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The method of retarded Green's functions is applied to the calculation of rigid-lattice dipolar line shapes
in solids. Some familiar results are derived for the case of isolated spins and spin pairs. The case of gf inter
acting spins is also considered. An expression for the line shape is obtained by employing a frequency
dependent decoupling approximation. Simple constant decoupling approximations do not lead to damped
line shape functions. The result is compared with early experimental data obtained by Bruce on the F»
resonance in a single crystal of calcium fluoride. The theoretical free induction decays obtained by Fourier
transforming the line shape are also compared with experimental data from Lowe and Norberg. The line
shape derived is strongly dependent on the ratio of the fourth moment to the square of the second moment.
Increases of this ratio, corresponding to inclusion of exchange interactions, are shown to produce dramatic
narrowing of the absorption line, which ultimately approaches a Lorentzian function.

1. INTRODUCTION

' 'HE problem of calculating nuclear magnetic reso-
nance line shapes in solids is an old one and has

been considered in a number of early papers. One of the
erst contributions to this subject was by Van Vleck'
who showed that the even moments of an absorption
line shape centered at the Larmor frequency and in a
high static magnetic field Ho could be exactly related to
certain calculable lattice sums.

Attempts to derive the complete line shape based on
the "Gaussian random frequency modulation" model
were carried out by Anderson and Weiss' and Anderson. '
This model is successful in predicting line-narrowing
effects due to the presence of exchange interactions as
well as spin-motional effects; although here a detailed
experimental study of line shape shows some consider-
able deviations from the elementary theory as the tran-
sition between solid and liquid is made. In the case of no
exchange interaction and when there is no atomic
motion, the model predicts a Gaussian line shape.
However, experimental studies of a number of solids
reveal considerable departures from the Gaussian shape
in many cases.

The first nonstochastic approach to the rigid-lattice
line shape was made by Lowe and Norberg4 (referred
to as LN) on the fluorine resonance in a single crystal
of calcium Quoride. They calculated the Fourier trans-
form of the line shape or Bloch decay by considering
the time evolution of a transverse magnetization (i.e.,
in a plane normal to the applied static magnetic Geld

Hp) under the influence of the dipolar interaction. As is
well known, the Bloch decay in CaF2 exhibits a beat
structure which is recorded on some excellent experi-
mental data. Fitting this curve and predicting the po-
sition of the beat zeros presents a rather exacting test
of any theory. The fit obtained by Lowe and Norberg

~ J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
'P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269

(1953).' P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).
4 I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).

lsl

appears to be extremely good in spite of the approxi-
mations necessary to evaluate the decay.

The transverse decay can also be calculated with a
simple series expansion in time. In this case the co-
efficients of even powers of time are the even moments
of the absorption line shape as calculated by the method
of Van Vleck. ' The coeKcients of odd powers vanish for
a symmetric line shape. Unfortunately this series con-
verges rather slowly but is nevertheless useful for calcu-
lating effects near zero time. This method has been used
for calculating the more complex effects which occur in
solids when a number of closely spaced 90' rf pulses are
applied to the spin system. This situation has been
shown to give rise to a "solid echo'" ' as well as other
transient effects. ~

Clough and McDonald' have re-examined the Lowe
and Norberg calculation and have shown that the ex-
pression originally given for the transverse decay di-
verges from zero for large times. In a slightly modified
method of calculation involving an additional trans-
formation to a reference frame following the motion of
the spins, they have so far not been able to improve on
LN. The divergence arises because certain terms in the
operator expansions have to be dropped in order to obtain
an approximate, but closed-form, expression for the free
induction decay. Further approximations introduced to
make their series converge give rather poor agreement
with the experimentally observed beat zeros in the
Bloch decay. Abragam' has pointed out that series
expansions of the form described above are not unique.
As a rather intriguing example it is shown that the
function

e "'t'sinbt/bt,

where a and b are assignable constants, can be fitted to
the experimental data for CaF2 with remarkable agree-

~ J. Q. Powles and P. Mansfield, Phys. Letters 2, 58 (1962).' J. G. Powles and J. H. Strange, Proc. Phys. Soc. (London) S26 (1963).
& P. Mansfield, Phys. Rev. 137, A962 (1965).
8 S. Clough and I. R. McDonald, Proc. Phys. Soc. (London) S6,833 (1965).
9 A. Abragam, The PrinciPles of Nuclear Mugnetisns, (Clarendon

Press, Qxford, England, 1961).
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ment over the entire Bloch decay. This is achieved by
equating the coeKcients of t' and t4 in the expansion of
the above expression to the second and fourth moments,
respectively. On the basis of this empirical fact, it would

seem possible to construct a plausible theory of dipolar
line shape, largely dependent on the second and fourth
moments.

Recently Tjon" has calculated the line shapes for
the F" resonance in CaF2 by solving numerically an
an integro-differential equation. The equation is Grst

simpliGed using a Gaussian assumption.
In this paper, an attempt is made to calculate the

rigid-lattice line shape for a number Ã of static inter-

acting dipoles using the method of retarded Green's

functions. ~~ Tomita and Tanaka have used the method
to calculate line shapes in ferromagnetic resonance. Their
results when applied to solids with dipolar broadening

only give rather poor agreement with experiment in the
paramagnetic region using the high-temperature ap-
proximation. The reasons for this are most likely at-
tributable to the method of decoupling used, as well as
to decoupling too soon. Brown" also has used a related
method to calculate the intensities and the moments of
dipolar broadened spectra in low external fields.

In the present work, a frequency-dependent de-

coupling approximation is used. This is evaluated using

a physically intuitive approach. It is assumed that for a
large number of interacting spins, the Green's functions
occurring in the decoupling factor may be replaced by
approximate smooth functions on the real axis. Plausible

approximations for the form of these functions are
introduced and an expression for the line shape in closed

form is obtained. This is compared with experimental

data, and it is shown that good agreement is obtained
for the case of the Quorine resonance in a single crystal
of CaFs when the external static magnetic field He is

applied along the L1007, L1107, or L1117 crystal axes.
The phenomenon of exchange narrowing for a single

spin species is briefly discussed. It is shown that the
theoretical line shape approaches a Lorentzian function
when the exchange term begins to dominate over the
dipolar interaction. Lack of suitable experimental data
prevents a detailed comparison with the theory.

2. THE BASIC GREEN'S FUNCTION

The appropriate Green's function which describes the

line shape is found by considering the complex suscepti-

bility of a number E of interacting magnetic dipoles of

spin I, placed in a uniform static magnetic Geld Ho. The
spin system is considered under the influence of a steady
rf magnetic field (Hrt cosa', Hrt sinatra, 0). The total—

Hamiltonian for the system is

i'tXr ——h(X+Xtr) = b(Xp+Xrr+Xrto"),

where the Zeeman term is Xs—— tdsI,—and I,=g; I,,
KR is the interaction between the applied rf Geld and the
spin system and is equal to

Xts= syH—rt(I~e'"t1+I e '"')

I+ are the usual displacement operators. X~"' is the
total spin-spin interaction. Let

be the initial thermal-equilibrium density matrix for the
spin system, where P= h/kT; k is the Boltzmann con-
stant and T the absolute temperature. Tr denotes here
the trace or diagonal sum. The equation of motion of a
transformed density matrix p*(t)= e'se'pe '~' under the
influence of the applied rf Geld is

dp'(t) = ——',AH Q*,I (t)e'"'+I (t)e
—* '] (2)

dt

where I~(1)=e'sctI~e t+t. Where possible, the square
bracket is reserved to denote the commutation of two
operators. Assuming the spin system is initially in
thermal equilibrium before the application of HR then

p( —~ )=p(0) =p*(—~ ). Integrating Eq. (2) and trans-
forming back to the laboratory frame we have in re-
iterative solution correct to Grst order in HR

&P+R
p(&) =p(o) [p(0) six(r tlI s tx(r t)s—i~r

&t t&s t"rltgr (3)

It is well known, however, that Eq. (2) has a coherent
harmonic solution, no matter how small HR is made. By
this, we mean that HR nutates the total thermal equi-
librium magnetization. This is contrary to experience in

actual spin systems; the apparent anomaly arises

through neglect of spin-lattice relaxation. When ac-
count is taken of coupling to the lattice, it can be shown

that for small Hrt, p(1) will not depart much from the
thermal equilibrium value, thus replacement of p(1)

by p(0) in the integrand of (3) is justified. This approxi-
mation then keeps the calculation adiabatic.

We wish to calculate the total transverse magneti-
zation in the laboratory reference frame which is pro-
portional to I+. The ensemble average of an arbitrary
operator 2 is calculated using

(A)= Tr{pA) . (4)
~0 J. A. Tjon, Phys. Rev. 143, 262 (1966).
"D.N. Znbarev& Usp Fis. Nank 71, 71 (1960) [Enghsh transL:

Sov. Phys. —Usp. 3, 320 (1960)].
"K. Tomita and M. Tanaka, Progr. Theoret. Phys. 29, 528

(1963);29, 651 (1963)."L.S. Brown, IBM J. Res. Develop. 6, 338 (1962).

Since the spin system is initially in thermal equilibrium

before the rf is applied, we have (I+(1))=0. Also, as we

are interested in the line shape in high Geld, we take
the part of Xrtot which commutes with Xs, i.e., )Xe,Xrf
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=0. X& is the truncated dipolar Hamiltonian' given by expressible in terms of (12), i.e.,"
3'.g

——g &A,g+A,7,)I; Ig+B,I,I„I„,. x(a)) =limiys« I„;I ))„+;,. (13)

where

A;~ ————,'y'h(1 —3 cos'8, ~)/r, j,', 3. EQUATIONS OF MOTION

A;I, is the exchange-interaction coupling constant,

8 q ——-'y'A(1 —3 c so'8;~)/r;~',

The equation of motion of (10) under the influence of
the total Hamiltonian is

and r;I, is the internuclear distance between a pair of
spins jk with the vector r, A, making an angle 8,& with
the applied static Geld Ho. With these simplifications,
and from Eqs. (3) and (4) we see that

—(&I.(~);I-))=8(~)&[I+,I-])+ &&[~,I+];I-&&.
dt

(14)

Introducing the convergence factor and taking the
Fourier transform, we obtain the more convenient form

iyII g
&I+(~)&=

2 oo

Tr{[p(0)~I+(t r)]I e' dr
~ (6) (~+ie)((I+i I &&~,,

=('/2-)([I„I »+&([I„~];I ».+;.. (»)

8(~)=0 «0
t)0

and using the relation
(7)

f(r)dr = 8(t r)f(r)dr, — (8)

we obtain from Eq. (6) substituting t'= t r.'—
(I+(t))=', i~II,e

&&Tr(p(0)[I~(t'),I ])e' 'dt' (9a)

since [pp K]=0. We assert that averages like

([I+(t—r), I+])are zero at least in the high-temperature
approximation. Introducing a step function

The equation of motion contains a higher order Green's
function which may be written in similar form to (15),
thus a whole hierarchy of coupled Green's functions
can be generated. The usual procedure is to terminate
the hierarchy by a decoupling scheme which approxi-
mates a high-order Green's function by one of lower
order. In this way a closed set of coupled equations is
generated which may be solved. Before proceeding we
note that

&([I.,~];I-&&-.'.
«I+;I-))-+'.+«[I+,3'- ]' I-))-+" (16)

Also using the high-temperature approximation for the
spin-dependent part of the density matrix

p(0) = —PK/Tr(1} =aI„

=IIge '~'X(u). (9b) we evaluate the average of the commutator

X(&u) is the complex susceptibility of the spin system
de6ned by (9). Consider now the retarded, double-time
Green's function'4

((I+(t);I (0)&)
= 8(/) &I+(t)I (0)—I (0)I~(t)&. (10)

To ensure convergence it is more convenient to work
with a related function

e-"((I+(~);I-(o)))

which equals (10) in the limit e-+0. The Fourier
transform of (11) is de6ned by

(1/2s) e "((I+(t);I (0))&e'"'dt= ((I~,I &&„~;,. (12)
0

We see immediately that the complex susceptibility is

'4 For an introduction to Green's-function methods see D. N.
Zubarev (Ref. 11);also D. ter Haar, F/uctlation, Relaxation and
Resonance in Magnetic Systems (Oliver and Boyd, Ltd. , London
1961),p. 119.

G '=((I;I ));./K, (18)
where

E= ', aiVI(I+1)(2I+1)N-

and substituting Aor=co —~0 we write the hierarchy of

"A similar generalized expression has been derived by G. Baym,
Ann. Phys. (N. V.) 14, 1 (1961).

([I+,I ]&=3aNI(I+1)(2I+-1)~=A(+ )0. (17)

More complex averages of the form ([C,I ])=A ~~

occur in the development of the hierarchy, where
C„=[[,[I+,X~], ],K~ t„.The subscript n and the
dots denote an e-fold commutation of X~ with I+.
Examination of these averages shows that

A (+,)"=xsalVI(I+1)(2I+1)~M

and 2 1+ ~
"+'=0, where e is an even integer and 3f„ is

the eth moment of the line shape.
DeGning the normalized Green's function as
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coupled equations to stage 4 as

(Aa)+is)G(+ )'=(i/2&r)+G(+ )',
(~~+i~)G(+-) '= G(~) '

(Aa)+is)G(+ )' (——i/2n-)cV2+G(~)',

(~~+'~)G(+ ) =G(+ ),
(~~+i~)G(~)'= (i/2~)~4+G(~)'

(19a)

(19b)

(19c)

(19d)

(19e)

Eg= —Puu p+hEg= —~p+4(A;&, +»&,),
E2= ~E2= g(&;) -»&),
Ea= ~Es= —g(3&&&+»&),

E4 ha) p+ —A—E4——her p+ ,' (A; &,+B-&7,) .

(25)

where BE„is an eigenvalue of the dipolar interaction.
The eigenstates in this case are well known, but we
write down the energies for convenience

4. DECOUPLING OF GREEN'S FUNCTIONS

and since

(i/2m. )
(DM+«)

(20)

A. System of Noninteracting Spins

We consider the Green's function for a simple system
with no dipolar or exchange interaction. The result is
of course trivial, but instructive. From Eq. (19a) if
Kg=0

From the matrix elements of I+ and I we see that
the only energy differences to be considered are
I AE2 —DE)]2 and (AE4 AE2 j2. —Since these are identi-
cal, Eq. (24) becomes

G(+&'/G-(+ )'= '-»"-= ~2,a= b"
Substituting this result into Eq. (23) and rearranging
we obtain the exact Green's function for a system of ~~N

isolated pairs of spin- —,', i.e.,

(1/2n. )
(i/2x)

8(t)e 6(e'~"'d(=
6(0+is

(21)
i(6(0+$6)

G(+-)'=Z
k)j 2&rL(Q(g+ig)2 bjy2j

(27)

the Bloch decay of this function is the step function
8(t)e '"~' defined in (7) in the limit e —) 0. From Eq.
(13) the susceptibility is

Here (P means the Cauchy principal part. "The absorp-
tion line X" is thus a delta function centered at the
I.armor frequency. The dispersive part is

X'= ~~yE/AM.

In the special case of equivalent pairs, b, ~
——b is con-

stant. The summation in (27) may then be replaced by
~E. The inverse Fourier transform of this function is
then

O' 'G(+ &'=-,'cVe '"o'8(i) cosbt

which as expected is an undamped cosine-modulated
signal corresponding to the Bloch decay. The complex
susceptibility, obtained from Eq. (27) in the limit as
t~0, ls

x(~) = ——.'pz g ~i[S(a~+b, ,)+8(S~ b,)j—
B. System of Isolated Pairs of Spin-~

The two-spin Green's function can be derived by an
exact decoupling method" as follows. From Eqs. (19a)
and (19b) we have for the jkth pair

+o
ha&+b; p A(a b, ),

—(29)

G(+-)' ~(+-)'
(~~+«)G(+-&'=—+

2~ (ho)+is) G(~ )'

This well-known result corresponds to ~E pairs of
delta functions for the absorption line shape, symmetric

(23) about the Larmor frequency.

(N II+I ~'&&1' II-IN&(c -—~- )L~E-—~E"3'

E.—E.+~+«G(~) 2 nn'

&(+-)' (~I ~iI ~'&(N'II-I ~&(u —
) - )

E~—E~ +~+«
(24)

'6 See also C. P. Slichter, Princip/es of Magnetic Resonance,
(Harper 8c Row, New York, 1963), p. 38.

'7 See, for example, K. W. H. Stevens and F. Persico, Nuovo
Cimento 41, 37 (1966).

(To avoid additional notation, we do not add the sub-

scripts jk to the Green's functions or eigenvalues in
this section, but take them as understood. ) We now
examine the matrix elements of the quotient, i.e.,

C. The Many-Spin Case

From the previous section we see that an exact de-
coupling scheme based on evaluating (24) in the case of
g interacting spins is impractical since the eigenstates
of such a system are unknown. In order to preserve the
standard form for decoupling, we write Eqs. (19a) and
(19b) together as

G(+-)'G(+-)'
(AM+is)G(+ )'=—+

2% (A(d+i6)G(+ —)

=i/2&r+II(hco+ie)G(p )'. (30)

The standard decoupling procedure is equivalent to
taking 1I(h(0+is) approximately equal to (;/h~ where
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c is a constant. In our case this is too crude an approxi-
mation, so we will attempt to evaluate it using argu-
ments based on a somewhat physically intuitive ap-
proach. We assume that II(hco+ie) is a smooth function
Lsince G(~ &' and (AM+i')G(~ &' have the same poles,
differing only in their strengths] and evaluate it using

approximate expressions for the Green's functions in

both numerator and denominator. That is to say, we

assume that for small e an actual Green's function in
the complex plane can be replaced by a smooth ap-
proximate Green's function even on the real axis when

~=0. We might expect from the equations of motion
that G&+ &'(0)=0 (that there is no pole at the origin for
the approximate function is shown later); also, that
II(0)=(i/2s. )/G(+ &'(0). To avoid difficulties at the
origin we consider in some detail the approximation for

G~+ )2. We first note that it may be obtained from

Eqs. (19c), (19d), and (19e), i.e.,

i3I2 G(+ )'
(A(e+ze)G (+—)= +

2' Aco+ie
(31)

M4 t2

G,(~)=m, e'"~ (8~) 1—
M2 21

(34)

and is a strongly damped function. Except in the region

of zero time, the envelope of this function is proportional
to the second time derivative of the envelope of Go(t).
Since M4) 3IIP, the function G2(t) is much sharper than

the Bloch decay. This point is exemplified in the par-
ticular case of a Gaussian decay function when the
envelope G2(&!), oscillates slightly. In fact, any damped
function which is expressible as an even-moment expan-
sion. will have a G~(t), which crosses the abscissa at
least once. The first zero will occur at a time

As a very crude approximation (though in the spirit of
the usual decoupling method), we decouple as follows

G&+-& —(~4/~2)G(+-)' (32)

Substituting this in Eq. (31) and solving we obta&n

for &=0 the inverse Fourier transform

G2(t) =M&e '"o'8(t) cos(M4/3E2) '"t . (33)

This is an undamped cosine modulated function and as
we shall demonstrate is a rather poor approximation to
the true expression. Lack of damping seems typical of
the usual decoupling method in spin systems. This
result is nevertheless interesting since it predicts the
correct initial time dependence in G2(t). The exact
form of G&(&,') can be obtained directly from the moment

expansion, i.e.,

XGo(t). then

lim
0+St

G,(t)..d&= G,—(&)..
dt

=0,
—0+bed

(36)

G(+-)"
II(a~)=

A~G(+-&'+G(+ -)' /11(A~)
(39)

Since h(1, II (6&0) in the denominator of (39) can be re-
placed by its value at the origin, i.e.,

1(0)=-('/2 )/G(. )'(o). (4o)

This is a good approximation even when II(5&0) &s only
twice as broad as G(+ )' .The approximation improves
for k((1. In this case, the line shape approaches a
Lorentzian function.

G(+ &'(0) may be calculated approximately from the
moment expansion for the Bloch decay as follows

provided Go(t), is an even-moment expansion which
converges for large t. That is to say, the total area under
G2(t), is zero. Our approximation therefore must in-
corporate this result. It is precisely this point which
makes G(+ )' vanish for 6&0=0, since Eq. (36) is the
zero-frequency term in the Fourier transform of G2(t),„.
As a plausible approximation which satisfies our con-
dition, we take

G (~)=~ '""{L8(~)—8(~- )]
-hL8(t)-8(&,'- r/h)]), (37)

where h is less than unity and is arbitrary. Equation
(37) is essentially the sum of two square-pulse functions:
a positive pulse with width r chosen to correspond to
the first zero of G2(&')„as in (35), minus another pulse of
equal area.

By Fourier transforming, the function GH ~2 can
be expressed as the dMerence of two other functions, i.e.,

G(+-)'=G(+-)"—G(+-)", (3g)

where the superscript A refers to the positive pulse and
8 refers to the negative contribution.

We could in principle use this approxima, tion for
G&+ &' and evaluate G&+ &' directly from Eqs. (19a)
and (19b). The arbitrariness of G(~&' however, makes
the behavior around the origin difficult to determine. It
is certainly all right for high frequencies. By keeping the
decoupling form we shall show that the behavior of
G(+ &' in the region of

~

A&o ~~0 can be obtained quite
rigorously without knowing G(+ )' in detail.

Utilizing the above result, Eq. (38), the decoupling
factor may be rearranged to give

r=@2/a, (35)

where a'=M2[nÃ4/M22] and n is an adjustable factor
of value approximately unity.

We wish to replace the function G2(t) by a plausible

approximation. Since it is proportional to (d'/dP

1
G(+ &'(0) = lim — Go(&)Bed&!" '2x

7

2m 2~3527

(41)
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since M»P=1/f', where f, f' are numerical factors.
For no exchange f~f' 1 and r has its previous
meaning. To evaluate G(+ )'(0) precisely would require
a detailed knowledge of Gp(t). Substituting Eq. (41) into
Eq. (39) we obtain

6(+—)
11(h(p)~

6(dG(+ )P+(i/Mpr)G(+ )Pa

From our pulse approximation, we readily obtain

(42)

6 2A
Mpr sinh&pr (1—cosAppr)

+i (43)

6 2B
Mpr sin(t)ppr/h) (1—cos(t)(pr/h))

+i
2pr h(pr/tp t).p)r/h

(44)

Substituting in Eq. (42), we check that

II(0) —iMpr —i/2s G(+ )'(0) .
The last approximate equality follows from Eq. (41).

It is emphasized that II(h(p) in Eq. (42) involves no
major approximations so far. We now wish to examine
the denominator D of Eq. (42). In general the retarded
Green s functions occurring in it are complex, i.e.,

G =G"+iG'.

The single- and double-primed parts would correspond
to the dispersive and absorptive parts, respectively, of
the complex susceptibility. Decomposing the denomi-
nator, we obtain

D={h(pG(+ )"'—G(g )' '/Mpr)

+i{hp)G(+ )'+G(+ )' /M»-) . -
For ~6(p~~0 we readily see that D=i/2rr. Since the
width of G(+ )' is arbitrary, we may choose it to be
approximately as broad as the line shape without
seriously violating Eq. (42). In this case the real part of
D can be made to vanish approximately over the whole
line shape.

If the real part of D vanishes, we can calculate the
relationship of the imaginary parts of D as follows. The
generalized dispersion relations for the retarded Green's
function are

M» sinh&pr (1—cosh(pr)
II(h(p) = +i (45)

We note in passing that by application of the convolu-
tion theorem, II(h(p) may be expressed as the Fourier
transform of a correlation function I'(t), i.e.,

where

11(a~)= ai'(t) = V G (t—t')G, (t')d't, (46)

G~(t t') =r—
AGOG(+

Gp" (t') = ~G(+-)'"

provided the inverse Fourier transforms exist. This is
readily seen to be true in the case of Eq. (45) where

G"(t t') = (2n./i) 8 (t—t')—
yielding

I'(t) = (2s/i) Gp" (t) .

second expression we have

G(+-) '"(~')d~'
~(+-)"= —-+

rr ~ M»(pp (dp) (po (p)

Rearranging this into partial fractions and using the
first dispersion relation and the fact that G(~ )'a"(ppp)
=M»/2rr, we obtain

A(pG(+ )"=—G(p )'a"/Mph+1/2s .
From this result we find that D=i/2rr for all

~ A&p ~. We
notice that exact cancellation of the real part of D
occurs for Lorentzian-type functions. For broad line
shapes, cancellation of the real part will only be approxi-
mately true over a limited frequency range. In the case
of a Gaussian function, the approximation is quite good
over most of the linewidth, as is readily checked by
direct computation. For large

~
A(p~ however, D begins

to decrease.
If we take D=i/2n. over the whole line for all line

shapes, our. approximation might be expected to a6ect
the wings of broad Gaussian-type line shapes, causing
them to converge to zero more slowly than is found
experimentally. From Eq. (42) and the foregoing dis-
cussion, the decoupling factor is

(I

ReG((p) =—(P
G((p') d(p'

Im We now use our expression for II(h(d) in Eq. (30) to
obtain G(+ )', i.e.,

1 " G((p')d(p'
ImG((p) = ——(P Rc

GD
—6)

i/2pr
limG(+ )0=

Q(p+ iMp {sink(p r/A(d+ $(1—coskp) r)/t) pp)

(47)

Substituting G(+ )"'= (1/Ap))(G(+ )pa'/M») into the The absorption line shape from Eq. (13) is therefore

MpslnkN r/6 (p
X = —2'

[h(p Mp(1 cosset (pr)/t)—pp]'+M—pP/sint)(pr/t) ppjP
(4g)
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ff we use Eq. (38) directly to evaluate the line shape for TAnLz I. Theoretical values of 3E& in gauss and M4/3fss for theF" resonance in a single crystal of CaF2 with diGerent directions
high frequencies we obtain of the external magnetic Geld.

X"=—rsyKMssinho&r/Ates

which agrees with the high-frequency limit of Eq.
(48). This result will only be valid, however, when

G(~)'~~0, i.e., in the wings of the absorption line

shape.
The periodic nature of X", arising directly from the

pulse approximation, may be ignored because of heavy

damping.

3f4/MP
Mm (gauss)

[100)

2.07
14.40

[110$

2.22
5.02

[111j
2.29
2.34

5. COMPARISON WITH EXPERIMENT

The line shape, Eq. (48), is evaluated for the case of
the fluorine resonance in a single crystal of CaF2.
Theoretical values of M2 and 354 are used with the
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FIG. 1. Absorption line shape for the F'9 resonance in a single crystal of calcium Quoride, with the external magnetic Geld along the
[100],[110],and [111]directions. The solid line is the theoretical prediction, the circled points have been taken from Bruce's experi-
mental data.
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FIG. 2. Free induction decay envelopes for the F'~ resonance in a single crJJstal of calcium fluoride with the external magnetic Geld
along the crystal axes indicated. The solid line is the Fourier transform of the theoretical line shape, the circled points have been taken
from Lowe and Norberg's experimental data.



I'xo. 3. Theoretical absorption line
shapes for different values of the ra;tio
M4/Ass. Cur've {s) corresponds to a
ratio of 3 and is compared with the
Gaussian-function curve (b). Gurve
(c) has a ratio of 6 and corresponds to
an additional exchange contribution
to the fourth moment equal to the
purely dipolar part.

0
't.o

X= SHE

external magnetic freld along the D00j, L110j, and
f111( directions. The actual moments used are listed
in Table I. The small contiibution to the F"moments
arising from the very low natural abundance of Ca" is
entirely ignored.

The results for 0,=0.9 are shown in Fig. 1 together
with the experimental data of Bruce."The value of o,

was chosen to 6t the $100j data, and gives an even
bcttcI' fit for the other two orientations. Thc fI'cc in-
duction decays obtained by taking the Fourier trans-
form of the theoretical line shapes are compared with
the experimental data of LN in Fig. 2.

6. CONCLUSIONS

The method of retarded Green's functions yields some
familiar results for the line shape of simple spin sys-
tems. Simple decoupling of Green's functions is valid
for dipolar broadened line-shape calculations in the case
of isolated pairs of spin--,' and also possibly trios of
spin-g, In this case exact results arc obtained.

For the E-spin problem simple decoupling is inade-
qua, te. This leads to an undamped cosine modulated
free induction decay with periodicity 2s/g(3IIs). This
corresponds to the replacement of the dipolar inter-
action by an average local fjLeld. For short times, how-

ever, this is a good approximation. Examination of the
matrix elements of the decoupling factor shows that in
general it mill be a function of frequency. An exact
evaluation would require a knowledge of the eigenstates
of the Ã-spin problem. Using a physically intuitive
approach we attempt to evaluate the decoupling factor
using approximate Green's functions for both numerator
and denominator.

~c make three basic assumptions as follows:

Is {",R. Bruce, Phys. Rev. 107, 43 {1957).

(i) The actual Green's function for small e may be
replaced by a smooth approximate Green's function on
the real axis. For a lar je number of interacting spins,
this corresponds to thc tr'ansition from a discrete to a
colltlnuous spectrum;

(ii) The square-pulse approximation for Gs(t). This
is a plausible approximation based on the moment ex-
pansion plus the physically realistic convergence of
Gs($) fol' lal'ge t111Ms lmpllclt 111 (I) '

(iii) The denominator in the rearranged decoupling
factor is constant, i.e., D= s/27r.

In view of the simplicity of the approximations made,
the agreement between theory and experiment can
only be regarded as an indication of the general cor-
rectness of the approach.

When exchange-type interactions are included in a
spin system, with one spin species, they aGect the fourth
and higher moments only. 1A'c assume that the approxi-
mate equality Eq. (41) holds in this situation and in
this case f'~M4/Ms', where M4' is the dipolar contri-
bution to the fourth moment. In our expression, which
is dependent on the ratio M4/Mss, the line shape changes
dramatically, narrowing to a Lorentzian shape near the
center of the. linc for increasing values of thc ratio.
Thus the qualitative behavior of the line shape is
explained by our expression. For a Gaussian shape,
M./Ms'=3. H we substitute this value into Eq. (48),
and plot the absorption line versus a normalized variable
x=8Bv, where AH is the OR-resonance field and r has
its previous meaning, we obtain curve (a) of Fig. 3. This
is compared with the Gaussian-function curve (b). We
see that the differences are quite small. This is an inter-
esting result, since it means that any broad line-shape
function, including the Gaussian case can be charac-
terized by a pulse correlation function 1'(t). This agree-
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ment lends strong support to our initial assumptions
regarding the evaluation of the decoupling factor.

The case when a fourth-moment exchange contri-
bution equals the purely dipolar fourth moment is also
plotted in curve (c). Here the line shape is practically
Lorentzian near the center of the resonance, but is
damped more rapidly for ~x~ large. A test of this result
is not possible at present since experimental exchange-
narrowed line-shape data on suitable single crystals is
lacking.

In conclusion a decoupling scheme, based on plaus-

ible assumptions is given which describes the many-spin
line shape in cubic arrays. Similar assumptions may
enable the method to be applied to other line-shape
problems, in particular to artiicially as well as thermally
narrowed lines.
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The electron spin resonance of paramagnetic species produced by y irradiation of solid methane at 4.2'K
has been observed. In addition to the expected signals from individual H and CH& radicals, weaker signals
from exchange-coupled H and CH3 radicals were observed. The exchange interaction is isotropic, but there
js an anisotropic dipole-dipole interaction between the aligned electron spin moments which gives rise to a
splitting of 91 G. Analysis of this interaction indicates the separation of the coupled H and CH& to be 6.76 A.
The hyperfine splitting by the H is 255 G and that by each proton of the CH~ group is 11.5 G, or one-half
those for the isolated H and CH3. These features are shown to be in agreement with theoretical predictions.
Similar sects were observed for CH4 irradiated in a krypton matrix at 4.2'K.

XCHANGE interaction is responsible for diverse
~ phenomena in concentrated magnetic elements in

solids. The most prevalent sects on magnetic reso-
nance, those on linewidths and line shapes, have been
treated theoretically by Van Vleck' and others. ~ '
Simultaneous Gipping of two coupled spins was detected
in diethyl copper acetate powder by Lancaster and
Gordy, 4 who suggested that the spins might be coupled
through exchange interaction. This species was studied
further by Bleaney and Bowers' in single crystals, and
the hyperfine structure of the coupled pairs of copper
ions was measured and analyzed. Some weak satellite
lines observed by Fletcher, et al. ' and by Feher et a/. ' in
the resonance of phosphorus-doped silicon semicon-
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ductors have been attributed by Slichter' to exchange
coupling. The present case, although analogous to that
of copper acetate, is novel in that the exchange inter-
action arises between different magnetic species, in a
magnetic-impurity site produced by irradiation. The
interaction occurs between the two parts of a dissociated
molecule. Although these measurements were not made
on single crystals, it has been possible to resolve and
analyze the electron-spin-resonance (ESR) spectra in
some detail. From the analysis the separation of the
two magnetic species in the matrix is found. We have
observed these effects in the solid CH4 matrix and in a
krypton matrix at 4.2'K.

Figure 1 shows the 6rst derivative of the KSR
absorption curve of y-irradiated CH4 observed with
high gain at 4.2'K. The spectrometer' and the experi-
mental techniques' are described in previous reports
from this laboratory. A 7-ray dosage of 6X10' R was
given the sample from a —,-kCi cobalt-60 irradiation
source. The samples were irradiated in the microwave
cavity, which was maintained at 4.2'K throughout the
experiment. The observation frequency was 24 kMc/sec.
The strong lines which saturate the receiver are due to
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