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Ising Chain with a Spin Impurity*

H. FAIxt
Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania

(Received 2 May 1966)

Consider a closed, linear chain of X localized spins leach s =)) with nearest-neighbor Ising interaction.
Such a chain, exposed to a uniform external magnetic Geld, will be called the pure host. Replace a single
spin in the pure host by an impurity spin which is also subjected to nearest-neighbor Ising interaction and
to the external Geld. The magnitude of the impurity spin, the magnitude of its magnetic moment, and the
magnitude and sign of its interaction with the host are allowed to differ from the corresponding values charac-
terizing the host. For the bulk system (lV' —+00, for constant linear density of spins), the thermodynamic
properties, such as the impurity magnetization, the (position-dependent) magnetization of the impurity-
host system and the impurity-host spin correlation functions, are obtained exactly in terms of conventional,
tabulated functions. Numerical results are presented for impurity spins of magnitude S=~, +.

1. INTRODUCTION

~OR the linear Ising chain in a uniform external
magnetic field, the canonical partition function and

the magnetization in the bulk limit were calculated by
Ising' as part of his dissertation. He found that for any
positive temperature T,b„the magnetization —+ 0 as the
external field H —+ 0. That result is independent of the
sign of the nearest-neighbor interaction parameter, and
led Ising to the correct conclusion that the linear model
with short-range interactions does not provide a basis
for the Keiss molecular field. On the other hand, the
model is mathematically tractable for arbitrary Gelds
and temperatures and is certainly a source of qualitative
insight~ into the noncritical behavior of Inore compli-
cated spin systems. An additional positive feature is the
ease of generalizing the model so as to include spin--,'
impurities with interaction parameters and magnetic
moments which may di6er from those of the host.
Edelstein' has discussed such generalized Ising models
with spin-~ impurities and has been able to achieve
favorable comparison with observed magnetic behavior
of certain organic free radicals.

Incisive observation of the behavior of magnetic
impurities is provided by Mossbauer techniques, and
experiments have, in part, motivated a recent ap-
proximate calculation4 which deals mainly with the
thermodynamic properties of a single, spin-S impurity
in a simple-cubic Heisenberg ferromagnet. For reference
it seems worthwhile to obtain the exact thermodynamic
properties of a spin-S impurity in an Ising chain with
either ferromagnetic or antiferromagnetic nearest-neigh-

bor interactions. Such is the purpose of the present
paper. The results follow in a straightforward manner on
the basis of transfer-matrix methods. ' The impurity
magnetization and the (position-dependent) magnetiza-
tion of the impurity-host system and the impurity-host
spin correlation functions are expressed in terms of
conventional, tabulated functions (e.g., Brillouin func-
tions). For certain selected fields and temperatures, the
magnetic properties are displayed graphically for vari-
ous cases, e.g. , (1) a spin-s antiferromagnetic impurity
imbedded in an antiferromagnetic host; (2) a spin-zs

antiferromagnetic impurity imbedded in a ferromag-
netic host, etc.

2. PARTITION FUNCTION

Consider a linear chain of E lattice points labeled
1, 2, , E, successively, and associate with each point
a localized spin. I et all the spins except that at point
X/2 (E even) have magnitude s. The spin at point E/2
has magnitude S to be selected from the possible values
-'„1,~, 2 . . The chain is closed so that the ordered
points lie on a circle, and a periodic boundary condition
is thereby imposed. The s axis is defined by a uniform
magnetic Geld H perpendicular to the plane of the circle.
Kith s denoting the s component of the spin at point i,
and p, denoting the Bohr magneton, the Hamiltonian of
the system being considered is

N

x= P l) (s,s;+,'), (s/v+, '=—s,'),

where

g(s,*,s;+t')=2eJs s,+,'+g//Bf(s +s;+t')//2j, for i=
= 2eJs/v/s t's/v/s*+//+[(gs/v— /s t'+gsN/s')/2g &-
= 2e&s/v/s*sx/s+1'+l &((gs///s*+gs/v/z+1*)/2] y

1, 2, , S/2 —2, 1V/2+1,
for i=X/2 —1;
for i=X/2.
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The nearest-neighbor interaction parameter J' for the host is defined to be non-negative so that e is +1 for an
antiferromagnetic host and —1 for a ferromagnetic host. The Lande factor is denoted by g, and the quantities
J, e, and g are de6ned analogously for the impurity.

The computation of the partition function is readily accomplished in terms of the following quantities. Let
P = 1/(the Boltzmann constant ke times the absolute temperature T,b,), and introduce the matrices

S~+i—

&'= —-' emf —4(—-' —-')}
T,= )exp{—PJ(s,s;+i*)}]—=

s,*=+-', exp{—P&(+-'2, —-', )}

e'+i*=+i

e.p{—Pf)(——:,+l)}-
expf —4(+l +l)}-

for i =1, 2, , E/2 —2, N/2+1, , X. Clearly, the 2X2 matrix is symmetric and independent of i (note:
iWE/2 —1 or E/2), and may be written

where

and

E=PS/2, h=g/a/(2J),

g+—=expL —2E(e+h)].
For future discussion I now introduce 0—= 1/(4E).

The 2X (2S+1) matrix T is defined by

T= Lexpf —I8ff(s&/p &',s&/2') }]
SN/2 SÃ/2 S+1 EN/2' ——+S

s~/2 i*————,'- exp{—Pl)(——',, —S)} exp{—Pl)(—-'„—S+1)} expf —PI)(——,', +S)}
7

—*=+l- {—P3(+-', —S)} {—P3(+l —S+1)} {—W(+l, +S)}-
and the (2S+1)X2 matrix

T =L p{—A(w2' w2+i*)}]

defined by obvious analogy, is seen to equal the transpose of T. It is helpful to express —Pfj (s,s;+i*) in terms of the
parameters

p—=J/~, l=g/g—
and E; the result is

—Pf) (s,*,s;+i') =- 4E es,'s,+i* 4E—hhs, '+s,+i')/—2], for i = 1, 2, , E/2 —2, il/'/2+1, ~ ~ ., il/;

4EepS//p i*S///—2* 4Ek[(SN/2 1 +—~&///2 )/2], —f» ~=&/2 —1

4EepS///2 SN/2+1 4Ekf(XS///2 +SN/2yi )/2] q
fol' 1=E/2.

The partition function

a11 states
f S&* ~ ~ ~ SNe j

exp (—PK)

with corresponding orthonormal eigenvectors

a+ cosh

is simply'

=tr(T " 'TT~T"/')
=tr(T~ 'TT~)
=tr(Tg;. N 'U 'TT~U), —

where the orthogonal matrix U transforms T to a
diagonal matrix

Tg,,g= U 'TV.

where

and

a '—sinb

cosh—=—o+/(1+n~')"',
sinb—=1/(1+a 2)"'

The eigenvalues of T are readily found to be

a)g ——e x'l cosh (2Eh) &(sinh'(2Eh)+e'x')i/']

a+= —e 'x'Lsinh(2Eh)+(sinh'(2Eh)+e4/r')'/2].

Since ~M /or+~ (1 (and+ (or+) for all positive tempera-
tures, co+ will be referred to as the maximum eigenvalue,
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and its corresponding eigenvector as the maximum
eigenvector of the host transfer matrix T.

The orthogonal matrix U is written

(cos5 —sinb)

Esin8 cosb J'

and, by definition, U—' is the transpose of U.
The computation of the matrix product TT& leads to

a concise result, since the sums which appear are all of
the form'

+S
e 't es-inh)(25+1)xj/sinhx.

j—S

It is therefore convenient to introduce the function

GB(x)=—sinhf(25+1)xj/[(25+1) sinhx].

where

and

(F+ Fp
TT~= (25+1)~

&Yp F

Y+=e" "Gs—(n+),

Yo=Ga(go),

rt~—=2K (W ep+hX),

go=—2Eh~.

In terms of the above notation, the exact partition
function for the X-spin impurity-host system is

2 (2S+1) ~" 'tr ( )( )
(Y+ Yp (a+ a

xi
EYp Y Ebp b

For positive temperatures the magnitude of (~ /to+)N '
diminishes exponentially with increasing E; conse-
quently, for positive temperatures and S large

Z (25+1)tdp~ 'D )—

3. MAGNETIZATION

The impurity magnetization' in the bulk limit is here
deGned by the canonical ensemble average

rrtrtp=(sorts')//5= (ZS) ' P sNto' exp( —PX)
all states

= —(4Khs) '(8-/N, ) lnZ

but (25+1)to+N ' is independent of X; so that

otrtp= —(4Khs) '(8/8'n) lnD.

Now the only dependence of D on X is implicit through
Gs(sty) and Gtt(qp); therefore by using the relation

aG, (x)/ax= 25G, (x)a, (25~),

where Bs(y) is the familiar' Brillouin function defined

by

Btt(y) = L(25+1)/(25)3 cothL(25+1)y/(25) j
-L1/(25) j othLy/(25) j,

one 6nds

otrtp —(a——+'Y~ay+2a+b+Yoao+b+'Y B )/D, -(2)-

with
a,=—a, (25&,),
Bo—=as(25go)

It is readily verified that a&~2=0 for k=0, T,b,&0;
and that for p=0 the magnetization of the uncoupled
impurity spin is o tp.to = BB(45KB,)—, as expected. .

It is interesting to compare the impurity magnetiza-
tion with the magnetization of the uncontaminated
(pure) host. In the bulk limit the pure-host magnetiza-
tion is given by

o h.,p
———(2K)—'(it/Bh) into~

= —sinh(2Kb)/(sinh'(2Kb)+eel')'t' (3)

i.e., the well-known' expression which vanishes as h ~ 0
for all 1',b,&0. It is apparent that for T,b, ——0,

oh„t——0 for h(1, o=1 (antiferromagnetic case);
= —1 for h) 1, o= 1 (antiferromagnetic case);
= —1 for b)0, o= —1 (ferromagnetic case) .

Of future use will be the following simply derived rela-
tion between the pure-host magnetization and the
components of the maximum eigenvector of the host
transfer matrix:

where g ltost b+ —8+ = 1 2Q+ ~ (3')
D=a+'Y++2a+b+Fp+b+'F .

In the bulk limit the quantities computed with (1) will

be exact, and, unless otherwise stated, all succeeding
ensemble averages are considered only in that limit.

' J. S. Smart, Fffect&e Field Theories of 3lagnetism (W. B.
Saunders, Company, Philadelphia, 1966).

Figure 1 shows the magnetization of an antiferromag-
netic pure host, and the magnetization of a spin-2
impurity imbedded in an antiferromagnetic host. The
host-impurity coupling is also taken to be antiferromag-

'ln the following, the term, magnetization, will be used
interchangeably with the phrase, average spin projection. These
quantities will frequently refer to a particular lattice point, since
the impurity-host system is not homogeneous.
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netic with J=J, and the Lande factor g is put equal to

g; therefore p=P =1.For k&1 and low temperatures,
neighboring pure-host spins have essentially antiparallel
alignment. As the temperature is increased for a fixed
value of h(1, the Zeeman term begins to dominate and
the Geld begins to overcome the antiferromagnetic
alignment. The resultant magnetization achieves a
maximum magnitude and then decreases with in-

creasing temperature. For h) 1 the Zeeman term domi-

nates for all non-negative temperatures, and the pure-
host spins behave like those of a ferromagnetic pure host
exposed to a Geld of magnitude h —1. It is clear that
even for large fields (Is = ss), the impurity magnetization
does not quantitatively follow the'. :pure-host mag-
netization for T,b,)0.

Figure 2 indicates a quite diferent situation for a
spin-~ impurity antiferromagnetically coupled to a
ferromagnetic host. For h)i, (p (in this example p=)i=1)
and low temperatures, the impurity spin orients oppo-
site to the other spins, but as the temperature increases,
the impurity wilts and submits to the increasing in-

huence of the field which tends to align the impurity
parallel to the other spins. For hP )p the Zeeman term
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FIG. 2. Same as Fig. 1 except that the host is
ferromagnetic (&= —1).

dominates for all T,b, &0, and the impurity magnetiza-
tion follows closely the pure-host magnetization.

A better understanding of the above behavior is ap-
proached by considering the (position-dependent) mag-
netization of the impurity-host system. One then sees
how the spins of the host are inQuenced by the presence
of the impurity. The quantity of interest is the bulk-
limit magnetization

o.&/s, =—(s&/s p)/-,' = ( 4EhZ/2)-—'Dr)/'Bs)

X tl (Ts ass U T(v) T (ti) UTs ass U TT U)]y=r

for t=2, 3, , E/2 —1. The matrices T(ti) and T (s)
are deGned in Appendix A, where it is apparent that
0-&p & is implicitly obtained in the process of calculating
(sN/u s'ss//s'). Thus

osr/ g
——(—4KhZ/2)-'(25+1) (2Eh)oi+"-'{D(is ' b')—

+(/d /a+)' '(a+a b+b-)—
X f~s+is F++ (/J+b +b+/s )Ys+b~b F j),

which, with (1) and (3'), is put into the form

ow/2 t =o'host (oi—/I—+) (o+~- b+b—)
X(&~+rs ~i+(o+b +4/s )~s+b+b l' j/D), (4)

where t= 2, 3, , 1V/2 —1. Now only the bulk limit is
being considered; so that there is essentially symmetry
about the impurity spin, and (o/ /o/+)

' ' could be re-
placed by (oi /o&+)~

'~-' in (4) which would then obtain
for t= &2, &3, , +1li//2 —1.Recall that the periodic
boundary condition ensures that 0.~+~=0~.

In the present context, the temperature will be referred to as
high or low in accord with whether //= ksT, s,/(2 J) is ))-,' or «—-'„
respectively.

FIG. 1. For an antiferromagnetic impurity (@=+1)in an anti-
ferromagnetic host (&=+1), the graph shows the impurity mag-
netization 0.N/2 and the pure —host magnetization o-h„q versus
temperature (8—=ksT, h./(2J)) for selected fields (k= AH/(2J) ). —
The impurity spin has magnitude S=~, and the parameters J
and g have been taken equal to J and g, respectively. The symbol
1 =—1—5, where 0&5((1.
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To compute 0&~2 &, which is equal to ON~2+& by sym-
metry in the bulk limit, replace the product hX by h'

and then replace h by h" in the arguments of the
elements of T and T~. Then

(TN/2 2 =e&(2+2= (—4KZ/2)-'L (()/Bh")
xtr(T; K—'U 'T(h', h")T (h', h")U)72-

ANTIFERROMAGNETIC HOST, FERROMAGNETIC IMPURITY

S= 2, h= /P

N/2

The following checks have been performed: for k=0,
++/2 —t +N j2+1 +ho8$ 0 i and for e= 8 and p =X=2S= i,
o.N~2 t=o~ig+~ ——gh„t, as expected, since the impurity
spin has completely lost its identity and the impurity-
host system becomes indistinguishable from the pure
host.

Now the definitions of co+ and co lead to the formula

o) /o)+= —2(sinh2Ke)/(o+', for h&0;
= —tanhEe, for k=0,

which indicates that the impurity adds to the anti-
ferromagnetic host magnetization a term whose sign
alternates as t changes by an odd integer. Recall that
forpositive temperatures ~o) /o)~~ (1;sothat ((0 /o)+)~'~

decreases in magnitude with increasing
~
t~. Clearly, as

~t~ becomes very large, the average spin projection
r~~2 t will tend to approach the value of O.h„&.For
nontrivial (p&0) impurity-host coupling, how large
must

~
t~ be before the presence of the impurity is not

signiicantly reQected in the value of O.NJ2 t, i.e., what is
the size of the domain of inQuence of the impurity. To
roughly answer this question, observe that

(d /o)+~e 'K"+0(e 4K("+") for 0(h, e= —1;
e
—4K(s—n+0(e—sK(s—1)) for 1 (h e +1 ~

1+e
—2K(1—2)+0 (e

—4K(1—a) +emK 2)

for 0&h(1, 2=+1.

S= /&, h= /&
5 4

N/

1' 1&

44 QI Ml

FIG. 3. The vectors represent the average spin projections
(magnetization) r~/2 t for t =0, +1, +2, +3, ~4. The impurity
is at site E/2, and the vector on the far left represents the pure-
host magnetization for the same field and temperature. Open
arrows are used for a temperature 8=0.1, and closed arrows are
used for 8=0.2.

impurity. But at low temperatures and 0(.h& j., the
antiferromagnet is highly energetically degenerate, and
the presence of the impurity tends to stabilize the
system.

The above very qualitative discussion is reinforced by
numerical results displayed in Figs. 3, 4, 5, and 6, which,
unless speciied, are essentially unchanged for a spin--,'
impurity. It is helpful to know that for this model: the
conigurations

~

~ ~ ~ —2, +S, —
2 ) is energetically

ANTIF'ERROMAGNETIC HOST, ANTIFERROMAGNETIC IMPURITY

S=/2, h= /P
-2

For the ferromagnetic case (s= —1) at low tempera-
tures and 0&k, the domain of inQuence of the impurity
is, thus, crudely measured by the distance (in number of
lattice spacings)

t- 1/(4Kh) =h J)T,b,/(AH),
for e—'~(~+')(&1, 0&h, e= —1'

whereas for the antiferromagnetic case (2=+1),

l~1/I 4K(h —1)7=hnTsbs/(AH —2J),
for e 'K(" ')&&-1, 1&h, 2=+1;

~e2K(1—2) f()r (e-4K(1—2)+e-4K 2)((1 0(h(1 s +1

0-g

0-

N/2

S=~/2, h =4/&

In particular, notice that for the antiferromagnetic host,
the polarizing inQuence of the impurity extends over a
large number of spins for a signi6cant region of the
IJ—T,b, plane. Physically, at low temperatures, the
ferromagnet in a moderate Beld and the antiferromag-
net in a large ield (1&h) are both "frozen" by the
6eld and only spins adjacent to the impurity sense the

FIG. 4. See caption for Fig. 3.

' The symbol ~) denotes a state of the many-spin system. In
comparing two states, spins which are both irrelevant and have
Gxed orientation are simply indicated by dots.
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favored. over
~

~ ~ —2, —S, ——,
' ) if and onlyifh)t(p,

independent of S; and the configuration
~

+S, —2, —21 ) is energetically favored over
~

+2, —S, +-,' —-,') if and only if e((2—2S)t)h;
furthermore (

—-'„+2,—S, +-,', —
2 ) is ener-

getically favored over
~

——',, ——,', —S, ——',,
—

2 ~ ) if
and only if h( (e/2+ epS).

0-

2th-2 s-"5&p
2 h =~/p

Ng2
0-

s I
Ml st wr

FERROMAGNETIC HOST, ANTIFERROMAGNETIC IMPURITY

4. CORRELATION
S =~i&, h = ~i& S= /~, h= f'~

The correlation" between spins is conveniently dis-
cussed in terms of the canonical ensemble average
(($f $g ) ($f )($,')). The first correlation to be calcu-
lated is that between the impurity spin sN/2' and the
nearest-neighbor host spins sN/ j' and sN/2+&'. By
referring back to the derivation of (1), one sees that in
the bulk limit,

($N/2 1 $N/2*)/2S= ($N/2 $N/2+1*)/2 S
= (1/2)(S/2) '( 4Ep)—1(8/Be) lnZ
= ( 4EpS) '(8—/Be) lnD

=( 'Y B b'Y B —)/D.

For k=0 the situation is simpli6ed, since

Yy= Y-=Gs(2«p),
B+ B=——B—s(2S—X2Eep), ~ for k=0
a+=b+= u=b—=1/K2,

and one has
&N/2 —1 &N/2+1 &N/2 —0 j

0- 0- N/2

FIG. S. See caption for Fig. 3.

For arbitrary fields It~0 and i=1, 2, , S—1, the
nearest-neighbor, pure-host correlation function

($ $~1*)/-,' —oh t —(—E) '(&/e)e) In&0~ —0.&„t'
= (1—0h„t2)—[202''/[to+(sinh'(2E/2)+ 04'')'"j] (8)

correlated with its nearest neighbors. At the other
extreme 4SEp«1, and the magnitude of (6.1) 2SEp.

One may put e=e and p=Ã=2S=1 to recover from
(6.1) the well-known, nearest-neighbor, pure-host corre-
lat1on funct1on

($s*$sy1 )/e —(Ss*)($s+1)/e:—($s $s+1*)/X —tfhost

= —tanhEe, for 1'2=0 and 2=1, 2, X—1. (7)

In the bulk limit the correlation between the im-

purity-spin sN/2' and the spin sN/ &' for I,=2, 3,
X/2 —1 is discussed in terms of

therefore, with oN/2 s;N/2=(SN/2 t $N/2')/2S,

0 N/2 —1;N/2 O'N/p 10'N/2 = Bs(2SX2Eep)/
[1+(1/Gs(2Eep) )j, for k =0. (6.1) ($N/2-t SN/2 )l2S ($N/2-t )(SN/2 )/2$

=ON/2-t;N/2 ON/2tON/2= (ohost -tfN/2S)0N/2-'
+2(to /top)'-'u+t2 [a+a Y~B+

+(apb +b~a )YpBp+b+b Y B )/D. (9)

The derivation is given in Appendix A, and the reader
should note that the term (0 h„t—oN/2 t) is contained in

(4); in fact the symmetry argument given after (4)
applies as well to (9). For all positive temperatures, the
impurity spin and any spin at "ininite separation" onGs(x) 1 for (2S+1) i

x i «1;
QS[af

Now the Brillouin function Bs(y) = Bs( y); whereas- —
Gs(x) =Gs(—x). It follows that for &=0, the sign of the
correlation between the impurity spin and a neighboring
host spin is opposite to the sign of e, i.e., antiferromag-
netic impurity-host coupling (e=+1) implies antipar-
allel nearest-neighbor impurity-host order for k=0,
T,b, ~0; etc. Notice that

for
( x())1;

2S+1 FERROMAGNETIC HOST, FERROMAGNETIC iMPURITY

consequently, the nearest-neighbor correlation (6.1) is
dominated by the behavior of the Brillouin function.
For conditions such that 4SEp&)1, the magnitude of
(6.1) is close to unity and the impurity is strongly

' According to the conventional statistical definition of a
correlation coeKcient, one could consider

((ff (fi )) (fs' —(fo')))/D(ff (ff ))')"'((fs' —($ '))')'
= ((ff'$ ') —(ff*)($ *))/[(((ff')') —(2/')2)"s((($ ')') —(2 *)')'"3

Our present interests are satisfied by a slightly diferent quantity
which is adopted for simplicity.

0-

/22h -2/

I'IG. 6. See caption for Fig. 3.



the chain are manifestly statistically uncorrelated; thus
there is absence of impurity-host long-range correlation

The latter result is not a surprise in vie+ of rigorous
arguments (see Domb, Ref. 2) about the absence of
long-range order in one-dimensional classical systems
arith 6nite-range interactions. It should perhaps be
ltclatcd that thcx'c px'cscntly Rppcars to bc RQ RbscQcc of
published rigorous arguments about the absence of
long-1 Rngc Gx'dcx' 1Q onc-dimensional quan tuIQ-mech anl"
cal systcIQs v(1th 6nltc-langc lDtcractloDs.

For the special case of h=o, (9) reduces to

(r/v/a ~;x/e (r/—v/2'-/e= ( —ta—nbEe) ~'&s(25 X2Eep)/
D+(1/&s(2«p)) j (9 1)

which, due to (6.1), is va1id for f= 1, 2, , X/2 —1.For
the antiferromagnetic host (e=i), the zero-field, im-
purity-host correlation alternates in sign and decreases
1D IQagnltudc by fRctGI's of tanhE Rs $ increases froIIl
unity by successive integers. One derives the pure-host
corrclatlon fuQctlon

( s;*s ~,*) /,' (rh„-—P= (—tanhEe)'
for h=o and 5=1„2, , S—1, (10)

from (9.1) by putting e= e and p=Ã=2S=1 and using

the translational invariance of the pure host. On the
basis of previous discussion, one is able to think of
follovring the correlation along the lattice. The initial

amplitude transIQlttcd f1oIQ thc impurity to its
Dearest, DclghboI' ls csscQtlally R Bxillouin 'functlGQ Gf

index and argument appropriate to the parametex's
vrhich characterize the impurity. From that point on,
the amplitude is diIninished by a "transfer cocfIlcient"

~
tanhEe

~
which is simply the Brillouin function (s= a)

%'hlch characterizes thc pure "host~ ncRl cst-neighbor
correlation —all for k=0.
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APPENDIX A,

The computation of (s)v/a, 's)v/e*) is accomplished by
lntloduclQg a paraincter 8 into thc Hamlltonlan 1Q such
a way that differentiation of the resulting lnZ(t))
generates the desired ensemble average. YVrite

—Pfj(s' s +r' t))= 4Ees 's q—* 4Eh(L(s *+s —r')/2l for
eEQ—={»2, , S/2 —f—2, S/2 —$+1, ",E/2 2, S/2+ 1, —, X};

«es///2/lsd/e t~--4Eho—s&/rg 1+M/v/r --(,*)/21 fol $=g/2 —f—1 '

«es/v/e-& s/v/2 w& 4E-hL(r)s/v/2 t+sx/e -g+r*)/2j, fol' $=E/2 —f;
=—4Ee»)v/r —r's)v/a* 4EkL(s/v/2-t'+»/v/e')/2j, for i=37/2 —1;
= —4Eeps)v/m*s)v/r-)-r' —4E&E(»)v/e*+s/v/e+r')/2j, for i=N/2,

with 3=2' Bq ' 'q P/2 li and s() —=—s/v~. Define

X(t))—= P $(s,s;+r', e),

and denote the associated partition function by Z(t));
thc ol lglnRl HRIIllltonlRQ Rnd pRl tltlon fuQctlon Rrc

simply related. to the needly de6ned quantities by
X=3.'(1), Z=Z(1). Thus

(.... :.,")=( 4E~) -Z (W-»)&-W~ )Z()j.
= (16E')((,"Z)-'(8/») t (8/Bt))

)&tr(T ~ ' 'U 'T(t))T~(t))
&(UTg;,a' 'U 'TT~U)j. r,

"The absence of long-range correlation follows from the
vanishing of lin)(, ( „(ca/~+))'(, for ail T,b.)0. One should
distinguish that result from the vanishing of 0.~/2 ~ and o.~/2 as
h~0+ for T,b, &0; the latter being a statement about the
absence of spontaneous magnetization. In this context long-range
is synonymous with in6nite-range."It is not here intended to construct sharp definitions of
"classical" and of "quantum mechanical" as applied to one-
dimensional systems. However, in the present discussion a classical
one-dimensional system is one described by a Hamiltonian com-
posed of commuting opefatols fol which Bomb's discuss1on
(Ref. 2, p. 173) eertainiy obtains.

vrhere the quantities have all been previously defined
CXCCPt

T(e) = Lexp( —Pf) (s';s'+r', e)}1
v-(~)e- v+(~)

)
—~Xe

V-(e) V+(~)4+

and T~(t)) which is the transpose of T(t)). In the defini-
tion of T(t)) take r'+Q and

and notice that the original transfer matrix T= T(1).
The calculation of

U 'T(e) T+(t))U= (U—-'T(t)) U) (U 'T(t)) U) ~

is greatly facilitated by using the equations for the
eigenvectors of T; namely,

&++(4+—p+)4=o

@&herc p~=—e ~'~~. With the de6nitions of e~ and b~
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given in Sec. 2, it follows from inspection that

a+'+b~'=a+'+a '=b+'+b '=1,

//+//, +b+b =u+b++// b =0.

Kith the above information one obtains

karst(e) ass(s)/'

v»(s) = / /d+//+ +"-/+/d+b+ ~

&»(u) =y ~+/s+// +v+-~+b+b

est(u)=y~ a+a +y~&o b+b,
Tss('v) = / (d // +y+(d

(A2)

(S///2 gS///s )-
= (25+1)a&+~-'(16E'O'Z) '(8/BX) ( (8/dtt) L (v»s (s)

+r»'(u))D+(~-/~+)' '(~+~ J'++(-~+b +b+~ -)1's-
+b+b-J"-)(r»(s)r»(s)+r»(e)r»(s))j). -t (A3)

Byusing the fact thatin the bulk limit (~ /co~)N ' s-+0
for positive temperatures and 1=2 3 X/2 —1, one
6nds

r)r»(s)/»I, t——(o+Ith(a+s —b+'),

ar„(v)/asl.=,=~~a(a+a= b+b ),
Br»(s)/»I „ t ~~h(a+a b+b—),
Brss(s)/BsI, t ——(o~h(a '—b '),

r»(1) =s)+,

r»(1) = r» (1)=0,
vss(1) =s);

consequently

(8/Be)(rtts(u)+rtss(s)) I, t——2&v+'Eh(u+s —b+'),

(d/») (r»(e)r»(e)+r»(s)r»(s) ) I.-t
=2co+co~k(/Jy// b+b ) .

After referring back to (1), (3'), and the derivation of
(2) one arrives at (9) by differentiating with respect to
X in (A3) and substituting

Z= (25+1)(v+'/ 'D, —

o'~/s = (—4XAS) D BD/N, ,

&host —&+ ~+ e
Q Q
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Orthorhombic and Trigonal Electron-Spin-Resonance Spectra
of Ce'+ Ions in CaFs

S. D. McLAvGHr. ww amo P. A. FoRRzsrzR

Eoya/ Radar Bs@Nishmelf, Mckerri, , 8'Orcesrershire, Eegkawd

(Received 23 June 1966)

Taro neve electron-spin-resonance spectra, one having trigonal and the other having orthorhombic sym-
metry, have been observed in CaF2 doped edith small amounts of CeOg. The ~ and y axes of the orthorhombic
spectrum lie in the (110) plane and are tilted by an angle 5 = 13.8+0.2' from the L110)and the L001) axes,
respectively, and the s axis lies along the L110$ axis. The components of the g tensor for the two spectra are:
orthorhombic, g =0.844~0.001, g„=0.22~0.0$, g, =3.286~0.001; trigonal, gal =3.673~0.002, go&0.3.

1. DTTRODUCTION

INGLE crystals of CaF2 containing trace impurities
of paramagnetic ions often exhibit electron-spin

resonance (ESR) spectra with symmetry lower than
cubic. Such spectra arise because of the proximity of
compensating charges which lower the point symmetry
at the sites of the impurity ions. In previous papers, ' '
we described spectra having orthorhombic symmetry
which were observed in crystals of CaF2 containing
rare-earth (RE) ions which had been introduced into

' P. A. Forrester and S. D. McLaughlan, Phys. Rev. 138, 1682
(1965).

'S. D. McLaughlan, P. A. Forrester, and A. P. Pray, Phys.
Rev. 146, 344 (1966).' S. D. McLaughlan, Phys. Letters 20, 486 (1966).

the crystals in the form of the RE oxides. In the present
paper, results on Ce'+ ions in CaF~ doped with Ce02
are described; in this system, two spectra of approxi-
mately equal intensity are observed, one having trigonal
and the other having orthorhombic symmetry. Previous
ESR studies of Ce'+ ions in CaF2 have ''revealed ions
situated in purely cubic sites, and ions having tetra-
onal' and trigonal6 symmetries, but the trigonal spec-
trum which we have observed is di6'erent from the one
previously reported.

4M. Dvir and W. Low, Proc., Phys. Soc. (London) 75, 136
(1960).' J. M. Baker, W. Hayes, and D. A. Jones, Proc. Phys. Soc.
(London) 73, 942 (1959).

& M. J, Weber and R. W. Bierig, Phys. Rev. 134, 1492 (1964).


