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A power series for the free energy is derived in the linear anharmonic approximation. This free energy is ex-
pressed in terms of a complete set of microscopic order parameters which determine the ionic displacements
in the ferroelectric transition. In general this complete set of microscopic order parameters is larger than the
set of order parameters used in the phenomenological free energy of Devonshire. However, for those ferro-
electric crystals which are characterized by only one soft optical branch, this larger set may be reduced to
the same number as used by Devonshire. Such a reduction is explicitly carried out for the perovskite struc-
ture and the resulting expression is the same as that derived phenomenologically by Devonshire with the
coefficients expressed in terms of microscopic lattice parameters.

I. INTRODUCTION

ERROELECTRIC crystals may be conveniently
separated into two classes according to the nature
of the phase change occurring at the Curie point.!
The first group is characterized by an order-disorder—
type transition, e.g., triglycine sulfate. The second
group is characterized by a displacive-type transition
as exemplified by BaTiO;. In this paper we shall confine
ourselves to a study of the displacive ferroelectrics since
its nature is better understood.

The main properties of ferroelectrics may be under-
stood with the aid of a single phenomenological f1_e-
energy function describing both the paraelectric and the
ferroelectric phase. Such a free energy was first in-
troduced by Devonshire.? This free energy is a power-
series expansion in the macroscopic order parameters:
the polarization per unit volume P and the strain
tensor .S. The coefficients of the power series are phe-
nomenological constants which may be determined
from the properties of the paraelectric phase. The
essential validity of this free energy has been confirmed
by numerous experiments.?

The understanding of ferroelectrics from a micro-
scopic approach was developed in the work of several
authors. Slater pointed out that the dielectric catas-
trophe at the Curie point of perovskite-type ferro-
electrics may be understood to be a consequence of an
unusually large Lorentz factor between a pair of atoms
in this structure.* A further advance was made by
Cochran,® Anderson,’ and Landauer et al.,” who put
forward the idea of an anomalously soft and tempera-
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ture-dependent transverse optic branch to explain the
origin of displacive ferroelectrics. The temperature-
dependent soft transverse optic branch was subse-
quently observed by infrared-reflectivity measurements®
and inelastic-neutron-scattering experiments.® These
fundamental ideas provided a firm basis for further
quantitative and more detailed studies of ferroelectricity.

One line of development of a quantitative micro-
scopic theory of ferroelectrics has been devoted to the
study of the properties of the paraelectric phase. For
example, Silverman and Joseph!® and also Cowley™
have investigated the temperature dependence of the
lattice-vibration frequencies arising from anharmonic
interactions between the normal modes in the para-
electric phase. Another line of development is the
derivation of a single free-energy function which may be
used to describe both the paraelectric and ferroelectric
phases. Cowley!! has indicated how this may be carried
out using a diagrammatic technique, and Doniach has
outlined a derivation of the free energy based on a
variational principle.'?

The purpose of this paper is to approach the problem
of displacive ferroelectrics along the latter line of
development mentioned above and to present a de-
tailed and explicit derivation of the free-energy func-
tion from a microscopic Hamiltonian describing the
lattice dynamics of the anharmonic crystal. One obtains
in the linear anharmonic approximation a free energy
which is a power series in a set of microscopic order
parameters. The set of microscopic order parameters
consist of (a) the thermal-expectation values of the
normal coordinates of all the optical branches in the
long-wavelength limit which determine the change of
the equlibrium ionic positions in the ferroelectric transi-
tion, and (b) the thermal-expectation values of the

(1;(;}) S. Barker, Jr., and M. Tinkham, Phys. Rev. 125, 1527

9R. A. Cowley, Phys. Rev. Letters 9, 159 (1962); and R. A.
Cowley, Phys. Rev. 134, A981 (1964).
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(1963); R. 1. Joseph and B. D. Silverman, sbid, 133, A207 (1964);
and B. D. Silverman, sbid. 135, A1596 (1964).

uR. A. Cowley, Phil. Mag. 11, 673 (1965).

125, Doniach, in Proceedings of the International Conference on
Lattice Dynamics, edited by R. F. Wallis (Pergamon Press, Ltd.,
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normal coordinates of the acoustic branch in the long-
wavelength limit which determines the spatially uni-
form strain tensor. This is a more general free-energy
power series than the phenomomenological free energy
introduced by Devonshire because the latter is expressed
in terms of a smaller set of order parameters, i.e., the
entire set of optical branch order parameters is replaced
by the polarization per unit volume. However, it is
shown that when the frequency of the soft optical
branch (in the long-wavelength limit) is much smaller
than the frequencies of the other optical branches the
general free-energy function reduces to the Devonshire
form. The coefficients of the free-energy function are
then explicitly evaluated in terms of anharmonic
couplings parameters.

In Sec. II we discuss the Hamiltonian describing the
ionic motion of the ferroelectric crystal. In Sec. III
we derive the equations for the thermal expectation
values of the normal coordinates and their correlation
function (i.e., the phonon Green’s function). In Sec. IV
a general power series for the free energy in terms of all
the microscopic order parameters is derived in the
linear anharmonic approximation. In Sec. V the general
free energy is evaluated for the perovskite ferroelectrics
and is shown to reduce to the Devonshire form. Finally
in Sec. VI the results are summarized and discussed.

II. HAMILTONIAN FOR FERRO-
ELECTRIC CRYSTAL

We wish to construct a Hamiltonian for the nuclear
motion which is able to give rise to a ferroelectric
transition and which also incorporates most of the im-
portant properties of ferroelectric crystals. These
properties include a large dielectric constant, spon-
taneous polarization, electrostriction, as well as many
other properties, all of which are conveniently con-
tained in the phenomenological power series for the
free energy devloped by Devonshire.?

In the adiabatic approximation an effective potential
function ® exists for the nuclear motion. The nuclear
Hamiltonian may then be expressed as a power series
in the nuclear displacements of the kth atom in the /th
unit cell [#(lk)] from its equilibrium position x°(’k).
The equilibrium position is defined as the position where
the potential energy has an extremum so that H has
no linear terms in the displacement,

1
H= Z %mku(lk)u(lk)+z ;¢ﬂ1a2 (l1k1; lzkz)ual(lllh)

1
Xuaz(l2k2)+; 2 Basazas(likes; loks; loks)

Xthay (Wker)thay(lok2)thas(lsks) - -+ . (1)
We use a notation which is the same as that of Born
and Huang,'® except where other symbols are explicitly

13 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(The Clarendon Press, Ltd., Oxford, England, 1954).
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noted. Thus ®.,....,(lik1- - - luks) is the nth derivative
of the potential with respect to the displacements in-
dicated in the arguments of the function. The Einstein
summation convention is also used where convenient.
It is important to recognize that the equilibrium posi-
tion which has been used for the expansion of H is only
an extremum of the potential energy [i.e., ®.(lk)=0]
and not necessarily an absolute minimum. To describe
a solid which undergoes a ferroelectric transition from a
paraelectric to a polar phase it is convenient to choose
the equilibrium positions as being the atomic positions
in the paraelectric phase. The success of the single
free-energy function of Devonshire in describing the
properties of both the paraelectric and the ferroelectric
(polar) phase suggests that the expansion of H about the
equilibrium positions in the paraelectric phase will
enable us to describe both the paraelectric and the
ferroelectric phase.
We define normal coordinates Q(jp) by

ta(lk)= (miN) 12 3 e*(jp)Q(jp)
P

Xexp[ip-x0+ip- '], (2)
where m; is the mass of the kth atom, IV is the number
of unit cells in the volume, x;° denotes the equilibrium
position of the /th unit cell, and x;° the relative position
of the %4th atom in the cell and x°(’k)=x;"+x;°. Also
the polarization vectors ex(jp) are the eigenvectors of
the harmonic dynamical matrix corresponding to branch

J and momentum p. The eigenvectors satisfy the
orthogonality and completeness relations

; ex*(jp)ex**(5'P)=diy;
NP )
2 ex(7p)ew ™ (§,0) = Oaplii -
7

The Hamiltonian may be expressed in terms of normal
modes as

H=33 [Q(im)Q(—p)+"(jp)*Q(jp)Q(j—p)]

1 «
+— 2 Upijispais ..pnin @ Q(J102)

7! n=3
XQ(7zp2) - * ‘Q(fapn), (@)

where the squares of the harmonic frequencies [w®(jp) J?
are the eigenvalues of the harmonic dynamical matrix
and the anharmonic coefficients are defined by

q’amz...an(llkl; l2k2' * lnkn)

(mimy: - ~my,)?

Upiinipsizi. pnin™=N""23]

Xer,*1(1D1) 2y (FeP2) * - * €8, %(fnDn)
X exp[ip1- X0(lukr)+ipe- X0(loka)++ + - iPn- X°(lnka) ]
5)
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The anharmonic coefficients are nonvanishing only
when the wave vector sum

is a reciprocal lattice vector or zero.

It has been pointed out by several authors®7 that the
behavior of ferroelectrics may be understood in terms
of an optical branch with an anomalously low frequency
near p=0. The soft optical modes near p=0 arise from
a close cancellation of short-range repulsive forces and
of attractive Coulomb forces.?® It has also been shown
that the renormalized frequencies of the soft optical
modes near p=0 are strongly temperature-dependent
owing to anharmonic effects.®710 The temperature
dependence of the renormalized frequencies has been
directly observed in SrTiO; by Barker and Tinkham?®
from infrared reflectivity measurements and by Cowley
from inelastic scattering of neutrons.? Thus, to describe
a crystal which makes a transition from a paraelectric
to a polar phase we characterize it by imaginary
harmonic frequencies for some soft optical branch near
p=0.7710 On the other hand a crystal which is para-
electric at all temperatures is characterized by positive
harmonic frequencies for all branches.!* Since our main
interest here will be to describe both the paraelectric
and the ferroelectric phase we will usually think of the
soft mode optical branch with imaginary harmonic
frequencies near p=0, i.e., for the soft mode near
p=0, «*(jp)*<0.

In choosing the anharmonic terms for our model
Hamiltonian we may be guided by the phenomeno-
logical Devonshire free energy. The total Hamiltonian
given by Eq. (4) includes anharmonic terms of all
orders and we include in our model only the orders
which are needed to derive the phenomenological
Devonshire free energy. Thus, the cubic anharmonicity
(n=23) is retained because it leads to an electrostrictive
coupling between the strain and the polarization in
addition to the usual thermal strain. The quartic anhar-
monicity (#=4) is retained because it leads to a P* con-
tribution to the free energy which appears in the Devon-
shire free energy. The fifth-order anharmonicity (r=>5)
will be dropped because it leads to a contribution to the
free-energy linear in strain and quartic in polarization.
Such a term does not appear in the Devonshire free
energy and represents a correction to the electrostrictive
coupling between the strain and the polarization. We
retain the sixth-order anharmonicity (#=6) because it
leads to a PS¢ contribution to the free energy which is
essential in describing a first-order transition. Accord-
ing to Devonshire no terms beyond P need be retained
in the free energy so that we drop all anharmonicities
of order n>6.

14 A small correction to this classification arises because the
zero-point motion of the atoms renormalizes the frequencies even
at zero temperature as shown in more detailin Sec. III.
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The Hamiltonian we have discussed so far has
neglected the interaction of the lattice vibrations with
hte macroscopic electromagnetic field produced by the
lattice vibrations themselves. The local field has of
course been included in the definition of the harmonic
frequencies. We may separate the macroscopic field E
into a solenoidal part (E,) and a irrotational part
(E.). The transverse part E, is readily shown to be
strictly a retardation field'3 which vanishes in the static
limit. Therefore, it does not play a direct role in
determining the ferroelectric transition in which only
the appearance of static-order parameters like the static
polarization per unit volume are considered. Neverthe-
less, E, has an indirect effect on the transition because
of its coupling to the transverse optic lattice vibrations
which give rise to the well-known change, in the phonon
and photon dispersion curves in the long-wavelength
region of momentum space’® (p<103 cm™!). In our
formalism this corresponds to a change in the phonon
Green’s functions for the transverse optical phonons
in the small region near p=0. As the coefficients of the
free energy contain these Green’s functions, E; has a
finite effect. However, this effect is negligibly small
because as we shall see only the averages of the Green’s
functions over all momentum space appear in the
coefficients. Thus, we are justified in neglecting the
transverse macroscopic field entirely. For the longi-
tudinal macroscopic field Ej;, one can shown that it is
essentially electrostatic in nature.®! Although the de-
composition of E into solenoidal and irrotational parts
is not unique it is convenient to make the choice that
Ei; be the instantaneous Coulomb field of the charge
distribution.!® For wavelengths short compared to the
size of the crystal (but still large compared to the
interatomic distance), E is given by —4xPy,, where P
is the polarization per unit volume. This leads to the
familiar separation of the frequencies for longitudinal
and transverse optical vibrations. On the other hand,
when the wavelength is comparable or larger than the
size of the crystal, E; is no longer equal to —47Py,
since surface effects must also be taken into account.
The effects of Ey; on the optical vibrational spectra
cannot be determined explicitly as easily as before. But
for our purpose we shall simply assume that the con-
tribution of the longitudinal macroscopic field is in-
cluded in the harmonic frequencies and rely on macro-
scopic symmetry principles to determine the nature of
these frequencies in the long-wavelength limit.

III. DERIVATION OF EQUATIONS FOR THE
PHONON GREEN’S FUNCTIONS AND THE
THERMAL EXPECTATION VALUES OF
THE NORMAL COORDINATES

In this section we will derive the necessary equations
to determine the lattice free energy. We begin by finding
the equations of motion for the normal coordinates
Qjp- For the purpose of formal manipulation we in-
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troduce an additional fictitious ‘“‘source” term in the
Hamiltonian (4) that has the following form:

Hs=X J(j;p; )03()- (©)

J is to be set equal to zero after the desired equations are
generated. Then from (4) and (6) and the canonical
commutation relations

i[Qip(t) ,Qi’ P (t):|= 0jir 5pp' ’ (7)

we obtain
1

(aZ/atZ)Q”(t) +wl‘02 Q.“(t) +2 Z U*Ilyﬁll 282 <3)Qlll (t)Ql‘?. (t)

| nipe

1
+_’ Z U—u,nlmz.u3(4>an(t)Qn2(t)Qna(t)

3 ! k1p2p3

1
+5_l- Z U—M,m ----- us(S)Qm(t) Tt Qﬂs(t) = ——J_,,(t) )
' ®)

where the subscript u is used to denote the pair (4,p)
and —u denotes (J, —p).

We will now define in the usual manner!® the thermal-
expectation value of any operator 4(f) in the presence
of the source J as

Tref2(SA),
Adyr=—"7", )
TreBHES

where B=1/kgT, T being the temperature; H is the
Hamiltonian (4); and S is given by

s=| exp(—i f a z n(z')&(z.'))l. (10)

All times are purely imaginary and restricted to the
interval {0,—48}, and + denotes a positive time order-
ing in this interval. Note that the definition (9) reduces
to the definition of thermal-equilibrium expectation
value when J is zero. For convenience we will make the
substitution

1)

Thus, 7 is real and runs from 0 to 8. Equation (10)
for S then becomes

5= (exp[— f 4 > Jﬂ<r'>Q,‘<T'>])+.

The equation satisfied by the thermal expectation
values (Qu.(f))s or {(Qu(7))s can be directly obtained

=—1ir.

(12)

15 1,. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962).
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from (8)

1
- (‘92/37'2)(QM(T)>J+‘*’#02<Q#(T)>J+'2_' > U, na®

X(Qm(T)Quz(T)>J+_ Z U—u.m.nz,ua(4)

1
3! wiuzns

1
X(Qm("')Quz(T)Qus(T»J‘"; Z U_p,..., us(ﬁ)

X(Qm("') ot 'an(T»J: —]—M(T) . (13

The phonon Green’s' functions which describe the
vibrational excitation spectra are defined in the pres-
ence of J as

Dy, (7,7"; J)=—{([Qu(r)—{Qu(7))s]
X[Quw ()= (Quw (1)) D+)s
=—{(Qu(1)Quw (7))+)s
+ (QM(T)>J<Q#' (™))s.
Equation (14) can be written equivalently in the
following formal way upon using the definition (9)
and the fact that boson operators commute inside the
time-ordering sign
Dy (7,73 7) = (8/8] - (7"))Qu(7))s
=(8/0 (1))Q-w ().
This allows us to write down immediately the equa-

tions for the Green’s functions by taking the functional
derivative of Eq. (13) We get

(14)

(15)

62
Dyl 's D@D 75 )

T

1 )
+— Z U—n,m,uz(3)_‘—“<Qu1(7')Qu2(T)>J

2! K1p2 6]_“’(7_/)
+3! H1n2u3 THkLEL 3T _u(7) Qui(7)Que(7)Qus (7))
)
o U—M,m ..... ;45(6)—— (7)) Ous(r
+5' Mlgus 5]_”'(7',)<Q ( ) Q ( )>J
==0dud(r—7"). (16)

Our next step is to express all expectation values of
more than one normal coordinates and their functional
derivatives in (13) and (16) in terms of the phonon
Green’s functions and their functional derivatives.
This can be readily done by using (9), (14), and (15)
systematically. For example, we have

(Qui(7)Qus (7') yr=—Dy —u2(7,75)

+ (Q#l(*'))J(Quz(T))J , (A7)
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)
0=~

m,—uz(T:T; J)

—D
8J_w(7’)
+<Qu1(7)>JDu2,u’ (7':7',2 J)

+(Qu(r))sDpa (7,73 ). (18)
The result is a set of very complicated coupled equations
for the phonon Green’s functions and the thermal-
expectation values (Q,)s. These equations in principle
give a complete description of the system. The free
energy may be obtained by integrating Eq. (13) in the
limit of J — 0 with respect to the (Q,). A power-series
solution to the free energy will result if we expand the
exact Green’s functions in (13) in terms of the harmonic
Green’s functions and the anharmonic coupling parame-
ters. However, such an expansion cannot be made for
the soft-branch Green’s function because the harmonic
frequencies are imaginary. Thus for our purpose of
deriving a free-energy power series of Devonshire

1 1
“’#02<Qu>+—! > Ui ie® ((Qm)(an) =Dy (O)) +—

2! pipe

1
+— Z U—n,m ..... Ms(ﬁ)(<Qn1>' o <Qus>_ 10<Q#1>’

5! 38R0 1
and
62

_;Dl‘:u’ (r—7")+w, 2Dy w (r—7")+
T

ppg
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form we must drop the Green’s function for the soft
branch. Furthermore, to simplify our derivation it is
convenient to consider that all the anharmonic coupling
parameters are small and hence that we need to retain
only terms linear in these parameters. This linear
anharmonic approximation is not necessary for ob-
taining a power series for the free energy but greatly
simplifies the derivation. In some crystals such an ap-
proximation may not be valid because the anharmonic
coefficients are not small so that for example!® the
anharmonic correction proportional to [U®7]? is com-
parable to that proportional to U®. Our formalism can
be readily extended to treat this more complicated
situation. The linear anharmonic approximation is
obtained first of all by neglecting all the anharmonic
terms in (13) and (16) that contain the functional
derivatives of the phonon Green’s functions since
these lead to terms which are nonlinear in the U®™.

When we drop all the terms that contain 8D/é8J,
Egs. (15) and (16) become

Z U—l‘:l‘l-l‘2.l‘3 (4)(<Q#l><Qll2><QI‘3>_ 3<QM1>DM2 .—-Ms(O))

31! pipops

ot (Qu3>Du4.—us(O) + 15<Q#1>DM2 —H3 (O)Dm,ﬂta(o)) =0 (19)

1

Z U—uym,uz(?')(Qm)Dm,u’(T_ T’)+_ Z U—n,nx,uz,us(4)

2! wipans

1
X«Qm)(Qm)_Dm.—uz(o))Dna.u’(T“ TI)‘I‘Z Z U_yp...., MB(G)(<QM1>' o (QM)—6<Qm><Quz>D;u.—ﬂs(O)

weeps
+3Du1,—M2(O)Dﬂs-—m (0))Du5,#’ (7'_ 7',) = 5##’6(7'_ 7',) )

where we have let the external source J go to zero and used the fact that as a result the thermal-equilibrium ex-
pectation values of the normal coordination become time-independent, i.e., {Qu(7))s=0={(Q,) and the phonon
Green’s Functions become functions only of the relative times. D, ,,(0) is used to denote D,,,,,(7,7). It is now more
convenient to describe (19) and (20) in terms of the Fourier transforms of Green’s functions D, (w,) defined
according to

(20)

Dyw(r—1') =% 2 entIDy y(wn), 21
where
w,=(2m/B)n; n=integer. (22)
From (20) we see that in the harmonic approximation D, «(w,) is given by
-1
Dusten=ine( ) 3)

which is diagonal in u where we recall that u denotes the pair of quantum numbers jp. In the presence of anhar-
monicity ‘the Green’s functions are no longer diagonal. However, one can easily verify from (20) that the off-
diagonal Green’s functions are small compared to the diagonal ones and may be neglected. We then find that
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Djy iy (wn) reduces to an identical form as that of (23), namely

Dijp,iry (wn)= 5:‘:"5»’(

S 24
wnz-l-wjpz) @

The w;,? are the squares of the renormalized phonon frequencies and are given by

2 02 ® 1 " 1 N (“’J‘m) 1
Wip? =i+ 22 Ujp,ip,itnn Qo) T3 22 Uip,iniioi-m + +3

J1p1 p1

X (Qizpz) +% Z U J—p,ip,41p1,71—P1,52p2,52—p2 (6)(

J1p152p2

Z Ui—p.ip,jlpx,izpzm(Q:'m)

Wj1p1 Wiipy 172p2

1 ;N(wjlpx))( 1 ,N(w,-m)> oy

2011

T
Wjspg

ry

Wjipy zwjzpz 71p2°++73D3

. 1 N\ | 1
XUj—p.ip.inpl,izpz.J'spa,ia—pa( )<lepl><Qj2P2> T Z

Wisps

Wjaps

We have made use of the identity

UJ'—-p,J’p,J'lm...i4p4(6)<Qilp1>' ° <Q:i4p4) . (25)

1
24 jip1---jspa

1
D;y,j5(0)=Djp,jp(r—17) =B 2 Dip, jp(wn)

(26)
1 N(wjp)
B _(Zw,-,,+ Wjp )
and
N (wjp) = (ePor—1)" 27

is the equilibrium phonon-distribution function. The equations satisfied by the thermal-expectation values of the

normal coordinates are readily obtained from (19) to be

1 N(wjp)
_wjp()z(ij):% Z Ui—Prjlpl,jl—Pl(3)< + = )"‘%

Z U j—P,jlpl,j2P2(3) (QimXQizpz)

Jip1 Wjip1 Wiipy J1p152p2
1 @ 1 N(‘*’hpz) 1 ©
+§ Z U'—p,iml.jzpz,iz—pz <Qi1p1> =+ +E Z Uj—-p.ilpl,jzpz,japs <Qi1p1><Qizpz><Qisps)
Jjip1j2pe Wj2p2 Wjaps J1p1-++j3p3
1 N(""J’apa) 1 N(wiapa) 1
+% Z Uﬁ—p.iwly:izpz,iz—pz.japa.J's—-Ps(G)(th)( f )( } )+'— Z
1p1++-J3ps Wisps  Wizps 2wjsps  Wisps 12 jip1---japa
1 N (wﬂm)
X Ui—P.ilpx ...73P3,74P4,74—P4 (6)<Qf1p1><Qf292)(Qispz)(—+ )
Wjspa Wjspg
1
+— Z Ui-p,ixpl...jspa“”(th)' o (stps>~ (28)

To complete the linear anharmonic approximation we
replace the renormalized phonon frequencies w;, ap-
pearing in (25) and (26) by the harmonic phonon
frequencies w;°. This cannot be done for the soft
phonon modes, i.e., those with an imaginary w;,°. These
soft modes, as discussed in the Introduction, belong
to certain optical branch and occur near p=0. We
therefore omit all the terms in (25) and (26) that con-
tain the factor (1/2wj;+N(wsp)/wip), where j corre-
sponds to this soft branch. As discussed earlier such a

120 jip1---ssps

step is necessary to obtain a power series for the free
energy. The essential validity of the Devonshire power-
series expansion has been verified by a considerable
amount of experimental data. For example in a first-
order transition the power series for F implies a rela-
tion between the dielectric constant of the two phases
at T, €para=4€torro. This relation has been experi-
mentally verified.? On the other hand, it is of consider-
able theoretical interest to retain and examine the
soft-mode terms which give rise to extra terms in the
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free energy that have no power-series expansion in the
{Q) which may play a significant role at temperature
close enough to the transition temperature. In the
present analysis we shall not investigate the implica-
tion of these terms.

IV. ORDER PARAMETERS AND FREE ENERGY

In this section we examine the equations derived in
Sec. III for the thermal-expectation values of the nor-
mal coordinate displacements {(Q;,) in the linear anhar-
monic coupling approximation. From these equations
for the normal coordinates (Q;,) we shall also derive
the free energy by integration. We shall refer to the
thermal expectation values of the normal coordinate
displacements as simply microscopic order parameters
for reasons which will become evident from the sub-
sequent discussion. The relation between the micro-
scopic order parameters {Q;,) and the macroscopic order
parameters appearing in the Devonshire free energy
(Fp) will also be derived.

The macroscopic order parameters appearing in Fp
are a spatially uniform polarization vector per unit
volume P and a spatially uniform strain tensor whose
components are denoted as S.s. We may relate the
macroscopic and spatially uniform strain to the micro-
scopic order parameters of the acoustic branch by

Sag= (VM) L §
J

X{Le*(p)Pe+ePD7)Dalip@in)hrim pso, (29)

where M is the total ionic mass in a unit cell and
is the polarization vector normalized to unity. The
uniform strain is thus related to the limit of the order
parameters as p— 0 and depends on the direction of p
in which this limit is taken. We shall subsequently find
that the equations for the order parameters imply
that p(Qjp)iim p-o remains finite for the acoustic
branch only so that only the acoustic order parameters
contribute to the macroscopic strain tensor. We may
also relate the macroscopic order parameter P to the
microscopic order parameters by

Po=(voV)! ‘kv_,l Zi*¥(u.(Ik)), (30)

where Z;* is the effective charge of the kth atom in a
unit cell and v is the volume of the unit cell. By using
the expansion in normal coordinates [Eq. (2)] this may
also be written as

ex*(4p)

mkl/2

Pa= (o1 £ 224 0} (31)

lim p>0-

In the long-wavelength limit we may use the method
of Born to expand the eigenvectors as a power series
in p along some fixed direction of the vector p denoted
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as p,16
(D) =War @ (I)+ipWap P (5P)+-+-.  (32)

For the acoustic branch W, @ (jp) is proportional to
mi!/? so that this term does not contribute to P,
because of charge neutrality, ie., Y.rZi*=0. The
polarization may then be separated into a sum from
optical and acoustic branches as

Zy*

Pu=(@N12)1 T

kj=opt. pmt/2

W ot (5)(Q5)

k*

+EVY T

kj=ac mk1/2

{ip(Qip) }tim po

XWarP(jp), (33)

where we have made use of {{Qjp)}1imp-0=0 for the
optical branches. The symbol (Q;) is an abbreviation
for (Qjp=0). For any crystal with inversion symmetry
about every atomic position (e.g., perovskite structure)
Was®(5p) vanishes so that the acoustic branch does
not contribute to the polarization.

From the discussion of the microscopic and macro-
scopic order parameters it becomes clear that a spatially
uniform ferroelectric transition may be described by the
set of order parameters (Q;;) in the limit p— 0. We
also note that the microscopic set of order parameters
is more complete than the macroscopic set because the
macroscopic polarization P lumps all the optical-mode
order parameters (Q;) together rather than specifying
the value of each optical-mode order parameter
separately.

Consider the equations for the microscopic order
parameters in the linear anharmonic approximation.
As discussed in Sec. II this amounts to replacing all
renormalized phonon frequencies w;, appearing in the
anharmonic terms of Eq. (28) by the harmonic fre-
quencies w;,° and omitting all anharmonic terms on the
right-hand side of (28) which contain the factor (1/2w;,
=N (wjp)/wjp) when j corresponds to the soft optical
branch. The first term on the right-hand side of Eq.
(28) is proportional to U® and describes the ordinary
thermal expansion of the crystal. For many crystal
structures, including, for example, the perovskites, the
thermal expansion only contributes to the acoustic
branch displacements, i.e., the contribution of thermal
expansion vanishes when j is an optical branch. This
is shown explicitly for the perovksite structure in Sec. V
and Appendix A. For simplicity we shall limit our dis-
cussion to those crystal structures where this holds,
although the discussion may be extended to other
crystals by subtracting out the contribution of thermal
expansion to the optical-mode displacement. The solu-
tion of Eq. (28) for all the optical modes that cor-
responds to the paraelectric phase is then (Q;)=0.
However in general there are other solutions of Egs.

16 See Ref. 13, p. 229.
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(28) which correspond to the ferroelectric phase, i.e.,
(0;)#%0 for some optical branches. The conditions
necessary for a ferroelectric phase solution to exist as
well as its relative stability with respect to the para-
electric phase are most easily discussed from the free-
energy function to be derived later in this section. We
first wish to note two important properties of the solu-
tion corresponding to the ferroelectric phase obtained
from the Eqs. (28) for all branches j.

(a) Let us consider Eq. (28) for the acoustic-branch
order parameter, i.e., {Qj..;p) in the long-wavelength
limit. A general property of the anharmonic coefficient
involving the acoustic branch is that Uj,,,p:jsps. . .inpn™
vanishes at least linearly in p. This property follows
directly from translation invariance and the properties
of the eigenvectors of the acoustic modes in the long-
wavelength limit. Thus, the right-hand side of Eq. (28)
vanishes linearly with p. Since the square of the
harmonic frequency for the acoustic branch vanishes
as p? we conclude that {p(Qju,»)}1imp—o is finite. The
corresponding strain is given by Eq. (29) and is also
finite in the limit » — 0 as one would expect. In order
to describe the most general strain the limit p— 0
must be considered along three different axes. The
character of the solution of Eq. (28) for an optical-
branch order parameter is quite different since neither
the square of the harmonic frequency nor the anhar-
monic coefficients vanish in the long-wavelength limit.
This implies that {Qjo,,»=0) is finite so that

{P<Qjop,p>}l'im‘p.>0=0.

(b) The particular optical branch index j enters in
the right-hand side of Eqgs. (28) only through the

1 : 1 1 1
F=; Z (‘*’hmo)2<Q1’1p1><ij—p1>+; Z Vj1+p1;jzpz (2)<Qilp1><QJ‘zpz>+'— Z Uj1+p1;jzp2;h—pz(3)(
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anharmonic coefficients. Therefore, it we make the
reasonable assumption that the average anharmonic
coefficients for the different optical branches  are
of the same order of magnitude we see that the left-
hand side of Eq. (28) is of the same order of magnitude
for all optical modes j. This implies that in the ferro-
electric phase the ratios of the optical-order parameters
are roughly inversely proportional to the squares of their
harmonic frequencies

<Q.’l' 1>/ <QJ'2> =~ ("-’jzo) 2/ ("-’J’ 10) z.

Since for most ferroelectric crystals the square of
harmonic frequency of the soft optical branch is much
smaller than the remaining optical branches we con-
clude that the largest order parameter (i.e., displace-
ment coordinate) in the ferroelectric phase is the soft
mode (Qs) (which may be degenerate) and the dis-
placements of all other optical modes j are smaller by
the ratio ~w,"?/w;%2. This important conclusion will
be further discussed and compared with experiment in
the application of the general theory to the perovskite
structure (Sec. V). This conclusion will also enable us
to eliminate the nonsoft optical modes and thus derive
a greatly simplified form of the free energy which will
reduce to the phenomenological Devonshire free-energy
(Fp).

We may derive the Helmholtz free-energy F by
integrating Eq. (28) for the order parameters. The
integration is particularly simple in the linear anhar-
monic approximation because all the frequencies ap-
pearing in Eq. (28) are harmonic frequencies and
hence independent of the order parameters. The
integration yields a free energy given by

(34)

N (wizpzo)>
21

) .0
203j3p2 Wjsp2

1 1
x(QJ'lPl>+; Z Ui1+p1;1'2p2;jspa (3)(Qilp;)(szpz><Qjaps>+; Z ij+p1;izp2;J'aps;1’4p4(4)<Qj1p1><Qizp2><QJ’3p3><QJ‘4p4)

1
+a Z Ujl+p1;i2p2;y’sps;J'4p4;jspa;feps(6)<Qi1m)(QJ'zpz>(Qjap3><Qf4p4><QJ’spa><stps)+R(T) . (35)

The coefficients V» and V® are linear combinations of the anharmonic coefficients U®, U@, and U ® given by

. 1 | (“’J’po)
Vj1+p1;7‘zpz (2)”_‘7 Z Ui1+p1;j2p2;jp;i—p(4) +
20;° Wjp
1 N(wjp?) 1 N(wjrp®)
P i'p
1
+§ Z UiH—px;jzpz;ip;:i~P:i'p’;i'—p’ (6)< OJI o )( oil ) . (36)
20jp Wjp 2wjrpy Wjrp’
1 1 N (‘*’jpo)
V:i1+px;i2pz;iap3;1'4p4 @ = UjH—pl;J'zpz;J‘aps;i4p4(4)+’2' Z UJ'1+p1;izpz;fapz;hm;ip:i—p(ﬁ) -+ . (37)
20" wjp?
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In the linear anharmonic approximation we recall
that the sum over branches will exclude all terms which
contain the factor

1
( +
2w;y°

when j is a soft mode. Also since R(7T) denotes an
arbitrary function of temperature which is independent
of the order parameters it plays no role in determining
differences between the ferroelectric and paraelectric
phases. In our approximation the free energy given by
Eq. (35) is linear in the anharmonic coupling coeffi-
cients.

‘In order to transform the free energy into a more
meaningful physical form we proceed in the general
case as follows.

0

N (wfp"))

Wjp

(2) Slnce the ferroelectrxc phase is spatially uniform
then for the optical modes only the p=0 order parame-
ter is nonzero, i.e., {Qjop, )= 8p,0{Qjop)-

(b) To describe a spatially uniform strain in the
ferroelectric (and paraelectric) phase we assume as
discussed earlier that only the limit {${Qj...p)}1imp-0
is nonzero. Also the most general strain tensor may be
described by taking the limit of {${(Qj,..»)}»-0 along
three orthogonal directions for each of the three polariz-
ations-specified by the index jae.

This procedure will thus enable us to express F in
terms of (37o—3) microscopic optical order parameters
and nine microscopic acoustic-mode order parameters
(which combine to make up six independent elements of
the symmetric strain tensor) where 7, is the number of
atoms per unit cell. In general, this will be a larger num-
ber of order parameters than used in the phenomeno-
logical free energy of Devonshire (P, Sag). However,
we may use the result obtained earlier that (Q;) is
small for all optical branches which differ from the
soft branches to reduce the number of microscopic order
parameters to the same number as the macroscopic
order parameters. We may then also eliminate the
microscopic order parameters in favor of the macro-
scopic ones by using the relations between them
[Egs. (29) and (33)]. This procedure will pro-
duce a free energy with the same order parameters as
the phenomenological free energy of Devonshire (Fp)
but with the coefficients expressed in terms of micro-
scopic temperature dependent parameters.

The general procedure outlined above for reducing
the free energy is further clarified by considering a
specific example. Since the best known class of dis-
placive ferroelectrics have the perovskite structure we
shall consider this structure explicitly in the next sec-
tion. We shall explicitly carry out the general steps
outlined above for the perovskite structure and show
that it leads to the free energy of Devonshire with the
coefficients expressed in terms of microscopic para-
meters,
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V. APPLICATION TO THE PEROVSKITE
STRUCTURE

In this section we apply the general procedure
described in Sec. IV to derive the free energy and other
ferroelectric properties of crystals with a perovskite
structure. This structure includes such well-known
displacive ferroelectrics as BaTiO; and KNbOs.

The perovskite structure belongs to the cubic space
group Pm3m when the crystal is in the paraelectric
phase. We recall that our Hamiltonian has been ex-
panded about the equilibrium atomic positions in the
paraelectric phase so that all the coefficients of the free
energy will have the symmetry of the paraelectric
phase. The ions are located on five interpenetarting
simple cubic lattices so that there are five atoms per
unit cell. For our purpose the most important sym-
metry property of this space group is the nature of the
lattice vibrations at zero wave vector p=0. The group
of the wave vector at p=0 (i.e., the little group) is
m3m and the lattice vibrations may be classified in
terms of the irreducible representations of the little
group which are 4T';;4T's. Each of these representa-
tions is threefold degenerate.!” The five different
lattice vibration branches will be specified by a branch
index (b) and each threefold degenerate branch will be
further specified by a polarization index ¢. [Thus, in
the notation .of Sec. IV the index j represents the pair
of indices (b,0).] The eigenvectors which form the
basis for the irreducible representations 4Ty and T'ss
are polarized along a cubic axis and therefore may be
written as

ei(b,0; p=0)=m;"/*:(0)é(0) , (38)

where é(¢) is a unit vector lying in turn along each of
the three cubic axes as the index ¢ runs over the values
1, 2, 3. v(d) for the acoustic modes is simply M—1/2,
where M is the total mass in a unit cell. So far we have
not considered the effect of the macroscopic electric
field accompanying the lattice vibrations at p=0
on their symmetry. However, we recall from Sec. I
that only the longitudinal and static part of the
macroscopic electric field enters into the equations for
the {Q)’s and the expression for the free energy. There-
fore, to retain the full symmetry of the cubic group we
shall assume that the shape of the crystal is such (e.g.,
a cube or a sphere) that at p=0 the electric field does
not destroy the cubic symmetry.

Our method for simplifying the free energy and the
anharmonic coupling coefficients by symmetry argu-
ments will make explicit use of the symmetry property
of the eigenvectors given-in Eq. (38). One may also
reduce the free energy for the perovskite structure to
the form given by Devonshire by the use of very general

17 The irreducible representations of this group are discussed
in most books on group theory, e.g., H. Jones, The Theory of
Brillowin Zones and Electronic States in Crystals (North-Holland
Publishing Company, Amsterdam, 1960).
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group-theoretical arguments.’® However, these general
arguments do not of course express the coefficients
of F in terms of the microscopic anharmonic coefficients.
Since we wish to exhibit the explicit relations between
the coefficients in F and the anharmonic coefficients
we shall find it more convenient to use symmetry prop-
erties such as Eq. (38) explicitly in our considerations.

The microscopic order parameters that are necessary
to describe the ferroelectric transition from the nonpolar
cubic to the ferroelectric phase are the same as those dis-
cussed in the previous section. They are the thermal
average values of the optical normal coordinates at
p=0(Qu#.), where bo denotes the optical branches, and
the uniform strain tensor S.g. For the perovskites the
strain tensor as given by (29) can be written in the
following manner with the help of (38):

Sap= Z $(e(0)pP+85(0)p*)ip(Qran), (39)

(NM)W

where b, refers to the acoustic branch and the summa-
tion for the unit vector p is over the three cubic axes.
One can now obtain from Eq. (25) the free energy
involving all these order parameters. However, this
more complete form of the free energy is usually not
necessary for the description of the general properties
of the ferroelectric transition. The reason is that all
optical-mode order parameters except the {(Q,,) for
the three degenerate soft optical modes are unimportant
and may be neglected. From the discussion in Sec. IV
we see that the ratio of the order parameters (Ovyss,0)/
{Qs,+) in the ferroelectric phase is given approximately

by
(Qvs,0)/(Qo,0)=2] (@052 (@422 K1, (40)

As the magnitude of the harmonic frequency for the
soft mode is usually much smaller than that for the
other modes this ratio is very small. When we neglect
the effects of all the nonsoft optical modes the relative
atomic displacements in a unit cell in the ferroelectric
phase is then simply

1 ex(s,0)
ua( )_N1/2 mkl 12 < s a)
or (41)

1
y 2@“(0’)1);;(8)(@3,,)

according to Eq. (38). We are using the fact that the
polar tetragonal phase is described by the nonvanishing
of one of the three equivalent {Qs,.), =1, 2, 3. This will
become clear later when we relate the (Q,,,) directly
to the polarization per unit volume P,. In order to cor-
relate the above conclusion on the ionic displacements
in the ferroelectric phase with experimental observa-
tions one must first recall that all the eigenvectors
e:%(b,0) including the soft-mode eigenvector e;*(s,o)
18 C. Haas, Phys. Rev. 140, A863 (1965).
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have been defined in Sec. II as the eigenvectors of the
harmonic dynamical matrix. However, from straight-
forward perturbation theory it can be readily seen that
the mixing of the eigenvectors of the other optical
modes in the renormalized soft-mode eigenvector due
to anharmonicity is small as long as the anharmonic
dynamical matrix elements are small compared to the
differences of their frequencies squared (wsys:s?)2— (w5%)?
or simply (wsy+s?)% Consistent with our linear anhar-
monic approximation we shall assume that the above
condition is satisfied. This is borne out by the experi-
mental observation of the relative temperature in-
dependence of the renormalized nonsoft optical-mode
frequencies. Thus, the anharmonic corrections to the
dynamical matrix renormalize the soft-mode frequency
but do not appreciably change the eigenvector; i.e.,
in Eq. (41) we may identify ¢;*(s,c) with the experi-
mentally observed soft-mode eigenvector in the
paraelectric phase.

The conclusion we can draw from Eq. (41) and the
subsequent discussion is that the ionic displacements in
the (tetragonal) ferroelectric phase are proportional to
the ionic displacements of the soft optical mode. This
conclusion has previously been suggested by several
authors.®!! The ionic displacements in the tetragonal
phase of BaTiO; have been observed by x-ray diffrac-
tion.’* However, a direct comparison between this
observation and the theoretical conclusion is not
possible because the eigenvector of the soft mode in the
paraelectric phase of BaTiO; has not been measured.
Nevertheless as pointed out by Cowley® a qualitative
agreement is obtained when one uses the soft-mode
eigenvector of SrTiO; that has been deduced from
neutron scattering experiments by Cowley® and infrared
reflectivity experiments by Axe.20

We shall now neglect all the nonsoft-mode order
parameters (Qpy+s,0) in the following derivation of the
free energy since they have been shown to be small.
Furthermore, we shall express the soft-mode parame-
ters (Qs,s) in terms of the components of the polariza-
tion per unit volume. From the definition of the polariza-
tion Eq. (31) and the property of the soft-mode eigen-
vector Eq. (28) it is readily found that

(Qu.0)=(1/9(s)Ps, 42)
where

P
q(s)= i Y.k. zi*vr(s)

and P, is the component of the polarization vector
along the cubic axis ¢. The general expression Eq. (35)
for the free energy can now be used to derive an F
that only involves the uniform polarization P, and the
uniform strain tensor S.s. We shall also make use of
various properties of the coefficients of the free energy

19 B. C. Frazer, H. R. Danner, and R. Pepinsky, Phys. Rev. 100,

745 (1955).
20 T, D. Axe (to be published).
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which are listed below. These properties of the free-
energy coefficients for the perovskite structure are
proven in Appendices A-D. In the following all limits
of p going to zero are taken along one of the cubic axes.
Consider the following anharmonic coefficients of the
free energy.

1) im Vo, 5o
@) ;_H}O J1p,de—p

V@ is defined in terms of U and U® according to
Eq. (36). It is shown in Appendix B that (a) when one
of 71 and j7: is an acoustic mode (b,0;) while the other
is a soft optical mode (sa3)
=lim ¥ et (o0 opr, (43

lim Ujyp,50—p@
p—>0

where X is a third-rank tensor independent of p which
vanishes identically for the perovskites. (b) When both
J1 and j, are the soft modes (so1) and (so3) it is shown
that ¥® is nonzero only when the polarization ¢ is
the same,

lin(} VJ'IP,J'z—p(Z) = Vsﬂ.aoz( V= 5r7w2Va.s( N (44)
P

We will neglect the term in the free energy that is
quadratic in the strain that arises from V® where
both j; and j; are acoustic modes because the term only
represents a small anharmonic correction to the elastic

strain energy which comes from the first term in Eq.
(35).

N (w,“’))

0

(i) hm Z Ujp,u, u(3)<‘—+
I 2

0L w,

In Appendix A we will show that the quantity is
zero when j is one of the soft optical modes. When j
is an acoustic mode (b,o) we find that

im 3 Ujpu—u®

P20 o

+ )=lim i 2 Nay88(0)p7;
0 p=>0

W, w,®

( 1 N(w)

Agy=10gyA, (45)

where Mg, is a diagonal second-rank tensor. When
Eq. (45) is substituted into the third term in the free-
energy Eq. (35) we obtain a thermal-expansion term
that is the diagonal strain components Sq..

(iii)

i R 3
lim  Ujipy,jape,is—pa®

P1,p2->0
In Appendix A it is shown that the most important
contribution comes from the U® in which only one of

the _11, J2 and 3 is an acoustic mode (b,01) and the re-
maining ones are soft modes (so3)(so2). We then have

3
im  Ujipy,japs,is—pa®
p1,p2->0

=_lim 35 Ny, P85 (a0)ps¥ 8 (02) po”" .

P1,p2->0

(46)
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The nonzero tensor A,,.##" is diagonal in B8’ and 'y'y'
9 = b 50 N BY) @)

Therefore, we must have go=03 and &(s1) along pi.
These give rise to the electrostrictive terms in the free
energy that are proportional to Sy.P,2% When all
three j’s are the optical soft mode

)\w’

i . 3

limyp,, 550U j1p1.002.75-02 >

vanishes identically. When only two of them are
acoustic modes we have

mhpr? Uijipr.izp.is—ps®
=42 Z )\alazagﬂ'yém(Ul)éa2(62)éas<‘74)Plﬂp21 (48)

in which Aajegaq8y 1S zero. We will neglect the case when
all the j’s are acoustic modes because such terms in the
free energy are cubic in the strain.

(iv)

lim Vixpl,izpz.faps,idp4(4)
{p}—>0

V® is defined in terms of U® and U® in Eq. (37).
The only case we consider is when all j’s are the soft
modes (s,01), (5,02), (5,03), and (s,04). In Appendix C
it is shown that V™ is nonzero only when the polariza-
tions (o4, - -04) appear in even powers. The correspond-
ing terms in the free energy have the form P,2P,.2
We neglect the contributions in the free energy from
V@ that involves the acoustic modes which are pro-
portional to S2P2? and S*

(V) {lgr-l»o Ujps,....je06 ©®

Similar to our consideration for V® only those U ®
in which all the j’s are the soft modes are retained. It
is shown in Appendix D that the polarizations (o1, * - 7¢)
must appear in even powers. The other contributions
from U® to the free energy that are neglected are
proportional to S?P4, S*P2?, and S°.

Using these properties we find that the free energy
reduces to the following Devonshire form

F——az P 2+1b12 P,i+1b, Z P2P,?
(u;éu')
ldlz PS+3d, Z P AP 2 +-3d3P 2P 2P o112
(tr#a’)
+2812 S +202 Z Soor?—
(o‘#o")
+g1Z SeoP s+ Z S,eP 2.
(u#a’)

—eYr Z Sva'

(49)

The coefficients a, b, - -+, & are given by

1
a=—(w.;°2+11m Viop,so—2®),

(50)
q(s)?

for any o
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b=3lq(8)4(({’jf§o Viepssops,som,sena®); forany o (51)
1 .
C=Q(S)4(!]PI)IEO V“Pl'"l’?,sﬂ’px,srf'm“))’ o#a’ (52)
= lim Usv veey80 ® ) for an 53
g p e ey forany e (5
d2=49(8)6((£i)r30 U"m ----- Wp«x,str’ps,sa’ps(ﬁ))y a4 (54)
d3=q(s)6({£i}120 Us"'p,mpz.w’ps.sv’w.sv"ps,sc"ps(s)) (55)
er=NMv;?, v;=longitudinal sound velocity (56)
es=NMv? v,=transverse sound velocity (57)
-1 1 > U @
Yr=-__ - a0
"~ (NM)lﬂvzzp"o ip ws Parbbh
1 Ny
x(——+ ’ ) , (58)
2w, w0
P, é(o) along same direction,
41= 2(NM)1/2 lim —Ubap sop’ 50— P
24(s) % ip
P, é(o) along same direction,  (59)
1
§2= (NM)II2 lim ‘“Uba,p sa’p’ 80’ —p’ @)
2q(s)? Ly
b, é(o) along same direction; o5%0’. (60)

This Helmholtz free energy describes the ferroelectric
transitions of the perovskites in the absence of external
electric field and external stress. The coefficient @ is
proportional to the renormalized frequency of the
soft optical branch [see Eq. (25)] and is strongly tem-
perature dependent since w,%? is small. The temperature
dependence of the renormalized frequency has been
discussed by Silverman and Joseph!® and by Cowley.!
The coefficients &, ¢, d, and g are proportional to
anharmonic coefficients with a leading temperature-
independent part and a temperature-dependent cor-
rection. Since this free energy and the thermodynamic
properties that follow from it have been thoroughly
investigated by Devonshire? in connection with the
ferroelectric transitions in BaTiO; we shall not repeat
the discussion here.

VI. CONCLUSIONS

It was shown in Secs. III and IV that in order to
derive a power-series expansion for the free energy it
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is sufficient (but not necessary) to make the linear an-
harmonic approximation. This approximation is mean-
ingful because most of the phonon modes are largely
unaffected by the transition as was first emphasized by
Anderson.® The free energy derived in this approxima-
tion is expressed in terms of the complete set of micro-
scopic order parameters which is in general larger than
the set of order parameters used in the phenomeno-
logical free energy of Devonshire. Many ferroelectric
crystals have the property that one optical branch is
much softer than all the other optical branches. For such
crystals it was shown in Sec. IV that the ratio of the
order parameters in the ferroelectric phase {Q;)/(Qs) is
much less than unity where s denotes the soft mode and
j any other optical mode. This implies that the ionic
displacement in the ferroelectric transition is deter-
mined mainly by the soft-mode eigenvector. This
conclusion has previously been suggested by several
authors.’!! There also appears to be some qualitative
experimental evidence for the perovskites to support
this conclusion as discussed in Sec. V. Furthermore, this
conclusion allows us to reduce the number of microscopic
order parameters to the same number as used in the
phenomenological theory of Devonshire. Such a reduc-
tion was explicitly carried out in Sec. V for the
perovskites and the resulting expression is identical
with that derived phenomenologically by Devonshire
with the coefficients determined in terms of microscopic
lattice parameters.
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APPENDIX A

We wish to prove here several properties of the
coefficients of the free energy for the perovskite struc-
ture which have been used in Sec. V. The proofs will
be based on several simple properties of the lattice
vibration eigenvectors in the long-wavelength limit.
For the optical modes at p=0, the group theory dis-
cussion of Sec. V shows the eigenvectors are of the
form given by Eq. (38)

ex(bo; p="0)=m;!/%u,(b)é(0) (A1)

where &(¢) is a unit vector lying in turn along each of
the three cubic axes as the index o runs over the values
1, 2, 3. For the acoustic branch we use the method of
Born to expand the eigenvectors as a power series
in p along some fixed direction (p) of the vector p,®

(b0 ; D) =W o1V (bo; p)
+i[)Wa,k(1)(ba;ﬁ)+ cee,

We need only consider the direction $ as being along
one of the cubic axes. For crystals such as the perovskites

(A2)
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which have inversion symmetry about every atom W®
vanishes because the dynamical matrix is real so that a
power series expansion in p contains no linear term.
Also we may use the same group theory argument as
for the optical mode to write W in the form of Eq.
(A1). Thus in summary Eq. (A1) is valid for all branches
and no linear term in p appears in the expansion of the
acoustic eigenvector.

Let us first examine the contributions of cubic
anharmonicity to F. The thermal-expansion contribu-
tion to F is proportional to

da(bﬂ'; p) = gg}) Z Ubfrp;j’ P —p' (3)g(w,-;p/°) . (A3)

i’
(5’ #s)

The index j' denotes both the branch (4') and

polarization (¢’). Also the function g(x) is defined as

g(x)=a""G+N(®)).

From Sec. II we recall that the anharmonic coef-
ficients are related to the derivatives of the inter-
atomic potential by Eq. (5) of the text. Thus, the
thermal expansion is proportional to

ei*

as(bo; p)=1313})Z O (k) (bo;p) expip-x(lk), (A4)

ml/?
where

e *'(5'p)
0u(l) = N2 g (U; Lier; L) —
mklll2

en*(j'—p)
X———expip [x'(lks)—x(laks) gy ") (AS)
Miq

Note the index a denotes the component along a
Cartesian coordinate axis. Using the result for the
eigenvector given in Eq. (A1) we find

a5(bo; p)—1lim 3, 6.(1k)vx(b)2(0) expip-x°(k),  (A6)

In a power-series expansion in p the term independent
of p vanishes because

% RUAQ)

is a vector which must vanish in any crystal possessing a
center of inversion.

For the acoustic branch we also require the linear
term in p which may be written as

as(baa'; p)=i Z'; ?Béa(U)Taﬂ ) (A7)
where the tensor T'yg is
Tap=2" 0a(lk)xs(lk)vi(D) . (A8)
7

Since the perovskite structure is cubic the tensor T°
must be diagonal, so that Eq. (45) of the text follows.
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Let us examine the cubic anharmonic coefficient
Ujipsiianaids—na® in the limit p1, po— 0. When all three
7’s are optical we have using Eq. (A1) together with
the definition of the anharmonic coefficients (Sec. II)

3
Uwam; baoap2; bzva—pa( )

= Z {N~3/2 Z}I)alazas(llkl;l2k2;lsk3)

ala2a3

X0y (01) 212 (02)15(D3) } a1 (01)an(02)8as(03) . (A9)

Since the quantity in the bracket is a third-rank
tensor it vanishes due to the inversion symmetry of the
perovskite lattice. The term involving one acoustic
branch (b,) and two optic branches (b2 and by3) gives
rise to an electrostrictive coupling linear in p given by

H 3
lim 0 U baﬂpl;boznpz:bosnrs—ps( )

P1,p2~>

= iplﬂxazaxalﬂ(bayboz,b%)éal(al)éaz (02)6013(‘73) ) (AlO)

where the Einstein summation convention is used and
Nagas™# is given by

Nagas®P= N"3128, o0 (k1 ; Lokos; Iskes)
X xﬁo(l}kl)vkl(ba)'vk2 (bo2)7)k3(bos) . (All)

To show that Ae,e,*? is diagonal in the superscripts
we form the second-rank tensor

Ao (‘720'3) = )‘azaaalﬂéaz (‘72) éaa (0' 3) . (Al 2)

In the cubic perovskite lattice any second-rank tensor
is diagonal so that A is diagonal for all polarization
indices (o2,03). This implies that A is diagonal in its
superscripts. In a similar manner one may show A is
diagonal in its subscripts so that Eqs. (46) and (47)
of the text follow.

Finally let us consider the case of two acoustic and
one optic branch which would lead to a term in F of
the form S?P.

3 3
lim 0 Ubaro101; bazozpe; bosva—ps( )

p1,p2~>
=1"Na1azasfrber (‘7 1)8as (0'2)éa3 (” 3)? 18P27 5 (A13)
where the fifth-rank tensor A given by
Najagazy= N—3/2q>ala2a3(l1k1; loks; lsks)
Xxﬁo(llkl)x'yo(l2k2)7"k1(b01)vk2(baz)'vk3(boa)' (A14)

Due to inversion symmetry the fifth-rank tensor A
vanishes so that no coupling of the form S2P appears in
F.

APPENDIX B

Consider the symmetry of V® which is the coefficient
of quadratic terms in F. V® is defined in terms of
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U® and U® according to Eq. (36) of the text so that
melp}:bzczsm B =2,,(01)8as(c D{V' _z'baxaza:ac(llkﬁ loka; Usks; Lok a)vry (B1)Vis (Do) €x,*3(bo; P)ex,*4(bo; —p) expip:

im p1->

X [x%(kr) —x°(loks) ] expip- [x0(lsks) — X°(laks) Jg(wbe; 2°) + N3 ®ayas. . .ag(lrker; laka- - - Ioke)viy (B1) ks (B2)ery % (ba; P)
X e (bo; —p)ers*(b'c’; p)ery (0’0’ ;— ') expipy- [x°(Iak1) —x°(lakz) ] expip- [x°(laks) —x°(aks) ]

Xexpip' - [x°(lsks) — x°(lske) Jg(@boi0)g (W o)} . (A1S)
For the case when b; and b, are optical branches we require only the term with $;=0 so that the quantity in the

curly bracket becomes a second rank tensor component Ta,q,. Since the perovskites are cubic this tensor must be
diagonal so that ¥V ® is diagonal in the polarization index, i.e.,

Eglovbowml;bozvz—m @ =841,00V b1, 002 «

When b, is an acoustic branch and b, an optical one we first note that the term with p;=0 vanishes because the
sum over (/1%1) in the curly bracket vanishes since for an acoustic mode #%,(by) is independent of ; and by transla-
tional invariance 31,5, ®a;...a, (k15 - * < Inka)=0. For the term linear in p; the curly bracket is equal to t\sjagy 1y,
where ) is a third-rank tensor independent of p; which vanishes due to inversion symmetry.

APPENDIX C

Consider the symmetry of V® which is the coefficient of quartic terms in F. V® is defined in terms of U®
and U® according to Eq. (37) of the text. We consider all four indices to be optical so that

Vooro1p1; bo202p2; b03oaps b04caps ) =24,(01)8as(02)eas(03)8as(00) { N0y azasas(lifr; loks; lsks; D4 4) 0y (Do) Vs (Bo2) Vi (B 08)

lim p1,2,93, >0

XVky(b0a)+N"®ay .. .ag(liks; * *  Ioko)vry(001) ks (B02)vas (Bos)Vro(Bos)rs?5(ba; P)ers8(bo; —P)g(wvs;p)} - (A16)

The quantity in the curly bracket is a fourth-rank tensor. In a cubic crystal the only nonvanishing components of a
fourth rank tensor are those whose indices occur in pairs so that ¥ vanishes unless the polarization indices
(01,02,03,04) occur in pairs.

APPENDIX D

Consider the symmetry of Ujp,...jcps® which is the coefficient of sixth-order terms in F. From the definition
of U® in Sec. IT of the text we find when ;- - - bs are each optical branches,

Ubiorp; ..., bevopa(6)=éax(‘71)’ . ’éas(a'ﬁ){N—zq)alaz--.ae(llkl; . 'lﬁkﬁ)”kl(bl)”kz(bz)' : "”ks(bﬁ)} . (A17)

lim p1,+++, pg—>0

The quantity in the curly bracket is a sixth-rank tensor. In a cubic crystal the only nonvanishing components of a
sixth-rank tensor are those whose indices occur in pairs so that U® vanishes unless the polarization indices occur
in pairs.



