
P 8 YSI CAL RE VI E W VOLUM E 151, NUM HER 1 4 NOVEMBER 1966

Spin-Echo Decay of Spins Diffusing in a Bounded Region*
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An approximate expression for the spin-echo-decay envelope is obtained from Torrey s equation for spins
diffusing in a magnetic Geld gradient G and in a region that is small compared with (D/yG)'~s in the direction
of the large uniform magnetic Geld, and large in the directions perpendicular to the Geld. (Here D is the
diffusion constant and p the nuclear gyromagnetic ratio. ) In a preceding paper, Wayne and Cotts compare
this expression with experiment for regions that are large compared with (D/pG)'~ but small enough that
the simple spin-echo-decay envelope for an infinitely large region does not apply.

HE equation of motion for the magnetization of
spins diGusing in a magnetic field gradient G has

been derived by Torrey. In the rotating frame and with
the exponential relaxation factored out of the magneti-
zation, it is'

i)M/itt = —iyGzM+D f/sM,

where p is the magnetogyric ratio, D is the diGusion
constant, and

of the only dimensionless constant in the problem,

n= tytsG/D,

the equation of motion (1) becomes

BM/Bt = inzM+—itsM/itzs

the boundary condition (3) becomes

clM(z, t)/ctz=0 at s=0, 1,

(6)

(7)

M =M,+iM„. (2) and the initial condition after a 90' pulse is

M(z, 0)=1.

(9)M(z, r+)=M(s, r—)*,

Assuming that the boundary surface produces no mag- (8)
netic fields that can cause the magnetization to relax
and since the diGusion currents normal to the boundary $~7 1S
must be zero, M satisfies'

V'„M=0 on the boundary, (3) and the envelope of the spin-echo decay is

where V' is the component of the gradient operator
normal to the boundary surface.

Wayne and Cotts' have measured the relaxation of
the nuclear spins of gas molecules diGusing in a small
compartment. In this paper, we obtain an approximate
expression for the spin-echo-decay envelope from Kqs.
(1) and (3) for spins in a small compartment. In the
Appendix, we discuss the possibility of adding another
term to Eq. (1), and we show that its effect is negligible
for their experiment.

We assume that the spins are diffusing in a compart-
ment which is infinite in size in the x and y directions
but has a size a in the s direction with walls at a=0 and
at a=a. In order to simplify our equations, we measure
distances in multiples of a, times in multiples of

tD a'/D, ——

and the magnetization as a multiple of the constant
initial magnitude of the magnetization. Then, in terms
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F(2r) =- LM(z, 2r)+M(z, 2r)e7dz,
0

which is 1 for r=0.
We now have a complete statement of the problem

that we are to solve. We must integrate Eq. (6) subject
to the boundary condition (7) from the initial condition
(8) up to time t= r, then apply Eq. (9), integrate up to
time t=2r, and finally calculate Ii from Eq. (10). At
first glance, it might appear that all that is necessary
is to use a solution of the form

M (s,t) =exp/( —inz+cl'/az') (t—tp)7M (z, tp) (11)

with Eqs. (8)—(10). However, although Eq. (11) is a
solution to the equation of motion (6), it does not satisfy
the boundary condition (7), and so is incorrect.

We may be sure that the boundary condition will be
satisfied by expanding the magnetization

(12)

iP (z) = (2—3 p)
t' cos(rtrrz) (13)

satisfy the boundary condition (7) and are complete
and orthonormal on the interval 0 to j.. In terms of the

where the sum is over m=0, j., 2, ~ ~, and where the
functions
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matrix elements

1

Znn = Pnzfn dz=Z„.
0

D = f (8'/Bz'g„dz= —b„„rPprp,
0

(14)

In terms of p, the expression for the envelope becomes

F(2r) =Tr[jp(r)], (24)

L=L'+L", (25)

where the Tr indicates a sum over e=nz from 0 to ~.
To express the equation of motion for p, we de6ne a

generalized Liouville operator4

the expansion coeKcients satisfy the equation of motion

a =g(—r'rrZ„„.+D„)a„. (16)

Finally, the initial condition becomes

where the matrix elements of L' and L" are

L nm, n'm'=rr(Z n&nm' m&nn'Zmm') y

nm, n'm' = &8nn''5mm' ('+ +err )s

(26)

(27)
a.(0)= S.„

the effect of the 180' pulse becomes

a.(r+) =a.(r—)*,
and the envelope becomes

(18) P-(t)= —&EL-.--p-- (t) (28)

The operator L' gives a commutator of nZ with the
operators to the right of itself, and the operator L"
gives an anticommutator of iD with the operators to
the right of itself. Only the anticommutator, which
arises because the corresponding term in Eq. (16) is
real, makes the trace in Eq. (24) not constant in time.

We now use a method due to Nakajimas and Zwanzig'
on Eqs. (23)-(28) to obtain an integrodifferential equa-
tion for F. To do so, we introduce the operator

F(2r) =
p Lap(2r)+ap(2r)*]. (19)

Our problem has been reformulated in such a way
that it appears similar to a problem in quantum
mechanics. It is not identical since an i does not appear
in front of the last term on the right of Eq. (16), since
the observed quantity Il is the real part of ao, and
since the normal derivative of P„and not P itself is
zero on the boundaries.

A formal solution to the problem is obtained by
inserting

(29)P„,„=b„pb pb

which when operating to the right on any operator 2
givesa(t) = expL( —iaZ+D) (t tp)]a(tp) (20)

17
The equation of motion then has the form of the
Liouville equation

into Eqs. (17)—(19).Here Z and D are matrices operat-
ing on the column vector a(tp) yielding the column
vector a(t), which is a solution to Eq. (16).The operators
Z and D must be expressed by the representation (14)
and (15) or its equivalent and not by the representation
in Eq. (11).The two representations are not equivalent
as may be seen by comparing the matrix elements of
$8'/i7z', z]= 28/Bz with [D,Z] using Eqs. (13)—(15).

Since the matrix D—inZ does not commute with its
Hermitian conjugate, it cannot be diagonalized, but
this will not prevent us from using Eq. (20) to express
F in a more convenient form than in Eq. (19).Observe
that, because the operators (14) and (15) are symmetri-
cal in e and e', the n, e' matrix element of the exponen-
tial operator in Eq. (20) is also symmetrical in I and rs'.

By using'this observation with Eqs. (17)—(20), we

obtain
F(2r)=Z a (r—)a.(r—)* (21)

PA =p(0) Tr(A), (30)

where A must include all of the operators to the right
of P. It follows immediately that

Tr(PA) =Tr(A), (31)

and therefore that
P'= P. (32)

The result of P operating on p is

o (t)—=Pp(t) =p(0)F(2t), (33)

and therefore p and 0- have the same initial condition
(23). Finally,

F(2t) =TrLo(t)]. (34)

Since P is linear and time-independent, 0- must
satisfy Zwanzig's linear integrodifferential equation'

The form of this expression suggests that the problem
now defined by Eqs. (16), (17), and (21) may be con-
veniently reformulated in terms of the density matrix

a(t) = —iPL~(t)

PLe "&' ~&~(1 P)Lo (t-t')dt'. (3—5)—
p-(t) =a-(t)a-(t)*,

which has the initial condition

p„„(0)= 5„p8„p.

(22)

(23)

4 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).' S. Nakajima, Progr. Theoret. Phys. (Kyoto) 20, 948 (1958).
6 R. Zwanzig, J. Chem. Phys. BB, 1338 (1960).
'Equation (11}of Ref. 6 with f=p and f~=o.



SP I N E CHOS AND BOUNDED D IFF US ION 275

Now for any operator A

Tr[L'a(=0, PL'W =O,

L"h)(0) =0, L"PA =0,
so the trace of Eq. (3S) becomes

dF (2t)/dt = — E(t')F(2t—2t') Ck',

(36)

(37)

(38)

similar way for the magnetization itself but in a dif-
ferent system where diffusion is not taking place but
instead there are strong exchange interactions or rapid
lattice motion.

To get an approximate expression for E, we expand
the exponential in Eq. (39) for small tr leaving i(1—P)L"
in the exponential and keeping i(1—P)L' to first order. s

This expansion can be simplified by use of

e it(1 P)L"(—1 P) (1 P)e itL"— (42)
(39)E(t) =—Tr[L"e '(' P)LL'p(0)].

which can be proved by expanding the left side in
powers of t and using Eq. (37). When Eq. (42) is used
on the perturbation expansion, the result is

The integrodifferential equation (38) with the kernel
(39) follows exactly from Eqs. (6)—(10) without any
assumptions.

The integrodiGerential equation (38) can be solved
exactly for F in terms of E by use of Laplace transforms.
Nevertheless, it will be sufhcient for our purposes to
assume either that t is small so that F has changed very
little or that Ii varies slowly compared with the time
required for E to become small. Then Ii may be taken
out of the integral in Eq. (38),+which becomes the
ordinary differential equation

e it(1 P-)L(j— P) —(1 P)e itL"—

(1 P)e "—"iL-'(1 P)s t(—t ')"-dt'-+ . (43)

When this is inserted into Eq. (39), the result can be
simpli6ed by use of Eq. (37) and the following observa-
tion. Since Ii is real and since i and o, appear only in
the product in, it follows that terms with n to an odd
power are zero. By use of this and Eq. (30), we get

dF (2t)/dt = —F(2t) IC(t')dt'. (40)
11(t) 4~2 Q g 2[exp( 222~st) exp( 12~22h)j (44)

The exact solution satisfying the initial condition is

F(2t) = exp — Ch1 dt2IC(ts)
0 0

(41)

Since E becomes small after a short time, the 6rst
integral will become a constant for large t~, and the
spin-echo-decay envelope Ii will relax exponentially for
large t. Exponential relaxation is also described in a

which is correct to second order in 0,.
Notice that the matrix elements Zoo do not appear in

the expression for E.This happens because subtracting
a constant times the unit matrix from the matrix Z„
in Eq. (26) can have no effect. For tt)0, the only
nonzero matrix elements Z„o are

Z„t)———2v2/n'tr' 22=1 3 5

Combining Eqs. (41), (44), and (4S), we get

8n' " 1
F(t) = exp

2r' .-o (2tt+1)s

3—4 exp[—(222+ 1)'tr'h/2 1+exp [—(222+1)'ti't j
(222+1)'ti

which for t((1/tr2 becomes and for t))2as/tr2D becomes

F(t) = exp (—trsts/12),

and for t))2/tr2 becomes

(47)
F(t) = exp

aiysO' 17 as) &

120D 56 D)
(50)

Q 17
F(t) = exp

120 56
(48)

This function is graphed in Fig. 1 for three values of
(12. The rather remarkable coefficients 1/12, 1/120,
and 17/56 result from an exact calculation of the sums
over 2t. Finally, we use Eqs. (4) and (5) to put the
dimensions back into F, which for t(&as/tr2D becomes

The condition for the validity of the approximations
made in deriving Eq. (46) is either that t is so small that
Ii has not yet changed very much or that o, is small so
that Ii varies slowly compared with E. Regardless of
the size of tr but for t«(12/p'O'D)'h' and t(&a'/2r'D, then,
F is a cubic as in the expansion of Eq. (49) in powers of
t. On the other hand, for t not small, it is dificult to
determine how small tr must be for Eq. (43) to be suf-

hcient, but we can easily determine the condition for

F(t) = exp (—ysO2Dt'/12), (49)
' See, for example, B. Robertson, Phys. Rev. 144, 151 (1966),

Eq. (A2).
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Fzo. 1. Thhe solid curves are graphs of the logarithm of the spin-echo-deca envelo e F
a=a'yG/D and c is the compartment width. The dashed strai ht lines are the corre o', o e

th b thtlF h f lit Th tt f
a dth co o di b' otd T' t' d'rawn. ime is measured in multiples of to=a'/D. The curves are computed from E&ls. (46)-(48).

Eq. (40) to be valid. The kernel (44) has a relaxation
time of order 2/s-', and the envelope (48) has a relaxa-
tion time of order 120/ri', and so the condition is
/ir'(&120/n' or n (&60m'. In practice, n' can be about

10 at most. This condition limits the range of validit
of our derivation so that Ii will appear to have only thny e
orm (50) if we view the relaxation on a scale for which

we can see Ii decay to 0.05.
In spite of our restriction on e, the well-known' ex-

pression (49) has been shown by Torrey to be correct in
the limit of large n even for large t provided e becomes
large before t does. This suggests that Eq. (46) is correct
over a broader range of 0. than that for which our two
approximations are valid. Perhaps errors introduced b

~ ~

uce y
one approximation are partially canceled by the other.
If so, we may use our results to obtain a limit on the
range of validity for assuming the compartment width
a is large. For Eq. (49) to be correct t((a'/n'D and for
F to have decreased appreciably t) (12/p'O'D)'I'
and so the condition is o.))243m-'.

Because the dependence of Ii in Eq. (46) on ns is so
simple, curves for n'N1 have the same shape as the
curve for 0.'=1 with only the vertical scale changed.

or example, although Ii in Fig. 1 decreases only to
0.993 at the bottom of the graph, we can multiply the
vertical scale and the values of o,' by 500 without chang-
ing the curves, and then F will decrease to about
0.005.

' Reference j. and references cited therein.

Wayne and Cotts' compare Eq. (46) with the results
of their experiment for n' very much larger than 10, but
not so large that Eq. (49) is correct throughout the ob-
served relaxation.
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envelope would be nearly exponential in the limit of small
C.

APPENDIX

Besides leading to the boundary condition (3), the
boundary walls have another effect on the motion of
molecules near them, and this causes 1/Ts near the
walls to depend upon position. This happens as follows:
Because of the rapid randomizing motion of the mole-
cules in the bulk of the Quid, the effective magnetic

ipole-dipole interaction between the nuclei is reduced
consid. erably so that 1/T, is much larger and 1/Ts is
much smaller than they would be if there were little
molecular motion. Our case is that of extreme motional
narrowing so that in the bulk of the Quid 2 &= T2. Near
t e walls, however, the randomizing motion is slowed
down considerably. Partitioning the sample into many
compartments will have a negligible effect on th 1

of 1g'To /' ~ observed for the whole sample since the layer
near the walls has a very small volume and since 1/2', is
smaller there than in the bulk of the Quid. But, parti-
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tioning will effect the value of 1/Ts observed for the
whole sample since 1/Tm is several orders of magnitude
larger there than in the bulk of the Quid.

Since 1/T2 depends upon position, the exponential
relaxation with rate equal to the spatial average (1/T2)
should be factored out of the magnetization in deriving
Eq. (1).Then Eqs. (1) and (6) would have an additional
term M/ —T2' where

1/T2' 1/T2——(1/T—,).
Since the boundary condition (3) remains the same, all
of Eqs. (12)—(43) remain the same except Eqs. (16),
(20), and (26) have the matrix element of 1/T2' added,
and Eq. (36) must be modi6ed. The additional term in
Eq. (26) gives an anticommutator. To second order in
(1 I')I.', t—he kernel (44) has an additional term in the
square of the matrix element of 1/T2', but contains no
terms linear in that matrix element and no cross terms
between that matrix element and Z„. Because there
are no cross terms, the effect of the spatial dependence
of 1/T2' can be considered separately from the effect
of the magnetic field gradient, and Ii will be a product
of two functions corresponding to the two eGects.

With the field gradient zero, the second function is 1,
and the change in F is due to 1/T2'. For the experiment
of Wayne and Cotts, ' however, the effect of the second-
order term in 1/T, ' is negligible, and therefore the first
function is nearly constant and so is also 1. We can see
this as follows. Although we do not know the shape of
the function 1/T, (s), we can use a rough model in order
to get an order of magnitude estimate. Say that 1/T2(s)
has the constant magnitude 1/T» everywhere but
within a distance X from the walls where it has the con-
stant magnitude 1/T2„. Then, for X«a,

(1/T2) = 1/T2i+ (2X/a)1/T, „,

and, for t))1/4ir',

a' )-
F(t)=exp

~

t
24DT,.& 60D)

The function F increases in time because the exponential
relaxation factored out at the beginning of the calcula-
tion is slightly faster than the exact exponential relaxa-
tion for large t. Since the function F obtained without
assuming t))1/4~' increases monotonically from 1 at
3=0, the over-all relaxation proceeds rapidly at erst,
but then settles down to a slower pure exponential
relaxation with rate 1/T2 X'/24D—T

For an infinite compartment, the observed relaxation
is exponential with relaxation time

T2~=1.00 sec,

and, for the smallest compartment, the observed relaxa-
tion for large time is asymptotic to an exponential with
relaxation time approximately given by

(1/T2) '=0.63 sec.

Furthermore, for this smallest compartment

and so
t~ =0.0256 sec,

2M'/aT2„=0. 015.

The square of half this number is to be divided by 24
and so is completely negligible. Therefore, assuming all
compartments are the same size, the boundary-wall
relaxation mechanism does not explain the shape of the
observed' relaxation with G=0.


