
B LOCH EQUATION FOR ESR

of Hp whereas this no longer remains true if or.7-))1.
Cyclotron effects alter the diffusion of electrons into the
metal which manifests itself in a more complex diffusion
constant. For the extreme cases of parallel and perpen-
dicular 6elds we find that D& is equal to Dp and Dll
equals Ds/(1+pe, sees) at resonance. It was also pointed
out that these results will affect the transmitted mag-
netization in a way that agrees with the conclusions in
Ref. (2). The effective Bloch equation is valid for all
orientations of the static field and should be helpful in

a semiquantitative understanding of recent experiments
in conduction-electron spin resonance.
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We present the exact magnetic irreversible solution of the Ginzburg-Landau equations for a cylinder of
infinite length (whose Ginzburg-Landau parameter ~ is unity and whose radius R is three coherence lengths

5) in an axial magnetic Geld H p for all values of H p. Solutions for other values of s (0.3 to 3) and R/5 (2 to
12) are also discussed. We have determined, as a function of Ho and as a function of position, the order
parameter, the vector potential, the internal magnetic field, and the current density; and also as a function
of Ho, the total number of superconducting electrons per unit length of the cylinder and the magnetization
per unit volume. This solution is magnetically irreversible and hysteretic because of persistent currents
which Row in the sample perpendicular to the applied magnetic field. The magnetization is reversible only
over intervals of H0 over which the number of Quxoids is conserved; otherwise it is irreversible. This solution
does not depend on defects and is the counterpart to Abrikosov s magnetic reversible mixed-state solution.
It is dominant in thin specimens.

I. INTRODUCTION
' 'T was predicted by Abrikosov that the magnetiza-
~ - tion per unit volume 4m' of a type-II superconduc-
tor of in6nite extent is magnetic reversible when in the
mixed state. 4~M depends only on the value of the
applied magnetic 6eld Hp and not on the previous history
of the sample. Experimentally, however, a certain degree
of irreversibility is always found, and it is large for
Ginzburg-Landau~ J(: values of order unity' and small
when ~))1. Thin samples appear to be always irre-
versible4 regardless of the quality of the sample prepara-
tion. For magnetic 6elds Hp larger than the bulk
critical field H.2 the surface remains superconducting

up to' H,3. The superconducting surface is able to

+Work supported by Division of Research, Metallurgy and
Materials Programs, U. S. Atomic Energy Commission, Contract
No. AT-(11-1)-GEM-8.

' A. A. Abrikosov, Zh. Eksperim. i. Teor. Fiz. 32, 144 (1957)
LEnglish transl. : Soviet Phys. —JETP 5, 1174 (1957)g.

'V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i. Teor.
Fiz. 20, 1064 (1950).' G. Bon Mardion, B. B. Goodman, and A. Lacaze, J. Phys.
Chem. Solids 26, 1143 (1965).

4 G. D. Cody and R. E. Miller, Phys. Rev. Letters 16, 697
(1966); and references listed there.

'D. Saint-James and P. G. deGennes, Phys. Letters 7, 306
(1963).

carry persistent circulating currents' around the circum-

ference of the sample. The direction of circulation of
these currents depends on the direction of the change
of the external magnetic 6eld. ' A long macroscopic
cylinder, therefore, appears as a "giant vortex"

(H,s&Hp&H. s) whose physical size is determined by
the sample dimensions. Such a surface state in the
form of a giant vortex exists also for Hp(H, 2 as has
been shown experimentally' just below H, 2. This state
is quite different from the mixed state since it can carry
a total current whereas the ideal mixed state (without
pinning centers) cannot. "P Over a finite interval of the
external magnetic 6eld this current can be changed
such that it conserves the number of fluxoids enclosed
in the sample. ' ' "When a total current is flowing in a
macroscopic specimen in order to conserve the number

'H. J. Fink and L. J. Barnes, Phys. Rev. Letters 15, 792
(1965).

7 L. J. Barnes and H. J. Fink, Phys. Rev. 149, 186 (1966).
P L. J. Barnes and H. J. Fink, Phys. Letters 20, 583 (1966).
P W. Klose, Phys. Letters 8, 12 (1964); R. A. Kamper, ibid

5, 9 (1963).
'PA. A. Abrikosov, Usp. Fiz. Nauk 87, 125 (1965) LEnglish

transl. : Soviet Phys. —Usp. 8, 710 (1966)j.
"D. J. Sandiford and D. G. Schweitzer, Phys. Letter 13, 98

(1964).



220 H. J. FINK AND A. G. P RESSON

of Ruxoids b, the sample is not in the lowest possible
energy state. From experiments~ it appears that the
conservation of Quxoids may override the lowest
energy condition over a finite interval of the external
field, namely as long as G»—GNH &0 is satis6ed, where
the G's are the magnetic Gibbs function of the super-
conducting and normal state, respectively. When the
applied magnetic 6eld exceeds this magnetic reversible
interval, the number of enclosed Quxoids is changed and
hysteresis occurs. »"

From the above arguments we are led to believe
that apart from the Meissner and mixed state another
state exists which is related to the current-carrying
surface state'~ above H, & and also to the Meissner
state (which is a special case of the current-carrying
surface state) for which the number of enclosed fiuxoids
in the sample is zero (b=0). This surface state is
magnetic irreversible (except over certain magnetic
field intervals) whereas Abrikosov's mixed state is
reversible. We believe that in general the surface state
and the mixed state coexist simultaneously and that
the surface state is of importance for thin specimen
whereas the mixed state is of importance only for bulk
specimen. In Sec. II we shall show from energy con-
siderations that a surface-state solution is favored for
Ho(H. 2 near H.2 for small samples. In Sec. III the
exact giant-vortex solution is obtained for a cylinder
of infinite length, radius R=3$, and a= 1. In Sec. IV
we shall discuss the general behavior of the giant vortex
with other values of R/$ and ~. Section V is devoted to
the conclusions.

II. COMPARISON OF THE MIXED STATE
AND THE GIANT-VORTEX STATE

The energy of the mixed state is uniquely determined
by the applied magnetic field. The magnetization per
unit volume is finite below H, ~ and is reversible as a
function of applied field. It is determined by the con-
dition of the lowest energy. In contrast to the mixed
state, the giant vortex state is determined by the con-
dition that the number of Quxoids enclosed in the speci-
men is conserved as long as the Gibbs free energy of
the superconductor is smaller or equal to the Gibbs
free energy of the normal state. This state is able to
carry a total current which is a function of the previous
magnetic history of the sample. When the specimen
assumes the lowest energy for a given number of
enclosed Quxoids, then the magnetization per unit
volume 4m.M is zero. It is known from experiments that
this state can be achieved' " for Ho&H. &, and maybe
also for small samples for other magnetic fields.

We compare the lowest energy of a cylinder in the
mixed state (without a surface sheath) to that of the
giant vortex state (without mixed state). We show that
the lowest energy of the giant vortex state is under
certain conditions lower than that of the mixed. state
for a finite range of magnetic fields smaller than H, p.

The 2' axis is assumed parallel to the magnetic 6eld
and also parallel to the axis of the cylinder. We con-
sider the Ginzburg-Landau equations' in the following
normalization which is diferent from that used in
Ref. 12. The order parameter is normalized with respect
to its zero magnetic field value, has no s dependence as
the cylinder is assumed to be of in6nite length along the
s direction. Its amplitude has no angular (8) dependence
which eliminates any modulation of the absolute value
of the order parameter along 8 and therefore any
structure similar to that of the mixed state, and it is
assumed to be of the form

where r=p/R, p is the distance from the symmetry
axis of the cylinder and R is the radius of the cylinder.
The constant b must be an integer in order that 4 is
single valued and it is equal to the number of the
Quxoids enclosed in the cylinder. Further definitions
are: The Ginzburg-Landau' dt: value is: a=A/$, where
X is the low field penetration depth' and $ the coherence
length; X=R/$; h=H/H„where H is the internal
magnetic 6eld parallel to s direction and H, is the

thermodynamic critical field; and hp ——Bp/H, . Further,
the general form of the vector potential A—= (0; Ap, 0)
is assumed:

x - q(r)-
=A =—hpr+

2K- r
(2)

where the function dp(r) is to be determined. From
H= curl A it follows that

1 sp
h=hp+ ——,

2r dr

where j =j (r)I /B, . The magnetization per unit
volume AM is defined by

=2 r(h —hp)dr = y(1),
Hc 0

where pp(0) =0 was used which follows from the usual
definition of the flux ]

H dp+ dl.

With the above definitions the first and the second
Ginzburg-Landau equations and the difference of the

"H. J. Fink and R. D. Kessinger, Phys. Rev. 140, A1937
(1965).

and therefore it follows from Maxwell's first equation

4s. X 1 d (1dppi dh
JR

c x 2drkr dr& dr
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total Gibbs free energy between the normal and super-
conducting state is

1 d dF(r) /' X2 )2 1 2V2/4
-~ hpr+- p(r) ——b F(r)

r dr dr k2K2~) r X2

—X'F (r) L1—F'(r)j (7)

2V2x
b F'(r), (8)

X2

d 1 di/(r) X)2- 1
h pr+ q(—r)—

dr r dr /4l r

Gslr —G~II
{(h —hp)' —F4)rdr. (9)Ag=

H.2V/2n.

H 2V
(hG);„=— rF4dr

4x p

H2V 1

F4dr for X))1, (10a)
4~ p

because F(r) is only nonzero near the surface of the
cylinder, namely at r=1. The thickness of the super-
conducting surface state A is defined by (X))1)

In Eq. (9),F (r) and h (r) are two independent variable
functions of position and V is the volume. Assume that
b and 4; are held fixed, then Eq. (9) is a minimum with
respect to the parameter hp (which is the normalized
external field) when (MG/Bhp) p, „=0 where bG=GsH
—GNH. With this condition it follows from Eqs. (9)
and (5), when the number of enclosed fiuxoids in the
specimen is held constant, that the lowest energy
occurs when 4x3f=0. Hence the giant vortex state in
its lowest energy, for a fixed number of fiuxoids (fixed
phase factor b of 4), has zero magnetization per unit
volume though not necessarily zero total current )which
follows by integrating Eq. (4)) unless X—ppp. The
total current is proportional to h(0) hp.

With the above equations and definitions we are
able to compare the energies of the mixed state with
the lowest energy of the giant vortex state. Though
Jp'r(h —hp)dr=0 for the lowest energy of the giant
vortex state for a fixed value of b and ~, the correspond-
ing integral Jp' r(h —hp)'dr for the lowest energy (for
the same values of b and /~) is in general not zero but
small compared to J rF'dr. Hence Eq. (9) may be
written approximately

which is of order unity. With these definitions one
obtains

H,'V n——F'(1)
42r

(13)(&G)mip=

Assume that we replace this giant vortex state com-

pletely by the mixed state and disregard any boundary
effects, then it follows from Abrikosov's theory' that
AG of the mixed state for (H, 2

—Hp)/H„«1 is

(hG)~ =— /
Hpl'

4pr (2/ip —1)Pk H, 2&

H,'V
(14)

where Eq. (14) applies to applied magnetic fields
Hp&H, 2 and" P=1.16.

We equate Eq. (14) to Eq. (13) and find the value
of Hp (=Hp ) for which the energies are equal.

/4X ( Hp, )
(~p)'" —F'(1) =

(2s'—1)'"k H, 2&

(15)

where (6/$)F2(1) is a function of Hp/H. 2 and may be
obtained indirectly from Ref. 12 or directly from Ref. 7.
For a given ~ value Hp, as a function of X is obtained
near H, 2 with the following approximation of the left-
hand side of Eq. (15)

H. ~ dL(&/t)F'(I) j—F'(1) + 1—
H p/Hr p=l H p2~ d (Hp/H p2) H p/Hpp=l

where we have assumed that (nP)' =/2l. With the
numericaP values of the function (6/&)F2(1), with
X= 10, and ~ values between ~ and 1.5 one obtains for
Hp, /H, 2=0.86, and for /4=1 and X=10 one obtains
Hp, /H. 2=0.84. For smaller /4 values this ratio decreases.
For X~pp, Hp, /H„—+1 for all appropriate /4 values.
For Hp(H p, the mixed state will probably be favored
and for Hp&Hp, the giant vortex state will probably be
favored from the energetic point of view. As the mixed
state is reversible and the giant vortex state magnetic
irreversible, which means that the conservation of
Quxoids may override the lowest energy state, it is
likely that the giant vortex state is favored even for
certain magnetic fields smaller than Hp, . Hence we
may conclude that the giant vortex state will be more
energetically favorable than the mixed state for certain
magnetic field ranges below H, 2 for cylinders which are
"small, " namely when the diameter is about 100$ or
smaller.

1

R F'(1) p

F'(r)dr.

n= F'dr
I

F'dr
I)

Further, we define an n value for X))1

(11)

(12)

III. THE EXACT SOLUTION OF A GIANT VORTEX

We have obtained the exact solutions of the inde-
pendent variable functions F(r) and 4p(r) from Eqs.
(7) and (8) and have also calculated the integral on the
right-hand side of Eq. (9) )total energy per unit

'8%. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev.
133, A1226 (1964).
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multipen recorder at r=0.5, r=0.15, r=0.25,
r =0.95.

The boundary conditions which were forced on the
computer are

at r=1

-0.2

f

+2

fc= f

X and

and at r=0

dF/dr =0

dv)/dr =0;

@=0,

(16)

(17)

FIG. 1. The difference between the normalized magnetic Gibbs
functions of the superconducting and normal state [Eq. (9)j is
shown as a function of the normalized applied field hp(=Hp/H, )
for s(=X/$) =1, x(=R/$) =3, and for all possible numbers of
enclosed Quxoids b. For hg(b =6) only the magnetic ield interval
is indicated as hg is too small to be signi6cant different from zero
on the above scale. For details see text.

volume] as a function of hp for a given set of parameters
~, X, and b. For a given set of parameters ~ and X we
have varied the number of Ruxoids from b= 0 to b= b,
and obtained solutions for each value of the parameter
b as a function of hp.

Once F(r) and pp(r) for ()(,X,b) are known the vector
potential [Eq. (2)], the internal field [Eq. (3)], and
the current density [Eq. (4)] are readily calculated.
Also the magnetization per unit volume is readily
available from rp(1) [Eq. (5)], the total energy per
unit volume from Eq. (9) and the value h(0) which is
proportional to the total persistent current Qowing
around the sample [see Eqs. (3) and (4)].Other values
such as Jp' rFsdr, fp' rF'dr, etc., have also been
calculated.

We have employed an analog computer for the above
problem. Because of the two point boundary conditions
at r=0 and r=1, an approximate finite difference tech-
nique was used for the computation of the nonlinear,
coupled differential equations (7) and (8). The radial
distance was divided into 10 equal segments and the
average value of the functions was computed for each
interval. For convenience on the analog computer the
finite difference equations were computed in the form of
time-dependent differential equations. This group of
diff erential equations was programmed such that steady-
state conditions could be obtained in a very short
period of time on the computer. Continuous steady-
state calculations were obtained for a linear variation
of the parameter hp (normalized applied field). The
rate of change of hp was adjusted to a value compatible
with the steady-state calculations of the computer.
The total energy, the magnetization per unit volume,
F(1), Jp'rF'dr and others were plotted directly and
simultaneously on x-y recorders as a function of hp,

while F(r), (()(r), and the current density were plotted
at the intervals r=0, r=0.1, r=0.2 ~ ~ ~ r= 1 on multipen
recorders as a function of time which was correlated to
the sweep rate of hp. Similarly h(r) —)((p was plotted on a

and
Ii =0 for b&0,

dF/dr=0 for b=0.

(19)

(19a)

Equation (16) is the Ginzburg-Landau boundary con-
dition' for a superconductor-vacuum interface; Eq.
(17) follows from Eq. (3) [h(1)=hp]; Eq. (18) follows
from Eqs. (6) and (2), and Eqs. (19) and (19a) follow
from the condition that Eq. (7) can be satisfied near
r= 0 with F(r) =cr) b(, where b is the number of enclosed
Quxoids in the cylinder and c is a constant, and also
from the symmetry of the above problem. Because
h(r) must be an even function with respect to r, it
follows from Eq. (3) that ((p(r) must be also even. As
ip(0) =0, the term v (r)/r in Eqs. (2), (7), and (8) must
approach 0 for r —&0. For b=0 and r close to 0,
F(r) =c[1—(&/2)s(1 —c')rs].

With the boundary conditions Eqs. (16) to (19a)
all the other boundary conditions were automatically
satis6ed in the computation. These are for example:
j(0)=0; (dq/dr), =p 0; F(1)WO—;—F(0)NO for b=0;
{(1/r) (dy/dr)) „p&0; j(1)&0; (()(1)HO; the latter'
three boundary conditions are nonzero in general but
can be zero for particular combinations of the param-
eters hp, X, ~, and b.

For our problem the Ginzburg-Landau Equations
written in the form of Eqs. (7) and (8) have a high
degree of symmetry. When one inverts the sign of the
number of fluxoids (b —h b) then auto—matically
hp~ —hp and q (r) —+ —pp(r). This means from Eqs.
(8) and (4) that when the applied magnetic field is
inverted in direction so is the current density and the
phase of the order parameter O'. The r-dependent part
of the order parameter F(r) remains, however, un-
affected by this sign inversion as can be seen readily
from Eq. (7). From this it follows that Ag (f))—[Eq. (9)]
has reQection symmetry when plotted as a function of
hp with respect to the axis at hp ——0 when b —+ b(which-
was verified by the computer solutions).

Though the computation was straightforward it was
very complex. This required great accuracy of some of
the potentiometer settings (one to two parts in 10')
in order to obtain reliable results. Because of the com-
plexity of this problem the over-all accuracy is prob-
ably not better than +2%. For an example we have
chosen the parameters ~= 1, X=3, and b= 0 to
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b=b, =6. Solutions of Eqs. (7) and (8) with other

parameters (a,x,b) will be discussed in Sec. IV.
Figure 1 shows the diGerence of the magnetic Gibbs

functions between the superconducting and the normal
state, normalized with respect to H, 'V/2~ LAg of Eq.
(9)j as a function of the normalized applied magnetic
6eld kp. By de6nition the Meissner state is that state
for which the number of enclosed Quxoids b=0. For
this state Ag is symmetric with respect to kp. For b) 0
the energy curves are not symmetric with respect to
their minima. Equation (9) has no solutions for hg&0
with the above boundary conditions, and kg=0 below
a certain minimum value of hp ——h~(b) and above a
certain maximum value of hp= h (b) as long as b is held
constant. Within this interval of hp, (h —h~), the
functions F(r) and y(r) are finite but drop quickly
to 0 for kp(k[ and for kp&k . This will become more
apparent from the 6gures and discussions below.

The intersection of the energy curves for b=O and
b= 1 is defined as the lower critical field k,i(=—H, i/H, ).
This de6nition of k, ~ is straightforward for z 1 but
it is somewhat more complex for smaller ~ values and
will be discussed in more detail in the next section. At
this field (b,i) it becomes energetically favorable for
the superconductor to change the number of enclosed
Quxoids from zero to one. It is often observed that
"Qux" is delayed"" from entering the Meissner state
beyond k,&, which means that the conservation of the
fiuxoid (in this case b=0) is able to override the lowest
energy condition. If the Quxoid b=0 is conserved be-
yond k,&, the maximum applied magnetic field to which
the state b=O can be delayed from changing to b) 0 is
b, (=—Z,/Z, ), at which magnetic field b must change
because otherwise kg=0 for kp)k„and the sample
would be driven into the normal state LF (r) = p(r) =0
for b=0j which is not observed in bulk specimen when
a&0.417. When X~~, the value of k, approaches
unity. ' The size dependence of k, will be discussed in
the next section. When the number of Quxoids in the
sample changes, then not only the absolute value of
the order parameter %' and the vector potential A

changes but also the phase of 0' changes by 2xhb, where
Ab is the number of Quxoids which enter the sample.
Beyond a maximum value of b=-b, , which in our
case is 6, there exist no solutions of F(r) and p(r) with
the above boundary conditions and every point of the
metal is driven into the normal state. The maximum
magnetic field at which this happens for b, is de6ned
as k,3 which is related to the surface nucleation field. ' '

'4A. S. Joseph and W. J. Tomasch, Phys. Rev. Letters 12,
219 (1964).

"R. W. DeSlois and W. DeSorbo, Phys. Rev. Letters 12,
499 (1964).

"H. J. Fink, Phys. Letters 20, 356 (1966); for alternative
approaches see: C. P. Sean and J. D. Livingston, Phys. Rev.
Letters 12, 14 (1964) and P. G. DeGennes, Solid State Commun.
3, 127 (1965)."C. Dalmasso and K. Pagiola, Nuovo Cimento 35, 812 (1965);
D. Saint-James, Phys. Letters 15, 13 (1965).

When the condition for the conservation of the
number of Quxoids is stronger than the lowest energy
condition, which is actually observed in a bulk speci-
men"" above the upper bulk critical field B,2, then
for a small specimen as in Fig. 1 (which we assume was
cooled in zero magnetic 6eld through the transition
temperature) a continuously increasing field hp will

bring the sample along the Ag(b=0) curve to b, . Then
a certain number of fluxoids will enter, one, two, three
or four in our case (it is not clear how many at this
point) and the process will be repeated over again on a
different hg(b) curve when h„(b) is reached, and so on
until k,3 is reached, at which field superconductivity
in the sample is quenched everywhere. For contin-
uously decreasing fields from k,3 to kp=0 we can use
similar arguments, namely that the number of Quxoids
changes only at hi(b), and find that at hp= 0, two, one,
or zero Quxoids will remain in the cylinder. If b) 0 for
kp=0 we speak of "Qux-locking". It is not known at
present if the transition probability from the state
b=m to the state b=ri permits values of ~m —e~ &1
or if only values of unity are permitted for ideal type II-
superconductors. Assuming that only ~rn m~ =1 is-
permitted, two Quxoids would be "locked-in" when kp

is decreased from k.3 to zero. This corresponds to a
large paramagnetic moment as will become obvious
(below) from the magnetization per unit volume. When
b is conserved for a change in the applied magnetic
field, the magnetic properties of the sample are rever-
sible. When the values of b are changed, for example by
increasing kp from 0 to k,3 and then decreasing back to
0, the magnetic properties of our solution will be irre-
versible over the whole magnetic field range. This is to
be compared to Abrikosov's solution of the ideal mixed
state which is magnetic reversible and which is, how-
ever, not always found in nature, in particular for
small specimen and f~: values of order unity. The above
irreversible solutions have a certain similarity to the
solutions of thin film (thickness «f) hollow cylinders, "
but in our case we are discussing solid cylinders with

Figure 2 shows the dependence of the absolute value
of ~%'

~

=F(r) on r for ~= 1 and X= 3 for the case b =0
and b=3. The curves labeled by M are computed at
the value of the applied field hp= b (b) at which Ag(b)
is a minimum, the curves labeled by I.are computed at
the field h&(b), and those labeled by U' are calculated at
b (b). For b=0 the values of F(0)&F(1) for all values
of hp except at zero field when F(r) is unity. This
behavior is expected for the Meissner state for any ~

value except that for bulk samples the order parameter
varies only near the surface and is constant over most
of the sample, but this is only a matter of scaling. Figure
2 (b) shows F(r) when the number of enclosed fluxoids is
three. For hp&h (b) and hp&k~(b) the F(r) functions
become zero.

"D.H. Douglass, Phys. Rev. 132, 513 (1963).
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At the minima of hg(b) the corresponding absolute
values of 4 are larger for all values of r than ~%'~ at
h~ or b„. Th'e shape of (%~ at the magnetic field Is (b)
is different from that at k~(b) due to the different direc-
tion of circulation of the internal currents with respect
to the magnetic Geld. When the totul current Qows in a
clockwise direction as to generate an average internal
field which oppose the applied Geld such as at h„, the
order parameter is depressed at the surface, but reaches
a maximum near the surface" as shown in Fig. 2(b).
It should be noted that near r=0 the function F(r)
is proportional to r~'~ as mentioned above. For b=1
there is no horizontal tangent at r=0, but for b&1
there is always a horizontal tangent at r=0, and F(r)
is depressed over a larger volume fraction near the
center of the cylinder the larger the value of b is. This
means that near r=0 superconductivity is e6ectively

I I I I

I.o

0.8

04

0.2

O. l

hp

FIG. 3. The dependence of the absolute value of the order
parameter at the surface of the cylinder {r=1) on the applied
magnetic Geld h0 for «=1, X=3, and all possible values of the
number of enclosed Quxoids b in the cylinder.

tt„0.8—

0.6
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0.6—
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I I I

I I I I

I I I I

Figure 4 shows the radial dependence of part of the
vector potential which is defined as the function 9 (r)
in Eq. (2). Figure 4(a) shows p(r) for b=0, a=1 and
X=3 for magnetic fields Iss ——0, h~(0) and lr„(0) and
Fig. 4(b) for b=3, x=1, X=3 for the magnetic fields

h~(3), b (3) and for that value of hs for which hg(3) is
a minimum LIs (3)]. The spatial variation of y(r)
near r=0 and r=1 is small as y(r) has horizontal
tangents at these points. In particular, the spatial
variation of the term &p(r)/r of the vector potential in

Eq. (2) does not vary very strongly near the surface.
For b=0 the function y(r) at the magnetic fields

k~(0) and h (0) are the same except for the inversion.
of the sign, and p(r) =0 at hs ——0. For b)0 the curves
at h&(b) and h„(b) have no longer reflection. syiniiietry
with respect to the q (r) =0 axis and the function y(r)

0
0 0.2 0.6 0.8 I.O

FIG. 2. The position dependence of the absolute value of the
order arameter F(r) at the applied magnetic fields b~(b) I

—=1.],
b (b)

—=Mg, and b (b) f—=Uj as shown in Fig. 1 for: (a) b=0,
«=1, and x=3; (b) b=3, «=1, and x=3.

quenched over a larger fraction of the volume of the
cylinder the larger b is, and for b superconductivity
remains only very close to the surface.

The values of F(1) for s= 1, X=3 are shown in Fig. 3
for all possible b values. They are asymmetric for b &0
as a function of ho with respect to their maximum value
which does not exactly occur at that magnetic Geld ho

at which hg(b) is a minimum. As the values of b are
increased the F(1) values decreases in general, but if
bs is increased beyond Is„and b is held. fixed, F(1)
collapses to zero.

+ J. G. Park, Phys. Rev. Letters 15, 352 (1965).
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FIG. 4. The position dependence of the function cp(r), which is
part of the vector potential Lace Eq. (2)j, at the applied magnetic
fields b~(b) L—=L], b (b) P=—M], and b (b) P—= U] as shown in
Fig. 1 for: {a) b=0, «=1, and x=3; {b)5=3, «=1, andx=3.
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at the magnetic Geld h (b) is only zero at r= 0 and r= 1
but positive for all other values of r.

Figure 5 shows the values of q (1) for various values
of b as a function of hs. When hs h——(b) such that hg(b)
is a minimum, then y(1)=0 for this particular value of
b as was pointed out above. This means that at h (b)
the magnetization per unit volume 4z M =0 Lsee
Eq. (5)j. Figure 5, therefore, represents direct meas-
urable values of the magnetization per unit volume
normalized with respect to H, .The slope of the Meissner
state I4nd3I/dB. sI is smaller than unity as the sample
is small and the applied magnetic fieM penetrates
appreciably into the specimen. If we follow the lowest
energy envelope in Fig. 1 while hp is changed, then
p(1) would follow the dot-dashed and solid lines in
Fig. 5 which would be reversible. However, if the number
of fluxoids is conserved, then q(1) would follow the
dashed and solid lines and y(1) would be irreversible
for increasing and decreasing magnetic fields. With the
dashed lines as shown, the assumption was made that
the number of Quxoids changes in steps of unity when

Ag(b) approaches zero. When hs is reversed from h, s

to zero two Quxoids remain "locked-in" in the cylinder.
When hs is increased (we assume that the sample was
cooled through T, in zero field) and then reversed at
h, for example, to hp=0 the magnetization per unit
volume would follow the b=1 curve and only one
Quxoid would remain "locked-in" in zero Geld. When,
b= b the change of 4xM at h, 3 appears to be of Grst
order though 4m% is very small and becomes even
smaller when X&3, so that one may speak of a second
order transition at h, 3 for all practical purposes when
&&)1.When, however, &&3 the assumption of a second
order transition may be challenged. The reader should
note the close similarity between the experimentally
observed'" hysteresis loops of a bulk type-II super-
conductor above the bulk critical Geld h.2 and Fig. 5.
The curves in Fig. 5 are magnetic reversible as long as
b is not changed. For a given value of hp the absolute
value of the averaged diamagnetic envelope is always
larger than the averaged paramagnetic envelope for the
magnetic irreversible case.

Figure 6(a) shows the variation of the internal mag-
netic field h from the external magnetic Geld ho, namely
h —hs ——(1/2r)d p(r)/dr LEq. (3)] as a function of
distance for 6=0, ~=1, and X=3. Near the center of
the cylinder there is hardly any variation of h with
distance and the internal Geld near r=0 is strongly
reduced from the applied magnetic 6eld, but it is not
zero as the radius of the cylinder is comparable to the
penetration depth X(R=3K). Figure 6(b) shows the same
quantity for b =3. The internal field is an even function
with respect to r. Note again the fairly constant field
region near the center of the cylinder. This region be-
comes larger the larger the b values are. At b=1 the
constant field region near r=0 is hardly noticeable.
For h (b) and b)0 the internal Geld near the surface
is less than the applied field but larger in the center of

+0.6—

+0.4

+0.2
C3j

"0.2

-0.4

the cylinder. At h„(b) the internal Geld is smaller than
hs for all values of r and at hi(b) it is larger everywhere.
Because for the same b value h„(b) is reached hy increas-
ing hs, and hi(b) is reached by decrease hs, the average
internal field is generated by currents Qowing around
the axis of the cylinder which oppose the change of the
external field hp. The current density of these currents
is given by Eq. (4), and the values of {(s/X)s(d/dr)
XL(1/r)(dq/dr)j} which are proportional to j (r) are
shown in Fig. 7 for various applied magnetic Gelds.

In Fig. 7(a) (ir/X)sd/dr/(1/r)(dy/dr) j is shown for
b=0, z= 1, and X=3 and in Fig 7(b) f.or b=3, «= 1, and

+LO—
I I I I I I I I I
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0
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FIG. 6. The position dependence of the function (1/2r) (dy/dr),
which is related to the internal field by Kq. (3), at the applied
magnetic fields bi(b) [—=I.j, b (b) [=M], and b„(b) [—=—U] as
shown in Fig. 1 for: (a) b=0, Ig=1 andy=3; (b) b=3, a=1, and
x —3.

hp

FiG. 5. The dependence of the function y(1), which is part of
the vector potential at the surface of the cylinder [see Eil. (2)j,
on the applied magnetic Geld hp for ff:=1, X=3, and all possible
values of the number of enclosed Quxoids b in the cylinder. y(1)
is related to the magnetization per unit volume [Eq. (5)g. For
details see text.
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FIG. 7. The position dependence of the function (s/x)'dL(1/r)
&& (dip/dr) g/dr, which is related to the current density by Eq. (4),
at the applied magnetic fields bi(b) [=—Lg, b (b) L—=bfg, and
h (b) L—= U] as shown in Fig. 1 for: (a) b 0, s==1, x=3; {b)
b=3, If:=1, and x=3.

X=3. For b=0 the values of j (r) are the same but of
opposite sign for the magnetic fields b (0) and ht(0),
and j(r)=0 for hs ——0. These currents are the usual
Meissner currents. In Fig. 7(b) one sees tha, t the current
density may invert direction (for b)0) which, for
example for the lowest energy state, leads to two
opposing currents which make the magnetization per
unit volume 4m' zero, and which is also true for a
bulk specimen in its lowest energy state."The current
density j(r) is an odd function with respect to r. There
is no symmetry relation between the current densities
at& (b) and h&(b) with respect to thej (r) =0 axis except
for b=0. For b)3 and X=3 the current density at the
magnetic field hi(b) inverts also direction near the
surface of the cylinder.

For completeness sake we also show J's' rFs(r)dr as a
function of hp for various b values for a=1 and X=-3.
This integral can be interpreted as being proportional
to the total number of superconducting electrons n,
per unit length of the cylinder. The values of e, de-
crease at h„(b) and hi(b) with respect to its value at
h„(b) for a fixed value of b due to the extra kinetic
energy of the persistent currents circulating around
the axis of the cylinder at h„and h~.

IV. THE SIZE AND THE x DEPENDENCE
OF THE GIANT VORTEX

We have varied the parameter z between 0.3 and 3
and X between 2 and 12 and obtained similar solutions
as in the above section. There are, however, some dif-

' H. J. Fink, Phys. Rev. Letters 14, 853 {1.965).

ferences. When I~: is decreased from unity and X is kept
constant the F(1) values as a function of hs (see Fig. 3)
become "stiver" and the 4x3f values become larger,
whereas an increase in ~ has the opposite effect. We
noticed also that when X is decreased for the same a
value that one can describe our results by "stiver" F(1)
values and larger 4m% values compared to an increase
in X (for the same s value) when 4rrM becomes smaller
and F(1) becomes more "flexible".

Figure 9 shows Ag [Kq. (9)j for a= 0.5 and X=3 as a
function of hp which is similar to Fig. 1. There is how-
ever, one important di6erence: the Ag curves for
1&b&3 are of higher energy than the Meissner state
for all magnetic fields hp because they do riot intersect
the hg(b=0) curve. The Ag(b) curves for the larger b

values do, however, intersect the hg(0) curve and are
similar to those shown in Fig. 1. This behavior is
analogous to a bulk type-I superconductor with a
sheath (0.417 (it(0.707). At h, (or k,t) the number of
Quxoids in the sample changes by a number larger than
unity, which means a relatively large jump in the 4x3f
curve at h, or h, ~ but not a jump to 4m.M=O because
superconductivity is quenched at h, 3 which is larger
than h, . When the s value is reduced to 0.3 (for example
for X=3) then al/ the hg(b) curves for b)0 do not
intersect themselves or the Ag(0) curve and are of
higher energy than the Meissner state. The highest
Ag (b) curve is again at b= 6. At h, the 4' value drops
sharply to zero when hp is increased beyond h, and no
similarity with the sheath is left for hp&h, . This be-
havior is similar for all X values and appears to depend
on ~ only. When ~ is increased to values larger than unity
the Ag(b) curves tend to space more evenly for all b

values and no "bunching-up" of the hg (b) curves appear
near h, .

When X&10 an additional complication occurs. For
intermediate b values no solutions appear which are
consistent with the above described pattern. Over that
range of b values the Abrikosov mixed state' or some
other solution might be the appropriate description of
the superconductor. Above and below this range of b

values the giant vortex state might be the correct
solution of which the Meissner state is one special
case.

0.5

0.4

0.2—

O.I—

ho

Fro. 8. Shown is the magnetic field dependence of js'rFdr for
a=1, x=3, and all possible values of the number of enclosed
Quxoids b. This integral is proportional to the number of super-
conducting electrons per unit length of the cylinder.
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ho( —h, ) is somewhat larger than the anticipated com-
putational inaccuracies, but we do not know for certain
if this is an inherent effect.

The Ginzburg-Landau equations are strictly valid
only near the transition temperature T,. The ~ values
of the above calculations apply strictly to those meas-
ured near T,. However, the f~: values do not vary
strongly with temperature, and therefore, the above
numerical work is approximately correct below T,. Cor-
rections for the temperature dependence of ~ can be
made.

V. CONCLUSIONS

We have found solutions of the Ginzburg-Landau
equations for a cylinder of infinite length in an axial
magnetic field for various values of the Ginzburg-
Landau parameter ~ and the size parameter X=R/g.
These solutions permit a total persistent current to
Qow around the axis of the cylinder and thereby affect
the magnetic properties, which are in general irre-
versible and hysteretic. Over certain magnetic field
ranges over which the number of Quxoids may be con-
served the magnetic properties may be reversible. We
have presented the exact solutions for I~:=1, X=3 for
all possible number of Quxoids b and discussed the
behavior of similar solutions with other values of the
parameters f~: and X. We have obtained as a function of
the applied magnetic field Hp, as a function of position,
and as a function of the number of Quxoids b the absolute
value of the order parameter ~4(r) ~, (the phase of 4
is related to b), the vector potential rp(r) t see Eq. (2)],
the internal magnetic field distribution and the current
density. From these data one can obtain the total
current. We have also calculated as a function of Hp
the total number of superconducting electrons per unit
length of the cylinder and the magnetization per unit
volume. The functions ~4'(r)

~
and y(r) (and its deriva-

tives) depend on the magnitude and the direction of
circulation of the total current with respect to the
magnetic field which affects their shape in different ways
at the magnetic fields H (b) and Hi(b) for b)0. The
Meissner state is one particular solution of the above
solutions, namely that for b=0.

When for constant b the total current is such as to
make the difference between the total magnetic Gibbs
functions of the superconducting and normal state
zero, the functions F(r) and y(r) (and all other func-
tions derived from these) become zero in a step-func-
tion-like fashion, but we cannot say for certain whether
these are step functions at GgH —GNH=O because of

~' K. Maki, Physics 1, 21 (1964); 1, 127 (1964};1, 201 (1964);
C. Caroli, M. Cyrot, and P. G. de Gennes, Solid State Commun.
4, 17 (1966).

computational inaccuracies. It appears, however, that
no stable solutions of the above kind exist when
Gsa —GNH)0, which means that the superconducting
pairs would break up when b is kept constant and
GsH —GNH is made larger than zero. This condition is
similar to that of a superconducting ring with a maxi-
mum persistent current, but in our case we are dealing
with a solid cylinder. We have also presented the lower
critical field H, i as a function of thickness R/$, and
the field for maximum flux delay of the Meissner state
II, as a function of R/$. Both tend to increase rapidly
for small values of R/$ similar to H, 3. The bulk critical
field H.2 does not occur in this solution.

When the applied magnetic field is reversed to zero
after it was increased beyond the field where "Qux"
enters the specimen, Qux is "locked-in" in the super-
conductor due to the conservation of the nuxnber of
Quxoids which seems to override the lowest energy con-
dition provided a&0.4. The mechanism of Qux-locking
seems to be analogous to Qux delay of the Meissner
state except that one deals with different values of the
number of Quxoids.

When R/f is increased beyond approximately 10 no
solutions exist of the above type for a certain range of
intermediate b values. Over the corresponding magnetic
field interval another solution, for example the mixed
state, may take over but we do not know for certain.
The above solutions seem therefore favorable for thin
specimen (R//&10) for all magnetic fields and might
even be favorable for larger values of R/$, in particular
over certain magnetic field ranges above H, j and near
H.g.

The above magnetic irreversible (and hysteretic)
solution is a counterpart to Abrikosov's mixed-state'
magnetic reversible solution. Our irreversible solution
does not depend on defects in the superconductor as it
is the case in the Bean model. " The mixed state is
dominant in very large specimen and the giant vortex
state is dominant in thin specimen. In a finite specimen
both states probably coexist. The giant vortex solution
is related to the critical state solution of the surface
sheath' of a bulk superconductor for Hp)H. 2 when
~&0.417.
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