured.
Nevertheless as pointed out by Cowley' a qualitative
agreement is obtained when one uses the soft-mode
eigenvector of SrTi03 that has been deduced from
neutron scattering experiments by Cowley' and infrared

reactivity experiments by Axe."
We shall now neglect all the nonsoft-mode order

parameters &Qq~. ..) in the following derivation of the
free energy since they have been shown to be small.
Furthermore, we shall express the soft-mode parame-
ters &Q,„)in terms of the components of the polariza-
tion per unit volume. From the definition of the polariza-
tion Eq. (31) and the property of the soft-mode eigen-
vector Eq. (28) it is readily found that

or (41)
where

(42)

according to Eq. (38). We are using the fact that the
polar tetragonal phase is described by the nonvanishing
of one of the three equivalent &Q...), 0=1,2, 3.This will
become clear later when we relate the (Q„,) directly
to the polarization per unit volume I',. In order to cor-
relate the above conclusion on the ionic displacements
in the ferroelectric phase with experimental observa-
tions one must 6rst recall that all the eigenvectors
» (b,o) including the soft-mode eigenvector» (s,o)

'8 C. Haas, Phys. Rev. 140, A863 (1965).

V(&)= Zs* (&)
@+71/2

and I', is the component of the polarization vector
along the cubic axis 0. The general expression Eq. (35)
for the free energy can now be used to derive an F
that only involves the uniform polarization I', and the
uniform strain tensor S p. VVe shall also make use of
various properties of the coeKcients of the free energy

"B.C. Frazer, H. R. Danner, and R. Pepinsky, Phys. Rev. 100,
745 (1955)."J.D. Axe (to be pubhshed).
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which are listed below. These properties of the free-
energy coeKcients for the perovskite structure are
proven in Appendices A-D. In the following all limits
of y going to zero are taken along one of the cubic axes.
Consider the following anharmonic coeScients of the
free energy.

(i)»m Vjiy, js—y

The nonzero tensor X» ee' is diagonal in pP' and yy

~» e'= bee b, v & (P;) (47)

Therefore, we must have om=o3 and 8(ai) along pi.
These give rise to the electrostrictive terms in the free
energy that are proportional to S„P,'. When all
three j's are the optical soft mode

(3)
P1 s P2~0 &1Pls&2P2s&3 P2V&'& is defined in terms of U'4' and Ut'& according to

Eq. (36). It is shown in Appendix 8 that (a) when one
of ji and jm is an acoustic mode (b,oi) while the other
is a soft o tical mode sa

vanishes id.entically. When only two of them are
acoustic modes we have

p ( 2)
&JIP1,i2P2, ja-P2

lim Us, y, ss y =limps e,e (ai)e (ay)p, (43) . ~„.,( ),( )„,( )

where X is a third-rank tensor independent of p which
vanishes identically for the perovskites. (b) When both
ji and j2 are the soft modes (so i) and (soy) it is shown
that V(2) is nonzero only when the polarization 0. is
the same,

»m Vjly, js-y —Vsal, sss bslssVs, s ~ (44)
pro

Ke will neglect the term in the free energy that is
quadratic in the strain that arises from V(') where
both j& and j2 are acoustic modes because the term only
represents a small anharmonic correction to the elastic
strain energy which comes from the Grst term in Eq.
(35).

ts I E(iu„')i&
(ii) lim Q U;,„„"~— +

i2O&is O&is

In Appendix A we will show that the quantity is
zero when j is one of the soft optical modes. When j
is an acoustic mode (b,a) we find that

1 E(o&„')
lim P U;, „„&y&~ + =li miP Xe,e~(a)P&;
y y Sss-s QO&„y iO„O

Xe„=8e~X, (45)

in which ) . . .p~ is zero. We will neglect the case when
all the j's are acoustic modes because such terms in the
free energy are cubic in the strain.

J m " ilpl i2p2 ispi i4p4
Tr. . . . (4)

apl

V&'& is defined in terms of U&'& and U&'& in Eq. (37).
The only case we consider is when all j's are the soft
modes (s,oi), (s,o2), (s,ay), and (s,as). In Appendix C
it is shown that V(4) is nonzero only when the polariza-
tions (oi, o4) appear in even powers. The correspond-
ing terms in the free energy have the form P,'P. '.
We neglect the contributions in the free energy from
V(4) that involves the acoustic modes which are pro-
portional to S'P' and S4.

(v)»m UJiyi. ....Jsys
"&

(p) ~P

Similar to our consideration for V( ) only those U(')
in which all the j's are the soft modes are retained. It
is shown in Appendix 0 that the polarizations (o i ' ' 'ay)
must appear in even powers. The other contributions
from U(') to the free energy that are neglected are
proportional to S'P4, S'P' and S'.

Using these properties we dnd that the free energy
reduces to the following Devonshire form

where Xp~ is a diagonal second. -rank tensor. When
Eq. (45) is substituted into the third term in the free-
energy Eq. (35) we obtain a thermal-expansion term
that is the diagonal strain components S„.

L101 m glP1 AP2 g2—P2
(8)

P1.P2~o

In Appendix A it is shown that the most important
contribution comes from the U(3) in which only one of
the ji, jy and jy is an acoustic mode (b,oi) and the re-
maining ones are soft modes (sam)(say). We then have

llm cVjlP1 j2P2 j& P2
rr. . . (s)

Pl P2~0

F= 'uQ P '+ 'big-P.4+ 'by Q-P 'P '-
o' o' o'so'

(o go')

+-'d P P.'+-'& P P.'P +-,'& P.'P P
ds O'

(o go')

+-', ei P S.,'+-,'e2 P S,.'—eyr g S..
o' dsd o'

(o gd')

+gi Q S,.P,'+gm Q S,.P.'.
d o's d

(o gd')

The coeKcients a, b, ~, h are given by

(49)

a= (o&,y'+lim V„,„y~'&), for any o
C(s)'

lim Q X„'ee'ee(ai) pie'8&(am) pm&' (46).
PliP2~0

(50)
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b= ( lim Vs,pj sFyy, tl1pg, sltp4 ), for any o (51)
3!q(s)4» p»

(4)3c—
y llm r so'pz so.pz, ss'pe, sa'p4 jp 0 7

q(s)' »p» ' (52)

A= (»m U„y, , p, ~"), for any o.

5!q(s)' »y»"'

eg ——2VMe)'

e2= N'Mv]',

pE
——longitudinal sound velocity (56)

v&= transverse sound velocity (Si)

VT= llm P Ub+gy p, —p
(A-M) i»ypP P-o iP

x( + I, (&8)

p, e(o) along same direction,

gg —— (1VM)'I' lim Ub, y
—..y, ~ . p

"
g(s)2 p-+0 zp

p, e(o) along same direction, (59)

gy= (lVM) hm —Ub, ~y gyp gy~~ y~

2g(s)' y, ' ip

p, e(o) along same direction; o&o'. (60)

This Helmholtz free energy describes the ferroelectric
transitions of the perovskites in the absence of external
electric field and external stress. The coeKcient a is
proportional to the renormalized frequency of the
soft optical branch [see Eq. (25)j and is strongly tem-
perature dependent since co, ' is small. The temperature
dependence of the renormalized frequency has been
discussed by Silverman and Josephm and by Cowley. "
The coefBcients b, c, d, and g are proportional to
anharmonic coeKcients with a leading temperature-
independent part and a temperature-dependent cor-
rection. Since this free energy and the thermodynamic
properties that follow from it have been thoroughly
investigated by Devonshire' in connection with the
ferroelectric transitions in BaTi03 we shall not repeat
the discussion here.

VL CONCLUSIONS

It was shown in Secs. III and IU that in order to
derive a power-series expansion for the free energy it

( hm Usryg, ..., srrp4, s'yab, sr'p~ )~ o W& (54)
4q(s)' »y»-'

3
dy —— ( hm U8+y zpppz pplya pal p4 p+Ilpb 8+II pb ) (55)

v( )' " '

is suffKient (but not necessary) to make the linear an-
harmonic approximation. This approximation is mean-
ingful because most of the phonon»modes are largely
unaffected by the transition as was erst emphasized by
Anderson. ' The free 'energy derived in this approxima-
tion is expressed, in terms of the complete set of micro-
scopic order parameters which is in general larger than
the set of order parameters used. in the phenomeno-
logical free energy of Devonshire. Many ferroelectric
crystals have the property that one optical branch is
much sof ter than all the other optical branches. For such
crystals it was shown in Sec. IV that the ratio of the
order parameters in the ferroelectric phase (Q;)/(Q, ) is
much less than unity where s denotes the soft mode and

j any other optical mode. This implies that the ionic
displacement in the ferroelectric transition is deter-
mined mainly by the soft-mode eigenvector. - This
conclusion has previously been suggested by several
authors. ' "There also appears to be some qualitative
experimental evidence for the perovskites to support
this conclusion as discussed in Sec. V. Furthermore, this
conclusion allows us to reduce the number of microscopic
order parameters to the same number as used in the
phenomenological theory of Devonshire. Such a reduc-
tion was explicitly carried out in Sec. V for the
perovskites and the resulting expression is identical
with that derived phenomenologically by Devonshire
with the coefficients determined in terms of microscopic
lattice parameters.
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APPENDIX A

We wish to prove here several properties of the
coeflicients of the free energy for the perovskite- struc-
ture which have been used in Sec. V. The proofs will
be based on several simple properties of the lattice
vibration eigenvectors in the long-wavelength limit.
For the optical modes at y=0, the group theory dis-
cussion of. Sec. V shows the eigenvectors are of the
form given by Eq. (38)

eb(bo; p=0)=mb'»'pb(b)e(o), (A1)

where e(o.) is a unit vector lying in turn along each of
the three cubic axes as the index 0. runs over the values
1, 2, 3. For the acoustic branch we use the method of
Born to expand the eigenvectors as a power series
in p along some Axed direction (p) of the vector p,"
eb~(bo" p) =W, b'o»(bo; p)

+ipW b&'&(bo" p)+ . (A2)

We need only consider tlm clirection p as being along
one of the cubic axes. For crystals such as the perovskites
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which have inversion symmetry about every atom W(')
vanishes because the dynamical matrix is real so that a
power series expansion in p contains no linear term.
Also we may use the same group theory argument as
for the optical mode to write W('} in the form of Eq.
(A1).Thus in summary Eq. (A1) is valid for all branches
and no linear term in p appears in the expansion of the
acoustic eigenvector.

Let us erst examine the contributions of cubic
anharmonicity to F. The thermal-expansion contribu-
tion to Ii is proportional to

a3( anil)™& oav;l'v', l' 2' "g—( l'v') ( )@~0
p

(i'&S)

The index j' denotes both the branch (b') and
polarization (o'). Also the function g(x) is defined as
g(x) =x '(-'+E(x)).

From Sec. II we recall that the- anharmonic coef-
ficients are related to the derivatives of the inter-
atomic potential by Eq. (5) of the text. Thus, the
thermal expansion is proportional to

Let us examine the cubic anharmonic coefficient
U;». ..»..., »&3& in the limit Pl, P2 —+ 0. When all three
j's are optical we have using Eq. (A1) togetlier with
the definition of the anharmonic coefficients (Sec. II)

(3)~bl~'lpls b2o'2p2y b3&3—p3

(1V g calaoao(ilk] j lokoj l3k3)
AIQ2cL3

Xvol(bl)v/2(b2)vp, (bo) }e,(o l)e,(o 2)ea, (v 3) (.A9)

Since. the quantity in the, bracket is a third-rank
tensor it vanishes due to the inversion symmetry of the
perovskite lattice. The term involving one acoustic
branch (b,) and two optic branches (bo2 and boo) gives
rise to an electrostrictive coupling linear in p given by

(3}~ boxolpl; b02o'2p2i b034'3—p3
Pl p2~0

=iplphaoao 'p(b„boo, bo3)e,(ol)e, (a2)e 3(oo), (A10)

where the Einstein summation convention is used and
)~2~3 ' is given by

eI
ao(bo; y)=limg 8 (lk) (bo", p) expip x(lk), (A4) &a ao

' =& C'a, a,a, (ilkl;iok2;4ko)
Lk SZp Xxp (llkl)V3&(ba)V22(bo2)V23(boo). (A11)

where
e "(j'Il')

8.(ik) =1V "'Q I „,(lk; llkl, llk2)—
mI, 'i'

kl

e„-(j'—p')
expip'[x'(ilk, ) x'(ilk—2) jg(oo, 2 ') . (A5)

k2

Note the index n denotes the component along a
Cartesian coordinate axis. Using the result for the
eigenvector given in Eq. (A1) we find

ao(bo;p) —lim P 8 (lk)vo(b)e (a) expip x'(lk), (A6)

In a power-series expansion in p the term independent
of p vanishes because

Q 8 (ik)vo(b)

To show that ), 3» is diagonal in the superscripts
we form the second-rank tensor

A,p(o2o3) =ll, , e,(o2)e, (vo). (A12)

In the cubic perovskite lattice any second-rank tensor
is diagonal so that A is diagonal for all polarization
indices (oo,oo). This implies that X is diagonal in its
superscripts. In a similar manner one may show ) is
diagonal in its subscripts so that Eqs. (46) and (47)
of the text follow.

Finally let us consider the case of two acoustic and
one optic branch which would lead to a term in F of
the form S'I'.

(3)llII1 Vbalo']pli ba24'2p2i b034'3—p3
pl lp2~0

= 2 Xalalaopleal(&1)eao(&2)8ao(e'3)plpp22' g (A13)

is a vector which must vanish in any crystal possessing a
center of inversion.

For the acoustic branch we also require the linear
term in p which may be written as

where the 6fth-rank tensor X given by

llalaoaoel =X I'a~aoao(llkl) l2k2q l3k3)

XXp'(ilk, )X,'(lok2)V2, (ba, )V22(bao)V2, (bO,) . (A14)

a3(b.a; Il)=i+ ppe (o)T p,
aP

where the tensor T p is

T p- Q8 (lk)xpo(lk)vo(b). —
Lk

(A7) Due to inversion symmetry the 6fth-rank tensor X

vanishes so that no coupling of the form S'I' appears in
F.

APPENDIX B

Since the perovskite structure is cubic the tensor 2 Consider the symmetry of V(') which is the coeflicient
must be diagonal, so that Eq. (45) of the text follows. of quadratic terms in F. V&2& is defined in terms of
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U&@ and U&+ according to Eq. (36) of the text so that

Vbtelpt;bueu yt-—gat(trt)geu(tr2){+ C'atauaue4(~l~lt 44t 4~8i ~84)»t(bl)»u(f 2)eku (f tr j P)ek4 (~+i l) exPuP1
lim+$~0

XLx (E~,)-xo(Eau)je»i pxuggu)-"(Eun. )jg(».. 0)+Z-uc...,....,gn, ;Sn," ~~6)», (b,)»,(bu)ek, -*g;p)
Xek, '(btr; —y)eku '(fi'tr'; y')eku (ft'tr'i y') expuiyl'Ex'(tlkl)-x'(tuku) j expuib

Cxu(~bijou)

xo()4p4)j
Xexpuy' pxy(lbkb)-x0(l&6) jg(40b;y)g(40b;y )) . (A15)

Fol the case wllell 51 and 52 are optical branches we require only the term with pl ——0 so that the quantity in the
curly bracket becomes a second rank tensor component T g g Since the perovskites are cubic this tensor must be
diagonal so that V&23 is diagonal in the polarization index, i.e.,

(2) x Tr (23~m ~ ~ox4s'|pi~4sn-pa ~n, n~ &Oi, &os ~

yg~o

When bl is an acoustic branch and bu an optical one we first note that the term with pl= 0 vanishes because the
sum over (llkt) in the curly bracket vanishes since for an acoustic mode Nk, (bl) is independent of kt and by transla-
tional invariance Pttktc'at. ..a„(llktt .Eche) =0. For the term linear in Pl the curly bracket is equal to 4X t »Pt„
where X is a third-rank tensor independent of pl which vanishes due to inversion symmetry.

APPENDIX C

Consider the symmetry of V&43 which is the coefficient of quartic terms in P. V&43 is dined in terms of U'"
and U 'i according to Eq. (3'I) of the text. We consider all four indices to be optical so that

&buta'tyt; buueuyu; 8 yuuu&ub 4ua 864 4=&el(trl)&au(tru)&eu(tru)eau(tr4) {& c'etaueuau(it4t 4&2i iuitlut E44)pkt(~01)»u( 02)»u(~08)
lim yy, m, y3, ~0

X».(b«)+& C'-. ..-(~t&t' "Eu&6)»1(&01)».(buu)»(&08)»(b04)e""(b~;ly)eku"(b~' —y)g(~b. ;y)) (A&6)

The quantity in the curly bracket is a fourth-rank tensor. In a cubic crystal the only nonvanishing components of a
fourth rank tensor are those whose indices occur in pairs so that V&43 vanishes unless the polarization indices

(ol, tru, tru, tr4) occur in pairs.

Consider the symmetry of U;», ...,,~,
&'3 which is the coeScient of sixth-order terms in F. From the de6nition

of U(63 in Sec. II of the text we Gnd when b» ~ b6 are each optical branches,

Ubtetpt; ..., bueupu gel(&1) ' ''46(&6) {+ @atau. ..au(~1~1& ' ' ' i6~6)»t(bl)»u(bu) ' ' '»u(~6)) .
iim Ply' ' ' P6

(A17)

The quantity in the curly bracket is a sixth-rank tensor. In a cubic crystal the only nonvanishing components of a
sixth-rank tensor are those whose indices occur in pairs so that U&'3 vanishes unless the polarization indices occur
1n pMrs.


