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The magnetization —versus-magnetic-Geld curve of the one-dimensional chain at T=0 is discussed. Also,
the corresponding p-V diagram of the quantum lattice gas I'q.l.g.) is discussed. The ground-state wave
function for the case b, &1, in a q.l.g. of a 6nite number of particles on an infinite lattice is analyzed in
detail, giving the "surface energy" near the ends. ln the Appendix some general properties of the q.l.g. in
one, two, or three dimensions are given.

1. MAGNETIC CHAIN

'HE results of paper II' yield immediately infor-
mation on the zero-temperature-magnetization—

versus-magnetic-field problem. We have

%=number of sites,

y=spin per site (=—1—&1),

K=magnetic 6eld in proper units.

The susceptibility X(X=O) at 6= —1 is, according to
this, 2/sr', a result conjectured by GriKths', who had
obtained (II 52a) but did not use the Wiener-Hopf
method to solve it.

(c) Grif5ths has showns that at 6= —1, as y ~0+,
the derivative

(5)

The energy of the system in a magnetic Geld is We see now from (II E22) that for 4ts (sr —ts) 'Winteger,

(1)
as y-+ 0+,

Thus minimization of E gives

B
2—=X.

By

The susceptibility X is de6ned by

(2)
dy fk

4p—+ finite for e&
7i P

—+ ~~ for e&
p

(6)

NC 8'f
X—'= =2

By By

It was shown in paper IP that f(A,y), for axed 6, con-
caves upwards in y. This 3C is moeotomcclly imcreusieg
as y &cereuses. Numerical computations of the y-K
curves can be made from the integral equations (II 9).
Some general features of these curves can be obtained
from (II 49), (II E17), (II 69), (II 70), (II 71), (II 66),
and (II 68).

(a) For 6=0, %=sin(sry/2). |.See (II 71).$

B$C B K-- =0,
By2

(7)

(e) For &(—1, at y=0, by (II 49) and (II 35)

( 1)o
%=2(sinhX) P-~ 2 cosh')

For the lowest rt for which st)4ts/(sr —ts), the sign7+
should be the same as the sign of d2 which is~the same
as that of —tansrtc/(sr —ts).

(d) For all 5~1, (II 70) gives at y=1,

sr (sr —ts) sints
X '(X=O)=

(4)

(b) (II 66), (II 68), (II 69), and (II 70) show that
for —1~6&1,

y(X=O) =0,
BK

=0
By

x sinhX ~
g sech—(1+2n), (8)

2)

(9)

' C. N. Yang and C. P. Yang, Phys. Rev. 149, 327 (l966). ~ R. B. Griffiths, Phys. Rev. 133, A768 (1964).
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8'3C ~ (—I)"e'
= —4m BC-'(sinh9, ) Q

ay' —~ 4 coshsX

As X -+ 0D, (at y=0)

3'.~ sinhX — —+ —5—2,
cosh'

The fact that at y=o and d & —1, X is nonvanishing
was already conjectured before. That BR/By=0 at
such a point is a net result.

Some of these results are illustrated in Fig. 1 and
Table I.

(]g) We can also investigate the limit d, ~ —~. In a
straightforward way we obtain, from (II 7),

As ~ O, (at y=o)
3:-+ 4n exp( —6/2X),

8'3c 2x'

&=~(l —y)(l+y) '+o(~ ')(13), , &+y .
f(&,y) = :~+l—~—(l y)—

2~ &+y&
( )

+O(a-&). (17)

Fro. 1. Zero-temperature-
magnetization — versus — K
curves. For d =0 the curve is
sInusoIdal. The 6= —1 curve
is taken from GriKths (Ref. 2}.
In general for —1&6,&1, the
curve has a singularity in some
derivative at 3!=0. The order
of the derivative becomes high
as 6 —+ 1. For 6&—1, the
curve has a horizontal part
along the K axis. The tangents
at I' and Q are abvays vertical.
The curvature at I'g ap-
proaches ~ as 6-+ —1. The
curvature at Q is always the
same. These properties are
summarized in Table I. The
curve for 6=—2 is approxi-
mate only. The curve for large
negative 6 is shorn by that for
6= —1000. See Eq. (18).

y= &paltiZation

99
P-l000

-i000.

Ol .

H

TmLE I.Values of X and its derivatives. 6 &1.

(II E17}and (II E22)

(Grimths)

—exp

(10)
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Preeeure unequal:
&1)&2) &2' ' ' )&m ~ (20)

"24-2

Also assume for the time being that there is only one
term in the sum (I 7);
Ijl= eKpLlrrxr+Ksxs+ ' ' '+s,' x j,

(xi(xs (x ). (21)

Then the condition expressed by the equation just
before (I 12) is

2Ae "~ 1—e"—~+"'=0 if j =1+1. (22)

By the method of construction explained in Fig. 3 one
can find a chain of Ir's satisfying (22), and satisfying
the condition

3
Volume/Particle &=0. (23)

FIG. 2. Pressure-versus-volume/particle curves. For b, & 1 point
A represents a many-particle bound state at zero pressure. The
n =0 curve has no singularity at s =St/m =2/{1—y) =2, but other
curves for —1(h(1 have singularities in derivatives at this
point. For 6=—1, the point v=2 has in6nite second derivative.
This curve is based on GriKths' result (Ref. 2). For 6&—1, the
curve has the same general shape as the 6= —~ curve except that
the change in pressure occurring at the transition point 8=2 is
finite in size. All curves have zero slopes at ~ =1+0. All b, & —1
curves have zero slopes at v =2+0.

Such a chain evidently gives a solution (21) with total
momentum zero. The solution has no nodes. Hence it
is the ground state.

The ground-state energy of the q.l.g. of m particles
is thus

(Ea.i s )„=2 P (1—cosha;).
1

Thus
1+y 1

lim (BC+A) = —— sin rr . (18)
dy s 1+y

By (22)

Thus the average energy per particle is

(24)

2. ONE-DIMENSIONAL QUANTUM LATTICE GAS

The quantum lattice gas (q.l.g.) was first discussed by
Matsubara and Matsuda, and, Whitlow. and Zilsel. '
In the Appendix the same general properties of the quan-
tum lattice gas are discussed. Applying these results we

find the following:

(a) For 4(1, type (iii) T=O isotherm obtains (Fig.
5). The isotherms are shown in Fig. 2. They are ob-
tained from the corresponding isotherms in Fig. 1.

(b) For 4~1, type (i) T=O isotherm obtains. The
binding energy per particle in free space (i.e., in an
infinite lattice) is, by (A21), 2A'= 2(A —1).

For h&1, one can in fact obtain the exact binding

energy and the exact wave function for a system of m

particles in an infinite lattice (i.e., K= ~) by taking
the wave function (I 7) and making all p's pure
imaginal y:

with an "end energy" for each end

6—e "')0.

y In(M)

Assume for the time being that all rc's are real and

' The classical lattice gas was 6rst discussed by T. D. Lee and
C. N. Yang, Phys. Rev. S7, 410 (1952).The quantum lattice gas
was first discussed in T. Matsubara and H. Matsuda, Progr.
Theoret. Phys. (Kyoto) 16, 569 (1956); 17, 19 (1957). See also
R. T. Whitlock and P. R. Zilsel, Phys. Rev. 131, 2409 (1963);
P. R. Zilsel, Phys. Rev. Letters 15, 476 (1965).

FIG. 3. Diagram construction of ground-state wave function of
q.l.g. The curve is 2A —e&—e '=0 (schematic). The points e,
b, c have abscissas that are the ~ values for three particles. The
points Of, p, y, 5 have abscissas that are those for four particles.
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For ns —& ~, this becomes

(A2 1)1/2] (A2 1)l/2 (25)

where Kp= cosh 'h. Hence we have as nz —+ ~,
/excess length of chain over closest packing]

The binding energy of the last particle is

+2(A —1.)+2e &~r'~ —2e &~»~-4

which increases with 2/2 and approaches 2(A —1) as
m —& 00.

Writing x2—x&
——g2, x3—x2 ——g3, x —x &

——g, we
have

f= exppK2g2+K2(gs+g2)+K4(g4+gs+g2)+ ' ' ']

+ ~ ~ ~ (oo
g2KQ $ g4KQ

Thus the density of particles is 1, with an "end ex-
tension" equal to half of (28) at each end.

APPENDIX: QUANTUM LATTICE GAS
(IN 3, 2) OR 1 DIMENSION)

A. Equivalence with Syin Problem

We consider a collection of bosons and replace
where

Thus
g, ~1. A2

V2 —+ —double difference.
2m

Or

&g)=L1—e~(—2 )] '

(gs) =L1—exp (—2Kr —2K2)]-',
etc.

(26)

(g2)—1=, (gs) —1=,etc. , (27)
KQ to4KQ ]

Thus the two end gaps are the longest. Successive inner
gaps are successively shorter. For a very long chain,

We write, i.e.,
(2:~kinetic energy~()= —(@+1~/)

—(*—1~&)+2(*~ff ). (A1)

Further, we introduce an interaction energy —2h for
nearest neighbors, + ra for the hard core. It is then
easy to see that the problems of the quantum lattice
gas and the spin problem in a magnetic 6eld are kine-
matically the same. This leads to the construction of
Table II. Notice that

H„=—-', Q (Ao,o,'+a,o,'+o„a.„'} KJty —(A2).

TAsr, E II. Correspondence between two problems. a=number of nearest neighbors per site, (A3) and (A4) are definitions. Then
(AS) follows. (A6) is a dednition. (A7) follows. (A8), (A9), and Eqs. (A10) and (A11) can then be derived. These relations are true
for one-dimensional linear, two-dimensional square, or three-dimensional cubic lattices.

Quantum lattice gas

Volume (= t/') or length (=1.)
no. of atoms (=m)

1 1
H, t 4.———~Sts —2Sty ——

4j 2 2

chem. potential (=p)

Spin in magnetic field X

=no. of down spina L=ra=-,'St(1—y)7

=Hsp+XKy

= —2X—s{a—1)

(A3)

(A4)

(AS)

(A6)

1
exp( —/4st/2T) (grand partition function)q ~ 4. =exp ————xs/T Lpartition function7, ~

2 4
where (G.P.F.) =Tr exp[(/4o4 —H4, ~,4)/T7 where (P.F.) =(Tr exp( H,~/T)7—

(A7}

pressure (= (P)
LS'=St 'T 1n(G.P.F.)7

entropy (=5)

= —K—~85—X 15
T ln (P.F.)7—

=entropy (=5)

{A8)

(A9)

d(p = (S/X) dT+ (422/X) d/4, (A10)

dP= —SdT—XydX (y= magnetization) (A11)

are derivable from each other.

The two thermodynamical relations, for fixed X, B. Non-Nearest-Neighbor Interactions

The above discussions easily generalize to a case with
non-nearest-neighbor interactions. We keep (A1) un-
changed. Equation (A2) becomes

~..=—;Z (.-.'+-,-,')-l Z A'Z (-. .")
t.i ~

—Xmy, (A2')
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E:—E..(y= 1)~ [2(Z ~''s*)+X)&(1—y).
6'&0

where n.n. means nearest neighbor, and t.i. means sum (y=1). Thus
over all pairs of type i. Equations (A3)-(A11) remain
valid with the replacement

sa~g s,~;, (A12) Thus

where s,=number per site of neighbors of

types',

. (Notice
that wherever s occurs without the factor 6, it should
not be replaced. That is, z remains equal to the number
of nearest neighbors. )

C. Existence of Thermodynamical Limit

We recall that

6'= 6—1 for nearest neighbors,

for other interactions.

(A15)

(A16)

We shall only consider the case where the range of
interaction is pnite. It is then not dit5cult to prove
rigorously that the thermodynamical limit exists for
both the quantum lattice gas and the spin problem,
and that the thermodynamical quantities satisfy (A3')-
(A11'), with the replacement (A12).

E. Isotherms in 6'-density and y-$C Diagrams

The isotherms are related because by (A10) and
(A6), at constant T,

2dx = —(1—y)dx.

D. Some Properties of the Isotherms
in the y-X Diagram

The isotherms in the y-X (magnetization-versus-
Geld) diagram are of course symmetric with respect to
the origin, i.e., they are invariant under

3C Xo

Furthermore, thermodynamic inequalities require
that if xg)xg, y(xg) ~y(xm).

At T=O, the isotherm must reach y=i at a 6nite
X=Xo. To prove this we write (A2') as

&"=—k Z (~ o') —
2 Z ~'' Z (o.o.")—X&y

Furthermore, as X~+~, p ~ —oo and (P~ 0. The
relationship is illustrated in Fig. 4.

From general principles,

X ')Eo.).e. TS+tPX—tlnsj=O. —

Thus by (A6) and (A12)

K 'jE,.i.g.—TS$
=X—'(pm —(PX)=p-', (1—y) —6'

= (—x+-;s—,'Q s;s,) (1—y) —6. (A17)

2 =number of nearest neighbors. The geometrical
meaning of (A1'l) is illustrated in Fig. 4 and in its
caption.

F. 2'=0 Isotherm

Now for those 6 which are ~0, we write

and for those 6 (0, we write
(A1S)xy — 2 QQI(Q 6 s

Clearly,

The T=O isotherm has, according to (A15), a point
y at which y=1 and X=BC~, to the left of which y(1.

(A13) Further,

O~X, . (A19)
——',a,'(1—a,) (1—a,"). (A14)

The last terms of (A13) and (A14) are both positive
operators. Thus

&.,=—k 2 (o o')—'2 I
A''I 2 1—l(Z ~*'s')

Sr&0

)& (P o.,)—XKy+ (positive operator)

=constant ——', P (o"a') —-', (P 6 s,)Xy—Xmy
b, '&0

+ (positive operator) .
Now the positive~operator and —-', g .„, (o"o') both
attain their minima for the state with all spins up

Applying (A17) to y we have the important relation

X,+~ g.u a's= —-',E,.). / em
=—', (binding energy per particle

for an in6nj. tely large number
of particles in free space in
the q.l.g.))0 (A20)

We are now in a position to discuss the four diGerent
types of T=O isotherm behavior near 7, illustrated in
Fig. 5.

(i) X„=O. If all LV&0, (i.e., if the nearest-neighbor
interaction 6, is 1, and no interaction is repulsive)
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Fxc. 4. Corresponding isotherms for
any T (schematic). For a point P,
the pressure (P for the q.l.g. is equal
to the diagonally hatched area. The
free energy per particle m 'LE~, |,g,

TSj—for the q.Lg. is equal to the
sum of the two hatched areas divided
by ——',(BQ). B is the point y=1,
K= —' (g; z;6;)+-'s. The chemical
potential p for the q.l.g. is —2(QP).
A horizontal part of the isotherm in
the left diagram corresponds to a
vertical part of the isotherm in the
right diagram, and vice versa.

B 'I

I

I

Q~
I

C

H

I

I
I

I

I

I

I

I

I
I

I

I h
I

I

I

I

I

I

I

I

I

I

I

I

I 2
-&g ~yoig~p/ part icls

the binding energy per particle=+P 6's. (21)

(A18) and (A19) show that this case obtains. Notice
that H~=O implies that

(K—m) up spins, such a wave function exists and is a
state in which all the K!Pm!(Bt—m)!j ' different spin
arrangements have the same weight. For this state
(usa, )= average number of down spins at site j

(ii) 0(3C~, and there is a vertical stretch pG. The
point 6 represents a pressure-free q.l.g. system at a
Gnite density. Thus it represents a "Quid" resembling
He4 liquid at T=O, or a crystal. It has a nonvanishing
binding energy. Thus the distance B&&0.

(iii) 0(Xr, there is no vertical stretch going down
from y, and By=0, This is the case if some 6'(.0, and
all 6'(0, (e.g., if the nearest-neighbor interaction
h(1, and no other interaction is attractive) because
then (A18) and (A20) lead to &„=&s.

(iv) Same as (iii), but By)0. This case obtains if
the q.l.g. forms "molecules" that repel each other.

G. Off-Diagonal Long-Range Order

The concept of off-diagonal long-range order
(ODLRO) has been introduced' in the discussion of
superQuidity. The same concept is also applicable in
the quantum lattice gas. Because of the simplicity of
the q.l.g. one hopes that the absence or presence of
ODLRO can be investigated more readily. For the
special case where there is only nearest-neighbor inter-
action with strength Ar ——1 [see (A2')j one can in fact
explicitly compute at T=O the ODLRO for the 1-, 2-,
or 3-dimensional lattice: The Hamiltonian is

(A22)

Y

B 7
I

V

B 7
I ——-~--

V
Ji ByI----

V

s 7

rI ——e--

H

(iv)

=mX '

7
I

7I

gG
I

P
Ji 7&

(A23)

(iii), (iv)

Each term in the sum attains its minimum value when

the wave function is symmetrical with respect to the
two spins in question. Thus a wave function totally
symmetrical with respect to all spins, if it exists, must
represent the ground state. For a cyclic lattice of X
sites in 1, 2, or 3 dimensions, with nz down spins and

C. N. Yang, Rev. Mod. Phys. 34, 694 (1962);J. Math. Phys.
4, 418 (1963).

FIG. 5. T=O isotherms (schematic). The point B is given by
y=1, K= ——,

' g 6's. B never lies to the right of y and 2(Bp)= (binding energy per particle for an in6nitely large number of
particles in free space in the q.l.g. problem) ~0. The point y' is
the point that corresponds to y for y= —1. Notice that by the
construction method of Fig. 4, one concludes that y' has a /mite
pressure (P. Thus at T=O, a quantum lattice gas can always be
squeezed to a fully packed density by a /vite pressure.
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where u; represents the annihilation operator at site j.
In spin language u; Qips a down spin up, or

& =
I s (~.+s~s) jl. (A24)

m(x —m)
C~~Cg,

x(x—1)
(A25)

Equations (A23) and (A25) give the elements of the
reduced density matrix p1 in coordinate representation:

(ilpt li) =m/»
(s I p, I g)=m(x —m) x-'(x —1)-'. (A26)

p1 is a cyclic matrix which is diagonal in the momentum

We can also calculate (alta, ), which is the probability
that at site j the spin is up and at site i it is down:

(which is discrete) representation:

(k'lpllk)=0 if k~k',
(k I p, lk) =mx-' —m(x —m)x-'(x —1)-'

=m(m —1)X '(X—1) '&1 (A27)

(kl p, lk)=mx-'+m(x m—)x-'
=mx-'(x —m+1) if k=0.

These equations show that there is condensation of
particles in One "single-particle state" characterized by
k =0. In other "single-particle states" (k/0) the
occupation number is ~ i. This is an explicit example
where the speculation of Girardeau' does not hold.
L(xlrardcau's speculation ls tllat. , c.g., (m) states
are multiply occupied each with (m)'~' particles. )
Ke suspect that it also does not hold in a physical
system.

' M. D. Girardeau, J, Math. Phys. 6, 1083 (1965}.
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Nuclear-Magnetic-Resonance Study of Self-Diffusion
in a Bounded Medium*

R. C. Wamzt mo R. M. COTTS

I.a)oratory of Atomic and Solid State Physics, CorneLL University, Ithaca, Nm Fork
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The investigation of the eGects of diffusion in a magnetic Geld gradient on the spin-echo experiment in
nuclear magnetic resonance (NMR) is extended to small samples in which the diGusion is bounded, or
restricted. From the point of view of %MR, bounded diBusion means that the spin dephasing time T2&&t,
the average time for a molecule to disuse once across a sample width a. A more realistic criterion is that a is
small enough or that the diffusion coefiicient D is large enough that the quantity yGs'/D is about equal to or
less than 1, where G is a linear magnetic field gradient and p is the nuclear gyromagnetic ratio. An e6ective
self-di8usion coeKcient D'(0 =—12 in''(l, G)/M($, 0)g/QG'p is dejned from the Hahn spin-echo experi-
ment, where t =2r is the time of the echo, and JI/I (t,G) is the echo amplitude. For in6nite samples, D'= D, the
true self-diffusion coeKcient. However, when 1,((T&, then D'/D(1 and gY depends on t. The measurement
of D' is made by holding the times of an echo, t =2m, constant and varying G. Experimental data are pre-
sented on D'(t) for four values of a and values of yGa'/D which range from being much greater than unity to
less than unity. Results of the Carr-Purcell experiment are also presented and brieQy discussed. A comparison
of data from the spin-echo experiment is made with a theoretical calculation of D'(t) which uses Torrey's
modi6cation of the Bloch equations and requires that boundary conditions be satis6ed. Results are com-
pared with the theory developed by Robertson. A universal curve for D'/D versus t/t, is plotted, illustrating
that D' is independent of G. It is shown that the reduced rate of decay of the echo envelope in the case of
bounded diffusion is, in e8ect, a motional-narrowing phenomenon.

I. INTRODUCTION

HIS paper is concerned with the effect of diffusion
in a Noeiegrsife sample on the Hahn spin-echo

experiment' and the Carr-Purcell experiment. ' In pre-
vious studies' 4 known to the authors the assumption
has been made that the sample is in6nite in size. For

*This work was supported by the National Science Foundation
and the Advanced Research Projects Agency. Based in part on
the Ph.D. dissertation of Richard C. Wayne, Cornell University,
1966.

$ Present address: Sandia Corporation, Albuquerque, New
Mexico.' E. L. Hahn, Phys. Rev. So, 58O (195O).' H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

3 H. C. Torrey, Phys. Rev. 104, 563 (1956).
4 D. C. Douglass and D. W. McCall, J. Phys. Chem. 62, 1102

(1958).

many experiments this assumption is perfectly valid;
however, there exists a group of experiments for which
the diffusion coefficient D is so large and/or the sample
size a is so small that the infinite-sample assumption
breaks down. In particular, tmo such experiments have
motivated the present work. Measurements of the spin-
lattice relaxation time T& and the spin dephasing time
T2 mere made on small particles of liquid lithium' and~&on

rapidly self-diffusing protons6 in powdered NbH, under

~ D. Zamir, R. C. Wayne, and R. M. Cotts, Phys. Rev. Letters
12, 327 (1964).

6D. Zamir and R. M. Cotts, Phys. Rev. I34, A666 (1964);
D. Zamir and R. M. Cotts, Proceedings of the XIIIth CollogNe
Ampere, I.eueen, 2064 (North-Holland Publishing Company,
Amsterdam, 1965},pp. 276-283.


