
provides for neither the low-energy nor the high-energy
dne structure.

Since the spectrum shows a line structure super-
imposed on a continuum, it is likely that there are at
least two mechanisms operating. The line spectrum
seems to result quite naturally from the Pano-I. ichten
model of electron promotion. The continuum is reason-
ably well 6tted in the case of H+-H2 and H+-He colli-
sions'2 by scaling from calculations made on the Born
approximation assuming Coulomb interactions and
using hydrogen wave functions. It is likely that this
collisional ionization is the mechanism for the con-
tinuum in the argon spectra as well.

The various theoretical treatments' ' concern them-
selves only with small impact-parameter (violent)
collisions and the total cross section for such collisions
is only a small fraction (perhaps a few percent) of the

'~M. E. Rudd, C. A. Sautter, and C. L. Bailey, preceding
paper, Phys. Rev. 151, 20 (1966). See also Ref. 6. However, this
earlier work contained an error in the scaling procedure which
has now been corrected.

total cross section for ionization. " Therefore, it is
dificult to determine whether the violent collisions
contribute anything to the cross section in the con-
tinuum as envisioned in the statistical theory or whether
such collisioris populate only the 6ne-structure regions.
Presumabl, this question couM be settled by counting
only electrons which are in coincidence with projectile
particles which had been deQected appreciably by the
collision. %e are presently pursuing this approach.
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A modified optical-potential approach is introduced for electron-atom scattering at low energies ~hereby
the formal optical potential is used directly in a variational expression for scattering phase shifts. This
approach has the advantage that one may include the eftect of the second-order optical potential without
recourse to the usual adiabatic approximation. The diagrammatic approach associated with the present
method makes it possible to identify different contributing terms with different physical e6'ects, and thus to
assess the relative importance of various physical effects involved in the scattering process. To test the
approach as a practical method for low-energy electron-atom scattering, we applied it to the case of electron-
helium scattering for the energy range 1.2 to 16.4 eV. Good agreement with available experimental data has
been obtained. The contributions of various Inultipole components in the second-order optical potential
are examined. In particular, the e6ect of exchange in the second-order optical potential, neglected in most
calculations, was found to be very significant.

INTRODUCTION
' 'N the theoretical calculation of electron-atom scat-
' - tering at low energies, the k&culty is well-known to
be one of complexity. That is, the problem one faces is to
make suitable approximations to the solution of the
complicated, but known, many-body Schrodinger equa-
tion so that good results may be obtained with reason-
able eBort. From a physical point of view, the approxi-
mation scheme must take into account two important
physical effects, the exchange e6ect and the distortion
eGect. The exchange efrect arises from the Pauli
principle between the incident electron and the atomic
electrons. In general, this is taken into account in

*Research supported in part by the National Science Founda-
tion and the National Aeronautical and Space Agency.

theoretical calculations by exphcitly antisymmetrizing
the trial solution. The distortion effect, or polarization
eGect, arises from the distortion experienced by the
atomic electrons in the presence of the incident elec-
tron's Coulomb Geld. The distortion or polarization of
the target atom in turn produces a potential on the
scattering electron. %hen the scattering electron is
stationary, or moving slowly, the atomic electrons will

polarize and adjust adiabatically to the position of the
scattering electron. At large distances the dominant
polarization potential is the dipole potential —o/r,
where 2o, is the polarizability of the atom. This is the
familiar adiabatic condition usually assumed for low-

energy scattering processes. ' The validity of the adia-

' H. S. W. Massey, Rev. Mod. Phys. 28, 199 (1956l.
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batic condition for low-energy electron-atom scattering
is rather dubious. It has been shown' that in the case of
electron-hydrogen atom scattering the incident electron,
given to be at rest at infinity, would be accelerated by
the attractive adiabatic potential so that it would
acquire speeds comparable to that of the atomic elec-
trons while still several atomic distances away from the
target atom. For atoms such as alkali atoms, where the
polarizability is large, the validity of adiabaticity can be
expected to be even worse. The nonadiabatic effect will
be considerable. The actual potential as seen by the
scattering electron is therefore a very complicated non-
local (velocity-dependent) one. In practice the con-
ventional theoretical methods are less able to cope with
the above-mentioned distortion effect. The familiar
close-coupling method' does include some nonadiabatic
effects, but the complexity of the resulting close-coupled
integro-differential equations severely limits the number
of atomic states one is able to close-couple. This in turn
will give wrong asymptotic values for the effective
potential. ' In addition, the close-coupling method as
applied to e-H scattering showed that the convergence
is poor as the number of close-coupled states is in-
creased. ' A more serious practical difFiculty associated
with the close-coupling approximation is the fact that it
requires a knowledge of the wave functions of the
excited atomic states. This makes the method much less
general in practice than it appears. There are other
methods, such as the variational approach' and
Temkin's nonadiabatic approach, ~ which do take non-
adiabatic effects into account more completely. But
these methods are either developed for special cases or
become diQicult for complex-atom cases and are there-
fore restrictive in their practical applications.

Another general approach is the optical-potential
method, where the effect of the target atom on the
scattering particle is represented by an equivalent one-
body potential. The optical-potential approach was first
applied to atomic-scattering problems by Mittleman
and Watson, ' and others. The Pauli-principle effect for
the cases where the incident particle is an electron
introduces some additional complications. This was set
on a more rigorous basis by Bell and Squires, ~ who used

2 M. H. Mittleman, Ann. Phys. (N. Y.) 14, 94 (1961).' N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, New York, 1949), 2nd ed.

M. H. Mittleman and R. T. Pu, Phys. Rev. 126, 370 (1962).
M. H. Mittleman, in Advances in Theoretical Physics, edited by
K. Brueckner (Academic Press Inc., New York, 1965), Vol. 1,
p. 283.

~ P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1961).
'C. Schwartz, Phys. Rev. 124, 1468 (1961). For an authori-

tative review, see L. Spruch, in Lectures in Theoretical Physics
(The University of Colorado Press, Boulder, Colorado 1961),
Vol. IV, p. 161.

A. Temkin, Phys. Rev. 126, 130 (1962).
8 M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198

(1959).B.A. Lippman, M. Mittleman, and K. M. Watson, ibid.
116, 920 (1959).

~ J. S. Bell and E. J. Squires, Phys. Rev. Letters 3, 96 (1959).
J. S. Bell, in Lectures on Many-body Problem, edited by E. R.
Caianiello (Academic Press Inc. , New York, 1962); L. M. Frantz,

basis wave functions and a diagrammatic approach
similar to the Brueckner-Goldstone linked-cluster per-
turbation expansion, "which was successfully applied by
Kelly to atomic correlation energy calculations. "For-
mally, this optical potential does contain all the non-
adiabatic effects, as previously described, through the
propagators which contain operators for the scattering
electron. Conventionally, after obtaining the formal
optical-potential expression, one proceeds to calculate
the scattering wave function by solving the one-body
Schrodinger equation with the appropriate optical po-
tential. However, the fact that operators for the scat-
tering electrons are contained in the propagator makes
the optical potential extremely dificult to evaluate, and
one is forced to make the adiabatic approximation.
Moreover, even the adiabatically approximated second-
order optical potential can only be evaluated in its
asymptotic region, yielding the expected dominant
—rr/r4 dipole polarization potential. To remedy the
divergent behavior at small r, some ud hoc cutoff
parameters must be introduced, such as the parameter
d, in the Buckingham-type potential n/(r'+—ds)s. Un-
fortunately, there is no consistant criterion for choosing
the parameter d."

To avoid this difhculty, we suggest a modification of
the conventional optical-potential approach. Instead of
trying to determine the optical-potential expression and
then trying to solve the subsequent Schrodinger equa-
tion, we use the optical potential directly in a variational
expression for the scattering phase shifts. The associated
diagrammatic approach in enumerating different per-
turbation terms in the optical-potential expression has
two advantages. First, it enables one to improve the
phase shift as one includes higher order optical po-
tentials in a systematic and tractable fashion. Secondly,
it is possible to associate different physical effects with
different diagrams. Thus one is able to evaluate the
individual contributions of the direct and the exchange
part of the optical potential for each multipole com-

ponent
Of course, our main aim is to obtain a general method

that is also practical. As in common with any pertur-
bational approach, the convergence of the optical-
potential expression depends on the basis wave functions
one uses, which in turn depend on the "single-particle
potential" one chooses to generate them. For a well-

chosen single particle V', one hopes to obtain good
results with the inclusion of only up to the second-order
optical potential. The second-order optical-potential
contribution to the phase shift can then be evaluated
without recourse to adiabatic approximations or the
introduction of any ad hoc parameters. In this paper
we have adopted the above procedure in a calculation of

R. L. Mills, R. G. Newton, and A. M. Sessler, Phys. Rev. Letters
1, 340 (1958).

'0 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
"H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, B896 (1964).
~ M. H. Mittleman (private communication).
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electron-helium scattering for energies from 1.2 to
16.4 eV with gratifying results.

In Sec. II we review the single-particle potential and
the results for the formal optical potential, erst derived
by Bell and Squires. The variational expression for the
phase shifts in terms of the optical potential is given.
The application to e-He scattering is carried out with a
numerical procedure described in Sec. III. Results and
discussion are presented in Sec. IV. Concluding remarks
are given in Sec. V.

II. REVIEW OF THE FORMAL
OPTICAL POTENTIAL

The formal optical potential for a system of identical
fermions was first derived by Bell and Squires' in the
context of nuclear-scattering problems. The result is of
course applicable to electron-atom scatterings as well.
In their treatment, Bell and Squires obtained the formal
optical potential through the construction of the
Green's function for the system. In the following brief
review, we aim to give some plausibility arguments for
their anal optical-potential expression. To add clarity,
we have made a slight deviation by invoking the result
from the Brueckner-Goldstone linked-cluster perturba-
tion expansion. ' For the detailed derivation we refer
readers to the original papers by Bell and Squires. '

The system we are considering is the scattering of an
electron by a neutral atom with Z atomic electrons. The
total Hamiltonian for the system, neglecting the motion
of the heavy atomic nucleus, is

(2.1)

where the symbol T; is the sum of the kinetic energy
for the electron and the nuclear Coulomb interaction
acting on it,

Hamiltonian

2+1
&p= Z (2''+ V")

(2 5)
Bo@0=&I 0 ~

The choice of the single-particle potential V', at this
point, is completely arbitrary, except that it shouM be
Hermitian so that the single-particle wave functions y
satisfying

(&+V')p a= paqn (2.6)

and

B'= P (pqI pImn))), tg,tg„))„
yqmn

form a complete orthonormal set. The unperturbed
(Z+1)-particle wave function +p is a Slater determinant
formed from (Z+1) single-particle states pr„. Physical
conditions make it desirable that Z states in 0'0 should
represent the ground state of the atom. This demands
that the V' should generate a complete set of y 's such
that the lowest Z states coincide with the Hartree-Fock
states of the ground-state atom. The complete set of
q „'s is used as the basis for the perturbation expansion.

In treating a system of identical fermions, it is
desirable to use the second-quantization formalism since
the commutation relations of the creation and destruc-
tion operators for single-particle states automatically
take care of the Pauli principle between electrons. Using
the basis just defined, Eqs. (2.5) become, in the second-
quantization formalism,

Pp ——Q p„r)„tg„

T . ++V,nuclear (2.2)

H%'(Z+1) =&1 (Z+1), (2.3)

and v;; is the mutual Coulomb interaction between the
ith and the jth electron.

The scattering equation we are interested in solving is

The g„t and g„are the usual creation and destruction
operators for the single-particle state q .They obey the
Fermi-Dirac anticommutation relations. The exact ex-
pressions for the matrix elements (pq I

s
I mn) and

(pI V'Im) are

where E is the total energy of the system,

E= pp+kp'/2m,

(Pr) r
~

mrr) fry„*(r)rr,"(r=')

(2.4)

i.e., the sum of the energy of the initial neutral atom eo

and the initial kinetic energy of the incident electron
kp'/2m.

To construct a basis from which a perturbational
expansion for the solution 0& can be obtained, we first
approximate the effect of the interacting particles by a
single-particle potential U' such that the total system is
approximated by an unperturbed system +0 with a

The summation of the matrix elements is over distinct
elements only, e.g., (pqIvI mn) is not distinct from the
matrix element (qp I

p
I
nm).
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) gfYl

(b) (c)

FxG. 1. Diagrams
representing various
interaction matrix
elements. (a) Single-
particle potential.
(b) Direct interac-
tion with hole state
N. (c) Exchange in-
teraction with hole
state n. (d) General
interaction matrix
element.

where the sum is over linked diagrams only. In general,
the diagrams representing 4 has no particle or hole lines
at the bottom but has a maximum of 2Z lines at the
top, Z particle lines, and Z hole lines.

Similarly, the true solution for the entire scattering
system is

00 1 n

&=0 E Hp+—ip
(2.12)

The diagrams representing + have only one particle
line at the bottom (incoming electron kp) and a maxi-
mum of 2Z+1 lines at the top, Z+1 particle lines, and
Z hole lines.

To obtain the true scattering electron wave function
x(kp) we project +(Z+1) onto Cp(Z),

Let us designate Cp(Z) as the Hartree-Fock ground
state of the atom. The number Z is used to remind us
that the wave function is a Z-electron function. Follow-
ing Goldstone, " the single-particle states occupied in
C'p(Z) are called unexcited states, while the rest y„'s are
called excited states. An unoccupied unexcited state is
called a hole, and an occupied excited state is called a
particle. The unperturbed scattering system +p(Z+1) is

+p= pt~, t I
@o). (2.8)

Goldstone" showed that the true ground state of the
atom C is

x(k,) =(C,(Z) I
e(Z+ 1))

In terms of diagrams, X is the sum of all linked diagrams
where a particle line of ko is directed upward at the
bottom and only one "particle" line at the top, as
illustrated in Fig. 2. The optical potential for this
particle, as first derived by Bell and Squires, is then

(2.14)

where

and

(2.9)

XH'(t„)dt~ . .dt. , (2.10)

~1(t) —e&Hp p/~~ iHp t&at—

where the symbol I.I' means that one sums only dia-
grams that are linked and proper, using the designation
of Bell and Squires. ' By "proper" they mean those
linked diagrams which are not linked by one particle
line at any intermediate state. The diagram Fig. 3(a) is
a proper diagram, while the diagram Fig. 3(b) is not.

The true ground state 4, through Wick's theorem,
may be represented by a sum of distinct diagrams where
a "particle" is represented by a line directed upwards
while a "hole" is represented by a line directed down-
wards. The unperturbed ground-state Hartree-Fock
atom is the "vacuum" state. The matrix elements

(pttImImn) and (pI V'Inn) are represented by the graphs
shown in Fig. 1. Carrying out the time''integration, one
obtains

Fro. 2. A general diagram for x.
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The reason for the requirement of "proper" diagrams in
the optical-potential expression can be explained as
follows. If there is only one "particle" line at some
intermediate state of the diagram, it means that out of
the (Z+1)-electron system there are Z electrons in the
unexcited states, i.e., the atom is in its ground state.
Thus the restriction on "proper" diagrams is equivalent
to the restriction in the conventional optical-potential
formulation that the ground state of the atom cannot
occur in the intermediate state. '

Since the optical potential 'U, ~ is defined for the basis
states q„, the scattering electron satisfies the one-
particle Schrodinger equation:

(2'+ p''+&.,)x(ko) = (ko'/2m)x(ko),
ol

FIG. 4. Phase-shift
corrections from the
Grst-order optical-po-
tential diagrams.

ko

ILk

(b) (c)

with exchange. 3 Thus, even in zero order we have. a
phase-shift value which is expected to be correct at high
energies.

Another remark can be made about the choice of V'.
The choice of V' is by no means limited to the one in

Eq. (2.15). For example, we can write a more general
expression'

(R+ p' "'~"'+y'+Q )x(ko) = (koz/2m)x(ko) . (2 14') (z I
p'I y) = 2 (&zzz I

a
I jrz) —&zzz I

o
I

zzj&)
n~l

The total optical potential V,~ is then

p' p'nuclear+ p's+g n=l n=l

Choice of Single-Particle Potential

The general optical potential in Eq. (2.14) yields, in
first order, three diferent diagrams, as shown in Figs.
4(a), 4(b), and 4(c). If one chooses the single-particle V'
to be the Hartree-Fock potential VHF defined by its
matrix element, then

&z I p»
I
j&= 2 (&zzz

I
o

I jrz& —&zzz
I

o
I

zzj))
n=1

where the summation is over all the Hartree-Fock
orbitals of the ground-state atom. The potential in
Fig. 4(c) cancels exactly the terms shown in Figs. 4(a)
and 4(b). The first-order optical potential vanishes
exactly and the leading terms are the second-order
optical potentials, direct and exchange, as shown in
Figs. 5(a) and 5(b). These are the terms we shall retain
in our calculation.

As mentioned before, the closer one chooses the
single-particle potential V' to resemble the actual scat-
tering situation, the better the convergence. A close
examination shows that the single-particle states one
generates with VHF are, except for the constant energy-
diGerence term, equal to the usual static approximation

Flo. 3. (a) A
"linked and proper"
diagram. (b) An im-
proper linked dia-
gram where a single-
particle line occurs in
intermediate state.

The projection operator II projects out the eth
Hartree-Fock atomic state orbital; V~ is some arbitrary
potential that one may wish to introduce. The expres-
sion in Eq. (2.16) will always satisfy the condition that
it generates the Hartree-Fock ground states of the
atom. We shall return to Eq. (2.16) later in the dis-
cussion.

When we choose V'= VHF, the single-particle equa-
tion (2.6) in configuration space is, more explicitly,

Z8
P— + P dr'q, *(r') p, (r')dr' y„(r)

2m r =z lr r'I—
Z—Q 8 (m, ,m. ;) dr'y, *(r')

The Hartree-Pock orbitals of the atomic ground state
are generated, since for i =n the direct and the exchange
terms cancel, so that the state e sees a potential due to
the nucleus and (X—1) other orbital electrons. For
excited states, no such complete cancellation occurs, so
the state e sees the field of the nucleus and X orbital
electrons. From the work of Kelly" for Be and 0, one
expects no bound excited states. This was found to be
true also for the helium case here. We invoked Levin-
son's theorem and looked for other bound excited states,
but none were found.

The continuum single-particle state q(k, l,m, m, ) is
determined by letting o„=k„'/2m in Eq. (2.17). Since
the helium atom is close-shelled, we can assume
spherical symmetry and write

(a) (b) p(k, l,m, m, )= )R(k,l; r)/r jY~ (8,y)x, (m,), (2.18)
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we can further identify the contributions from the vari-
ous multipole components. For example, let tt o be in the
s state; then for k' and k" both in the s state we have
the monopole component, while the dipole contribution
comes from k' and k" both in the p state. We shall use
the notation l~,l„lI,.l~ to denote these multipole contri-
butions. For helium, where the atomic orbital state is an
s state, l =s; the matrix element for the monopole
component for the S wave is denoted (ssss), and the
dipole component comes from matrix elements of the
type (sspp), etc. For the P wave, the monopole-com-
ponent matrix element is (psps), while the dipole
component comes from (pssp) and (psdp) matrix ele-
ments, etc.

2.4

III. NUMERICAL PROCEDURE

In this calculation, the ground-state helium wave
function was taken as the "compromise wave function"
of Roothaan, Sachs, and Weiss." The integro-differ-
ential equation (2.17) for the radia, l function of the
continuum states was solved by Numerov's method. "
The solution was integrated out from the origin to
R=10ao (where ao is the Bohr radius). An iterative
procedure was used and the convergence criterion was
satisfied when successive values of the integral

2.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

(a)

0.5 ~

00

Rg, *(r) R(k,l; r)dr
y l+1

diGered by less than 0.0001. We used a mesh size 0.0iuo
throughout. The zeroth-order phase shift 50(k, l) and the
normalization were computed by fitting the wave func-
tion at two points in the asymptotic region, usually
~=9.5uo and E=10uo.

In evaluating all the integrals or matrix elements,
Simpson rules or modified Simpson rules were used. In
the integration over k' and k" we used the limit k' and
k"=10. The higher 4', k" region gives negligible
contributions.

0.4 ~

0.3

0.2

0.1

0.5

(b)

1.0

LaBahn & Callavals

tion

1.5

TABLE I. S-wave and P-wave phase shifts. {The 5"s are the
corresponding zeroth-order values. )

Fxe. 6. {a)S-wave phase shifts. The momentum k is in atomic
units. E=)k~, where the unit of energy E is equivalent to 27.2 eV.
{b) P-wave phase shifts. The momentum k is in atomic units.
E=~k2, where the unit of energy E is equivalent to 27.2 eV.

E (eVl k $ s
S wave

Bp

P wave
IV. RESULTS AND DISCUSSION

1.224
2.175
3.399
4.894
6.662
8.701

13.595
16.450

0.3
0.4
0.5
0.6
0.7
0.8
1.0
1.1

2.7048
2.5672
2.4356
2.3111
2.1942
2.0850
1.8900
1.8036

2.7391
2.6058
2.4781
2.3555
2.2415
2.1331
1.9412
1.8570

0.0105
0.0233
0.0422
0.0663
0.0943
0.1243
0.1831
0.2096

0.0242
0.0455
0.0732
0.1060
0.1417
0.1778
0.2449
0.2732

'4 C. C. J. Roothaan, L. M. Sachs, and A. %'. gneiss, Rev. Mod.
Phys. 32, 186 {1960).

'5M. G. Salvadori and M. L. Baron, Numerical Methods in
Engineering {Prentice-Hall, Inc., Englewood Clips, New Jersey,
1961).

In Table I we have tabulated the phase-shift values
from the present calculation for l=0 and l=1 partial
waves in the energy range 1.2 to 16.4 eV. Also presented
there are our zeroth-order phase shifts. To compare
with other theoretical calculations, these are plotted in
Figs. 6(a) and 6(b). For S-wave phase shifts, the static
approximation with exchange of Morse and Allis"
diBers from our zeroth-order values through the energy
diBerence term. For the P wave, the energy-difference
term vanishes and indeed our zeroth-order result agrees

' P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 {1933).
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well with that of Morse and Allis. The calculation of
LaBahn and Callaway" takes into account the distor-
tion effect (dipole component only) but employs the
adiabatic approximation. As can be seen, our result lies
between that of LaBahn and Callaway and that of
Morse and Allis. This is not too surprising, since the
adiabatic-exchange calculation of LaBahn and Callaway
in general tends to overestimate the polarization eGect,
while the static approximation with exchange of Morse
and Allis completely neglects it. It is interesting to
observe that at low energies our results are closer to the
results of LaBahn and Callaway, but move toward the
values of Morse and Allis as the energy of the scattering
electron increases, indicating the growing importance of
the nonadiabatic effect. At higher energies we expect our
results to approach that of our zeroth-order phase shift.
It seems that even in this application, where the polar-
izability of helium is relatively small, the nonadiabatic
effect is still appreciable and the adiabatic condition can
be valid only in very low energy regions. For more
polarizable atoms, such as the alkali atoms, one may
have to take into account the nonadiabatic effect even
at zero energy.

The total cross section is plotted in Fig. 7 along with
the theoretical calculation of LaBahn and Callaway'~
and two experimental results, one by Ramsauer and
Kollath" and the more recent one by Golden and
Bandel "The result of Morse and Allis "which follows

"R.LaBahn and J. Callaway, Phys. Rev. 135, A1539 (1964)."C. Ramsauer and R. Kollath, Ann. Physik 3, 536 (1929); 12,
529 (1932).

~e D. E. Golden and H. W. Bandel, Phys. Rev. 138, A14 (1965).

ENERGY (ev)

FIG. 7. Total cross section (in units of ao') as a function of
energy. The dashed curve represents the theoretical calculation of
LaBahn and Callaway (Ref. 17); the solid curve is our present
calculation. The circles and dot-dash curves represent, respec-
tively, the experimental results of Ramsauer and Kollath (Ref.
18), and Golden and Bandel (Ref. 19).

closely the experimental result of Golden and Bandel at
higher energies but diverges to infinity at low energy, is
not shown in Fig. 7. We have extended our curve below
1.2 eV by extrapolating our phase shift values below
k=0.3. Our result is very good and lies, in general, be-
tween the two experimental results. In particular, the
shape of our curve is remarkably similar to that of
Golden and Bandel.

The momentum-transfer cross-section data offer an-
other comparison. This is shown in Fig. 8. Again our
result gives much better agreement with the experi-
mental data of Crompton and Jory" and those of Frost
and Phelps. " Thus the result of this calculation indi-
cates that the present approach, with the inclusion of
second-order optical potential, is sufhcient to yield good
results for electron-atom scatterings.

The diagrammatic approach of the present method,
as mentioned earlier, oRers the possibility of assessing
the contribution of diferent physical effects. There are
two questions of interest we can explore with regard to
the contribution of the second-order optical potential to
scattering phase shifts. The first one concerns the ex-
change contribution of the second-order optical po-
tential. The second one concerns the relative importance
of different multipole components in the second-order
optical potential.

Calculations to date usually include the adiabatically
approximated direct eGect to the second order while
retaining only the first-order exchange effect. In Figs. 9
and 10 we have plotted the monopole, dipole, and
quadrupole components of the second-order direct and
exchange contribution to the S-wave and P-wave phase
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Fre. 8. Momentum-transfer cross-section data. Long-dash curve
is that of LaBahn and Callaway (Ref. 17), the solid curve is our
present calculation. The short-dash and dot-dash curves are the
experimental results, respectively, of Crompton and Jory (Ref. 20),
and Frost and Phelps (Ref. 21).

w R. W. Crompton and R. L. Jory, in Abstracts of the Folrth
International Conference on the Physics of Electronic and Atomic
Collisions, Quebec, 1965 (Science Bookcraf ters, Hastings-on-
Hudson, New York, 1965), p. 118.

s' L. S. Frost and A. V. Phelps, Phys. Rev. 136, A1538 (1964).
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shifts, respectively. The direct contribution comes from
both orbital electrons, while only one orbital electron of
parallel spin contributes to the exchange term. In most
cases, the direct and the exchange contributions have
opposite signs and therefore counteract each other. So
the net contribution [except for Fig. 10(a)] from each
multipole is the difference between the direct (D) and
the exchange (E) curves in Figs. 9 and 10.

For the S-wave phase shift, as seen from Figs. 9(a),
9(b), and 9(c), the exchange contribution from the
monopole component is very large, being nearly half
that of the direct one. In the dipole part, the exchange
contribution is less, but is still about 20-30% of the
larger direct contribution. For the quadrupole, the ex-
change part is about 40% of the direct one, although
both are small.

For the P-wave phase shift, the monopole component
of the exchange part surprisingly has the same sign as
the direct one. The total monopole contribution in this
case [Fig. 10(a)] is the sum of the two curves. The
dipole contribution for the Ewave comes from two types
of matrix elements, the pssp and the psdp types. Their
exchange contributions are identical to the P-wave
monopole exchange [Fig. 10(a)] and the quadrupole
exchange [Fig. 10(c)]values, respectively, and thus are
not individually drawn there. Since these two exchange
contributions have opposite signs, the net dipole ex-
change contribution for the I' wave is small. For the
quadrupole contribution we have calculated the matrix
element of pspd type. The exchange contribution is
slightly larger in magnitude than the direct part.

The curves in Fi.gs. 9 and 10 also show the relative
importance of different multipole contributions to the
phase shift. In general, as expected, the net dipole
contribution is indeed dominant, since the long-range
polarization effect comes from here. However, the net
monopole contribution is quite sizable, especially for the
s-wave case, being in general about 50% of the dipole
contribution. The net quadrupole contribution is in
general much smaller. Higher multipole contributions
are expected to be small and therefore are not included.

From these results, we conclude that in general the
exchange contribution of the second-order optical~po-
tential is very significant and must be properly included

along with the direct part. It should be pointed out that
the present approach does not treat completely the
eGect of the second-order optical potential. However,
the conclusions we draw should be valid in general.

In a recent dynamic-exchange calculation, LaBahn
and Callaway" observed that a better result can be
obtained when they included only the dipole-contribu-
tion component while neglecting the monopole com-
ponent. In the light of the present calculation this may
be explained as follows. In their calculation, as in most
calculations made to date, the second-order exchange
eGect is neglected. For the most important 8-wave
phase shift, our present calculation shows that the net
monopole contribution [see Fig. 9(a)] turns out to be
nearly equal to the exchange part of the dipole contribu-
tion [Fig. 9(b)]. The neglect of the second-order ex-
change contribution and the omission of the monopole
contribution thus balance each other and give a result
very close to the correct one. On the other hand, if both
the direct-dipole and monopole contributions are in-
cluded, but with their respective exchange parts neg-
lected, as in the calculation of LaBahn and Callaway,
the total contribution becomes larger than the true one

by almost a factor of two. Since this near-cancellation is
purely coincidental, both the exchange effect and the
monopole contribution should be properly included in

any calculation.
In this application we have not calculated phase

shifts for energies below 1.2 eV. The single-particle
potential V' we have used for this calculation is the
Hartree-Pock potential VH~. The zeroth-order phase
shift is essentially the result of the static approximation
with exchange. In this sense, the present calculation is
expected to be more accurate as energy increases. The
second-order optical potential contribution then carries
the load of describing the entire distortion e6ect.

For extremely low energy regions, where the polariza-
tion effect is most important and the adiabatic ap-
proximation is most likely to be useful, one may choose a
slightly di8erent single-particle potential V', such as the
one in Eq. (2.16),with V~ equal to some commonly used

~ R. W. LaBahn and J. Callaway (private communication) and
Phys. Rev. 147, 28 (1966).Their result is very close to the result
of the present calculation.
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FIG. 10. Contributions to the
P-wave phase shifts from multi-
pole components. D =direct
part; E=exchange part; (&)
denotes the sign of the con-
tribution.

polarization potential such as the Buckingham potential
or the type of potential given by Bethe,"and Callaway
and Temkin. ~4 The zeroth-order phase shift then already
includes the eRect of adiabatic polarization. The Grst-

order optical potential will not in general vanish. The
first- and second-order optical potentials will carry the
much lighter load of describing only the nonadiabatic
corrections. The Qexibility of the choice in V' should

enable one to use this approach in a wide range of
energies.

V. CONCLUSIONS

In this paper we have introduced a modified optical-
potential approach for the calculation of elastic electron-
atom scattering at low energies. The method is general
and in principle can be readily applied to cases where the
target atom is more complex. Corrections to the elastic
phase shift by higher order optical potentials can be
included in a systematic manner and the Pauli principle
is preserved in each order. From the results of our
application to e-He scattering in this paper, the ap-
proach is shown to be able to yield. excellent results with
the inclusion of only up to the second-order optical
potential. This important feature makes the present
approach not only general but also practical. The
freedom in choosing the single-particle potential V'
gives the method an additional degree of Qexibility.
Another feature associated with the method is the fact
that one may study the inQuence of various physical

H. A. Bethe, Handbook of Physics (Edwards Brothers, Inc.,
Ann Arbor, Michigan, 1943), Vol. 24, Part 1, p. 339 ff.

~ J.Callaway, Phys. Rev. 106, 868 (1957);A. Tcmkin, i'. 107,
1004 (1957).

eRects in detail. Thus in the e-He case we found that the
eRect of exchange in the second-order optical potential
is actually very significant. Higher order diagrams, for
example, can yield information on the inQuence of
many-body correlation eRects on the scattering process.

Perhaps the most appealing feature of the present
approach is its simplicity. Once the single-particle po-
tential V' is chosen, one can simply generate the com-
plete set of single-particle wave functions and compute
the second-order optical potential contributions to the
phase shifts in a straightforward manner. There is no
need for the dubious adiabatic approximation, with its
usual problems such as the determination of the dipole
polarizability value n, or the uncertainty of the choice of
ud hoc cutoff parameters.

The modified optical-potential approach is now being
applied to other more complex scattering situations.
These investigations are necessary to further assess the
usefulness and limitations of the present method as a
practical approach for general electron-atom elastic
scattering.
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