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An effective Bloch equation describing the spin magnetization of the electrons in a metal is derived starting
from the usual spin transport equation. No assumption is made as to the direction of the static field, so the
effect of the orientation of the field on the diffusion constant is taken into account. The diffusion constant,
at resonance, is unchanged when the magnetic field is normal to the surface of the metal, but is altered by a
factor (1+~,'r') ' for the parallel direction, where ao, is the cyclotron frequency and v the relaxation time.
The effect of these results on the transmitted magnetization is discussed.

I. INTRODUCTION

S INCE the pioneering work of Dyson' there have
been several different approaches to the theory of

electron spin resonance in metals. ' ' Azbel, Gerasimenko,
and Lifshitz, '4 modifying the usual tra, nsport equation
to include the interaction of the electron spins with the
magnetic field, correctly predicted the transmission of
magnetization through the metal at resonance. This
transmitted radiation has recently been observed by a
number of investigators. ' " lt was also pointed out by
Azbel et at. that for long relaxation times v the trans-
mitted magnetization depended on the orientation of
the static magnetic field Ho to the surface of the metal.
Their analysis becomes extremely complicated and a
simplified approach, based on Torrey's' modified Bloch'
equation, to account for the diffusion of nuclei in nuclear
magnetic resonance studies, has been suggested by
Kaplan. ' In this treatment, a term DORM is added to
the phenomenological Bloch equation in order to de-
scribe the diGusion of electrons in and out of the skin
depth. Kaplan considered the case when Ho was normal
to the surface and Do was taken to be 3e~'v,. m~ is the
Fermi velocity. The case when Ho was parallel to the
surface was not treated by Kaplan, but one intuitively
expects that the diffusion constant will no longer be
given simply by Do since cyclotron effects would alter
the diffusion of the electrons into the metal if co,~))1,
where co, is the cyclotron frequency.

In this paper an attempt is made to present a more
rigorous justification for the use of the modified Bloch
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equation to describe conduction-electron spin resonance
in metals and in so doing we hope to generalize this
equation for arbitrary direction of the static field Ho.
This would give the simplified approach proposed by
Kaplan a wider range of applicability and allow one to
semiquantitatively understand many of the recent
transmission experiments.

We find that an effective Bloch equation can be de-
rived starting with the proposed kinetic equation of
Azbel et al. with the simplifying assumption of spherical
energy surfaces. Explicit expressions for the diffusion
constant are obtained for an arbitrary direction of the
field. As one would expect, the diffusion constant for the
field normal to the metal is simply given by ~~up'v at reso-
nance, whereas this is only true for the parallel case
when ~,r((1. The general expression for the diffusion
constant in a parallel field is

D» vr 'r/3 (1+&v——.sr') (at resonance).

II. DERIVATION OF THE MODIFIED
BLOCH EQUATION

The kinetic equation'4 describing the change in the
distribution function of noninteracting electrons in a
metal, including the interaction of their spins with the
magnetic field, is given by

elf e—+v ~„f——(E+vXH) p'sf
8$ cd

where p, is the magnetic moment of the electron and the
components of e are the Pauli spin matrices 0. , 0„, and
o,. The distribution function f is a 2X2 matrix whose
diagonal elements give the probability that an electron
is at the point r, in state k with spin in the direction of
or opposite to the magnetic field H. The magnetic field
H consists of two fields, a static field Ho and a rotating
field H~ orthogonal to Ho. To a good approximation,
we can assume that the Lorentz force acting on the
electron is governed solely by Ho and that the small
electric field generated by the penetration of H& into
the metal is negligible. We therefore omit the electric
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field term and replace H by Hp in the Lorentz term in
E

~ ~ ~
q. (
The general expression for the gma netization is

give~ byio

M (r,t) = d'k Tr((r f) .
8x'

(2)

As in Ref. 2, it proves convenient to separatarate the
density operator into a part whichhich describes the

T'. .1 hd
f th metal and a part which describes

the other transport properties. T..isThis is accompis e
by the substitution

M(r, t) = gd'k.
4x'

w ere is eu
'

h I '
th nit matrix. This can always e done since

d I f a complete set of 2X2 matrices. Wican ormac
mutation rules"substitution and using the usual commu a ion

for the components of (r, Eq. (2) reduces to

assumes that (elf/rit)&, can be represented by a relaxa-" and uses the fact that the longitudinal and
transverse relaxation times are equa i.e.,
electrons in a metal, " "he can write'

(8@)) @—x(E)H()
for pHp(&k2',

) ai&„
where

rlfp
x(E)=p,

BE

(E Ep)—
and fp exp—— +1

kT

+ + —
I
=0 (9)

g —XHp rl t|')
2', ai),

Our coor inate sys em ia' t tern is such that the direction of Ho
5is along the s axis. Substituting Eq. (8) into q. ( )

yields

8 e 2p
+v ~,@——(vXHo) vs' ——(gXH)

Bt ck )s

~ ~

With the ai o q. ticid of E . (3) one can separate the tunetic
equation into wo eq

' t t equations which describe the c ange
of @and F, namely,

8@ e—+v v,P——(vXHo) v),Q
Bt cA —"(pxs)+( ) =o (s)

and a simi ar equa ion or'1 t' for F except that the fourth term
in Eq (5) is absent. In obtaining (5) we have used the
following relation:

((r A)(e B)=A B+ie (AXB), (6)

where A and B are ordinary vectors.
h

'
-fli relaxation time T~ is muc onger

than the collision relaxation time v, we can separate e
collision term into two parts,

t~fl) ~f1 (~f= —
I +I—

k 8'i/ooii 8$) r k rii Ti

here (rif/rid), represent the change in f due to rno-w
t -changing collisions but with no spis in reversal

and (Bf/cit)r, represents only spin-fhp collis'
1H i ns are inelastic collisionsmomentum-changing co.~sions

due to the electron-phonon interaction but at sufB-
cien ytl low temperatures and, since yonl electrons

d the Fermi surface are affected (E)» ),kT wearoun e erm'

can neglect the small energy change that thee electron
suffers and treat these collisions as elastic. If one

M. Lifshitz Statistical I'hysics (Addison-
R d' M h ttWesley Publishing Company, Inc. , ea ing,

d E. M. Lifshitz, Quentlm Mechunics (Addison-
).Wesley Publishing Company, Inc. , Reading, ass

Th t ansverse components of the magnetization are
determined by the x and y components o which
can be written as

+v p', Q(——(vXHo) Vs@~——(@~XHo)
Bt ck

I

—(P,XH,)+—=0, (10)
rid(1 21J,

) at), k rr
—"ti ~'ti nd o =irg, or in scalar formwhere (
——i, i „an

+v v, 5+——(vXHp) )((),$++ip) pQ+
CA

Q g+) 5+
P H++ I+ 0 (11)

ai &, ri
where

Q+= g,+if„, (pp ypHp, and——H+=Hi, sHi„.

Of there is a similar equation or
~ ~ ~

r and in fact,course,
ever if we are farthe two equations are coupled. However, i w

from saturation, , wi,3f ill to a good approximation, be
equal to its equilibrium value Mo or, similar y,

ti.=X(E)Ho=I (&fo/~E)Ho.

This choice of 5', yields for M,

(12)
I VsEI
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Substituting for g(s) and approximating Bfp/BE to be
a delta function yields

M, = 2p'g(Er)Hp,

where g(EI ) is the density of sta, tes at the Fermi surface.
This is the usual result for the temperature-independent
Pauli paramagnetism. Thus the usual linearization

procedure is accomplished by substituting X(E)Pp for

g, in Eq. (11) and this is the case which shall concern
us here.

Our primary interest is deriving an effective Bloch
equation and no attempt will be made to solve the
differential equation for Q+. This can easily be done for
the simplifying case of spherical energy surfaces or if
the energy is a quadratic function of k'o and to see this
we make the following substitution:

5+=go(r, k,t)+v gi(r, k,t),

where gp and g& only depend on the modulus of k. Upon
substitution into (11) and using the fact that v is

equal to kk/m*, (11) separates into an even and an odd

equation in k. Thus

Bgo Bfo go
+v V, (v gi)+mogo —iyoti IIoP++ =0—, (15a)

Bk BE T1

Bgi V' g1 V' g1
v' +v'Vfgp+zNOV' gl+ +

Bf T

e
— (vXH.) g =O. (15b)

es*c

We have used the fact that (Bgp/Bt), =0 and (Bv gi/Bt),
= v gi/r for spherical energy bands and elastic colli-
sions. We can further simplify (15b) to

e 1)
v. V.go

— v (HoXgi)+I oooo+—Iv gi ——0, (16)
ns*c r')

where

and r„= —r for TQ)r.
1—mr, r+ T1

In obtaining (16) we assumed the applied field is
circularly polarized and rotates with a single frequency
or. One can solve Eq. (16) by factoring the v and taking
a cross and dot product with Hp. The result is

y, 'r*o (V „go Ho) Ho —y,r*'(1+ipior*) (V,goXHo)+ r*(1+ip~pr*)'V, gp

(1+uxor+) L (1+ipoprp) o+po,or+oj
The magnetization is given by

tM

M+=M, +iM„=
4x'

p
5+d'k=

4x3

where

BM+ p

Bt 4n-3

Bgp
g3P

83

and the rate of change of magnetization is

god'k, (18)

(19)

If one were to neglect the term J'v V„(v gi)d'k the
resulting equation would reduce to the usual Bloch
equation for an homogeneous system. This term de-
scribes the fact that the rotating field H1 can only
penetrate into the skin depth and that the electrons
can now diffuse in and out of the skin depth. Since we
made no assumption about the direction of the field H p

we will be able to see how the Bloch equation depends
on the orientation of Hp to the surface, and how the
orientation affects the diffusion process.

The 6rst term on the right-hand side (r.h.s.) of
Eq. (21) can be written as

(. 1i . Bfo= —v V„(v gi) I
oooo+ Igo+iyoti BoPo+. (20)

Bt E r,& BE

e;v, V';gi, d'k. (22)

Upon integration we have

BM+ y

Bt 4m 3

—v V„(v gi)d'k

1~—mp —M+ iypM +. 21
T',i

"A. H. Wilson, The Theory of 3fetals (Cambridge University
Press, London, 1954).

For a spherical energy surface and assuming an isotropic
relaxation time, the only contribution to the integral
comes from the i =j terms and, since only electrons at
the Fermi surface contribute, we can replace e,2 by ~~vz'.

This would also be true for an arbitrary dispersion law
if the crystal had cubic symmetry or was a polycrystal-
line sample. Then v&' would be the square of the Fermi
velocity averaged over the Fermi surface. Therefore
we could write Eq. (22) as pop' J'V„gid'k.

The effective Bloch equation is obtained by substitut-
ing our expression for gi and carrying out the integration.
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The result is

BM+

Bi 3(1+zpopr )

This result demonstrates that, for the normal case, D
is simply given by 3v p'r, as one would expect, but for a
parallel field, D becomes pp'r/3oo. zr' when ~,r))1. In
all cases D is equal to 3vp r when co,~&&1.

f 1—
(

zpoo+ —M++iyoMoH+. (23)

Our coordinate system was chosen such that the s
axis was along the direction of Hp. Let us define the s'

axis to be normal to the metal and for the particular case
of an infinite slab M+ will only be a function of s'.
Equation (23) can then be written as

III. TRANSMISSION

In order to find the magnetization in the metal one
must solve Maxwell's equations together with Eq. (23).
For the case of an infinite slab one finds that the space
part of the field has the form exp( —E's')' where there
are two values for the decay constant E. In general, one
finds a large but short-range field which decays in the
skin depth 8 and a small but slowly decaying field with
decay constant given by

IC = (1/b, zz) [1+z(zo cop)
—Ti]+0(h'/8. zz') (29)

M+ p r* $(1+zgor*) +co r* cos zz] d ~+

Bt 3(i+uoor+) L(1+uoor+)z+p~ or+z] Cs o

and at resonance
E = 1/b, zz, (30)

1—i(op —M+ iy pM pH+, 24
T1

where n is the angle between the field Hp and the normal

to the metal, i.e., the angle between s and s'. If we

define the diffusion constant D to be

where 5,zz= (DTi)'". When the field is perpendicular to
the metal D,= opq'r while D„= p'ir/3(1+ r.p'r') for a
parallel field. Therefore the decay of the magnetization
into the metal depends on the orientation of the static
field Hp when co,~))1. Substituting for D& and D» we
find that the decay constants for the two field directions
are

(1+udorP') +pi r+ cos n

3 (1+ioipr*) (1+izoor*)'+zp 'r*' (25)

c~ 1)3r 'i'
Z„= — and. Z, =-~ — for op.r))1, (31)

T1 i &Ti

Eq. (24) becomes

d'M+ f 1
=D —

~
upp+ M++—iypcV pH+. (26)

ds"

We see that (25) is the equation used by Kaplan but
the diffusion constant is no longer given by ave'r. For
the two cases of a perpendicular or a parallel field coso,
will be 1 and 0, respectively, and the diffusion constant
becomes

where l is the mean free path of the electrons. Of course
the amplitude of the field will also be dependent on the
decay constants and this dependence can be obtained
by solving the boundary-value problem. This will be
done in a forthcoming paper'~ and will not be discussed
here. The important point is that the signal transmitted
will depend on the orientation of the field for ~,~))1,
and if one is trying to determine the decay constant by
measuring the amplitude of the transmitted signal as a
function of sample thickness' this dependence has to be
taken into account.

and

Dg=
3 (1+izpor*)

(1+uopr*)

3 L(1+uppr*)z+(g zr*z]

vg 7

(2&)

Remembering that r*=r/(1 —icur) we have at reso-
nance,

CONCLUDING REMARKS

YVe have seen that it is possible to derive an effective
Bloch equation for conduction-electron spin resonance
assuming spherical energy surfaces. The equation takes
the form proposed by Kaplan with a modified diffusion
constant given by Eq. (25) which is valid for all orienta-
tions of the static field if co.r«1, D is simply given by
3v Iz 7 and there will be no dependence on the direction

Dg= 3vIz T and D» =——

3 (1+zo '7')
(28) "T.G. Castner I'to be published).
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of Hp whereas this no longer remains true if or.7-))1.
Cyclotron effects alter the diffusion of electrons into the
metal which manifests itself in a more complex diffusion
constant. For the extreme cases of parallel and perpen-
dicular 6elds we find that D& is equal to Dp and Dll
equals Ds/(1+pe, sees) at resonance. It was also pointed
out that these results will affect the transmitted mag-
netization in a way that agrees with the conclusions in
Ref. (2). The effective Bloch equation is valid for all
orientations of the static field and should be helpful in

a semiquantitative understanding of recent experiments
in conduction-electron spin resonance.
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We present the exact magnetic irreversible solution of the Ginzburg-Landau equations for a cylinder of
infinite length (whose Ginzburg-Landau parameter ~ is unity and whose radius R is three coherence lengths

5) in an axial magnetic Geld H p for all values of H p. Solutions for other values of s (0.3 to 3) and R/5 (2 to
12) are also discussed. We have determined, as a function of Ho and as a function of position, the order
parameter, the vector potential, the internal magnetic field, and the current density; and also as a function
of Ho, the total number of superconducting electrons per unit length of the cylinder and the magnetization
per unit volume. This solution is magnetically irreversible and hysteretic because of persistent currents
which Row in the sample perpendicular to the applied magnetic field. The magnetization is reversible only
over intervals of H0 over which the number of Quxoids is conserved; otherwise it is irreversible. This solution
does not depend on defects and is the counterpart to Abrikosov s magnetic reversible mixed-state solution.
It is dominant in thin specimens.

I. INTRODUCTION
' 'T was predicted by Abrikosov that the magnetiza-
~ - tion per unit volume 4m' of a type-II superconduc-
tor of in6nite extent is magnetic reversible when in the
mixed state. 4~M depends only on the value of the
applied magnetic 6eld Hp and not on the previous history
of the sample. Experimentally, however, a certain degree
of irreversibility is always found, and it is large for
Ginzburg-Landau~ J(: values of order unity' and small
when ~))1. Thin samples appear to be always irre-
versible4 regardless of the quality of the sample prepara-
tion. For magnetic 6elds Hp larger than the bulk
critical field H.2 the surface remains superconducting

up to' H,3. The superconducting surface is able to
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carry persistent circulating currents' around the circum-

ference of the sample. The direction of circulation of
these currents depends on the direction of the change
of the external magnetic 6eld. ' A long macroscopic
cylinder, therefore, appears as a "giant vortex"

(H,s&Hp&H. s) whose physical size is determined by
the sample dimensions. Such a surface state in the
form of a giant vortex exists also for Hp(H, 2 as has
been shown experimentally' just below H, 2. This state
is quite different from the mixed state since it can carry
a total current whereas the ideal mixed state (without
pinning centers) cannot. "P Over a finite interval of the
external magnetic 6eld this current can be changed
such that it conserves the number of fluxoids enclosed
in the sample. ' ' "When a total current is flowing in a
macroscopic specimen in order to conserve the number
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(1965).
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