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T~LE I. Superconducting energy gap measured as function of TAsLE II. Superconducting energy gap measured as function of
frequency for 99.9% lead for longitudinal waves along the (111) sound pulse amplitude for 99.9% pure lead at 510 Mc/sec for
direction. longitudinal waves along the (111)direction

Frequency
Mc/sec

1030
950
290
210
110

Energy gap
2&p(0) kgT,

48
5.2
5.4
49
5.0

Sound pulse
amplitude

Lowest possible
3000 times higher

in power

Energy gap
2mp(0) AT.

4.7
5.2

tables of Muhlschlegelm of ep(T)/ep(0) in terms of
T/T, . Here n, and n„ar cthe values of the attenuation
in the superconducting and normal states, respectively,
ep(T) is the energy gap as function of the temperature T,
ep(0) is the limiting gap at O'K, and ktt is Boltzmann's
constant. Figure 1 shows a typical graph of tr,/n„as a
function of the reduced temperature T/T„where T,
is the superconducting transition temperature. The
energy gap values ep(0) obtained in the range from 50 to
1050 Mc/sec are presented in Table L

This table does not include measurements performed
at 510 Mc/sec. At this frequency data were obtained at

' 3. Muhlschlegel, Z. Physik 155, 313 (1959).

rather higher sound pulse amplitudes and at the lowest
convenient pulse amplitude. The diGerence in the
amplitudes corresponded to a change of 25 dB or a
factor of 3000 in the power output of the transmitter.
The data were analyzed in a similar manner as before
to obtain the corresponding energy-gap values. These
are summarized in Table II. This result points to the
fact that there is some evidence of an amplitude de-

pendence although it is very weak. Since it is estimated
that the measurements at the other frequencies were

performed at low or intermediate amplitudes, the
energy-gap values can be viewed as having an approxi-
mate error of &0.3 maximum where the error of —0.3
is favored.
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An investigation is made of the low-temperature behavior of a two-dimensional many-fermion system
parametrized to serve as a model of a monomolecular layer of liquid Hes. The calculations are made using the
App approximation of the Martin-Schwinger thermodynamic Green's function theory. A Herzfeld potential
is used for the two-body interaction in order that the resulting T-matrix equation can be solved exactly.
Three sets of the three parameters of this potential are chosen by requiring that they reproduce either the
experimental and theoretical low-temperature second virial coefBcient, the phase shifts calculated from the
6-12 potential, or the experimental binding energy and density of the three-dimensional system. The
chemical potential, energy per particle, density, and speci6c heat are calculated. Of the three sets of param-
eters the maximum binding energy for the two-dimensional system results from the potential which predicts
the correct three-dimensional experimental energy and density. The maximum binding in this case is 0.68'K
at a density corresponding to rp ——2.9 A. Three-dimensional calculations were made with the several sets of
parameters, with the result that the virial-coefBcient and phase-shift sets predict too little attraction.

I. INTRODUCTION

A THEORETICAL calculation of the low-tempera-
ture properties of a two-dimensional system of

Hee is of interest because of recent experimental

t Work supported in part by the National Science Foundation
and the U. S. Atomic Energy Commission.

work' on monomolecular layers of liquid helium. This
paper reports the results of a calculation of the binding

energy, density, chemical potential, and specific heat
of a two-dimensional model of liquid He in the zero-

' D. L. Goodstein, J. G. Dash, and W. D. McCormick, Phys.
Rev. Letters 15, 447 (1965).
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temperature limit. The calculations are based on Puff's
App approximation of the Martin-Schwinger thermody-
namic Green's function theory and the numerical
work has been done on an electronic computer.

A brief discussion of the Green's function equations
and the approximations used here in solving them is
contained in Sec. II.The A.pp theory requires a transition
(T) matrix analogous to the E matrix of Brueckner
theory. A two-body potential is chosen that will allow
us to solve the integral T-matrix equation exactly. This
potential is the Herzfeld potential, an in6nite repulsive
core plus an attractive square well. The determination
of the parameters of this potential is discussed in Sec.III.
Section IV presents numerical results for the low tem-
perature properties of interest and contains a discussion
of the specific heat. Finally Sec. V contains a discussion
of these results. In the case of the two-dimensional
fermion system used as a model of a monolayer of He'
the implicit assumption is made that the substrate is
suKciently smooth on the atomic scale so that no bound
states exist and so that the effective mass of the single-
particle states is not greatly altered. Also, in the cal-
culation of the speci6c heat, strong adhesive forces are
assumed so that the excitations which determine the
low-temperature limit of specific heat are the excitations
of the two-dimensional many-body system. These
assumptions are discussed further in Sec. V.

II. GREEN'S-FUNCTION EQUATIONS

The Martin-Schwiriger Green's-function approach to
the many-body problem' will yield the exact ground-
state properties of the system if the exact one-particle
Green's function can be obtained. However, each
Green's function of a given order is obtained from the
Green's function of the next higher order, and so the
entire hierarchy of equations must be solved to obtain
the exact G~. In coordinate space the erst two of these
equations are

Gg(1,1')=GP(1,1')+GP(1,2) V(2,3)Gs(23,3+1'), (1)

Gs(12,1'2') =GP(1)1')Gg(2,2') —Gr'(1,2')Gg(2, 1')

+GP(1,3)V(3,4)Gs(234,4+1'2') . (2)

Here Gj' is the solution of the differential equation of
motion for G~ with no interaction term. The numerical
indices denote position, time, and spin. Integration over
space and time and summation over spin is intended
for repeated indices. The time dependence of V is simply

through V. This is a low-density approximation and
means in words that when two particles are interacting
their motion is independent of all other particles in the
medium. This can be expressed analytically as

V(2,3)Gs(123,1'2'3') = V(2,3)[Gr(1,1')Gs(23,2'3')
—Gg(1,2')Gs(23, 1'3')+Gr(1)3')Gs(23, 1'2')$. (4)

Substituting this expression for Gs into Eq. (2) yields
what is called the A.jp approximation. The resulting
equation for G2 is

Gs(12,1'2') =Gg(1,1')Gg(2, 2') —Gr (1,2')Gg(2, 1')
+-', [GP(1)3)GI(2,4)+Gg(1,3)GI'(2,4)]

X V(3,4)Gs(34, 1'2') (5)

A further approximation can also be made, which con-
sists of replacing the G&'s in the square brackets with
Gj"s. This is called the A.pp approximation, and this
theory has been investigated thoroughly for nuclear
matter by Puff' and subsequently by Falk and Wilets4
and Reynolds and Puff. ' The difference between A.pp

and A~p has been investigated for nuclear matter'~
with the result that A.~p predicts slightly less binding
than does App. This paper will rely solely on the A.pp

theory.
Equation (5) can be converted into an integral equa-

tion for a T matrix, defined by VG2=TG&G&, which is
analogous to the E matrix used by Brueckner. In the
zero-temperature limit of the A.pp theory, with the condi-
tion that the chemical potential p, be negative, the
integral equation in momentum space is

(kgks
~
Trr(ro)

~
kgks) = (krak,

~
s—v,„~k,k,)

dk"
(krks i

s
i
kg"ks") ro — (2k"'+-'E')

(2s-)' 2m

X(4"ks"
i &x(ro) ikrks), (6)

V(kgb&) =
dks

p(ks)(14ks
~
2'~(ra+roe(ks))

~
kqks), P)

(2s.)s

where E and k" are the center-of-mass and relative
momenta, respectivey.

Once this T matrix has been obtained the bulk prop-
erties of the system can be calculated using the follow-
ing equations self-consistently:

V(2,3)= is(rs —rs) 8(ts—t,).
The usual approximation made is to truncate the

infinite chain of equations above by factoring the G3
of Eq. (2) into symmetrized products of G& and Gs,
keeping correlations between particles interacting

' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959}.

~o(&i) = +V(4,~s(&i)),
2m

' R. D. PuII, Ann. Phys. (N. Y.) 13, 317 (1961).
4 D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961).' J. C. Reynolds and R. D. Puff, Phys. Rev. 130, 1877 (1963}.
6R. Puff, A. S. Reiner, and L. Wilets, Phys. Rev. 149, 778

(1966).' T. C. Foster, Phys. Rev. 149, 784 (1966).
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Equations (6), (7), (10), and (11) can be converted.
easily to apply to a two-dimensional system by changing
the integrations from

II. TWO-BODY INTERACTION

Equation (6) for the T matrix can be solved. exactly
for either a sum of square wells or a sum of separable
potentials. We have chosen the Herzfeld potential for
calculational purposes in order to avoid the nonlocal
nature of the separable potential while keeping the
numerical aspects of the problem tractable. The He'-He'
interaction is then parametrized by three quantities
(at, the hard-core radius; tss, the radius of the outer edge
of the attractive well; and Vo, the well depth). These
parameters can be determined by requiring that they
reproduce the second virial coeScient in the low-

temperature range.
There are experimental data for the second virial

coefficient B(T) in the range from 1.5 to 4'K, and out-
side that range values have been calculated using the
6-12 and exponential-six potentials. The general ex-
pression for the second virial coeKcient is

1t 2~ho ~sls p 2vrhs "' 1
B(T)=—

I

—

I +s Z (2f+1)I
32(ETm/2/ & odd EETm/2 s' z=o

ritdLexp( —E/ET) 1—P exp( &,t/—&&T)
discrete

2h'i1
+-,' Z (2f+1)

l even ETm/2i s o

r) tdLexp( E/ET) j—+exp—(-E„t/ET) . (13)
discrete

Here g~ is the phase shift for the lth partial wave, E is
the energy of the relative motion of the two particles,
m is the He' atomic mass (5.0076X10 "g), T is «
absolute temperature, E is Boltzmann's constant, and
the E ~ are the energies of the bound states. There
were no bound states for the range of the parameters
investigated so the sum over discrete states can be
neglected.

In practice it is convenient to use Kihara's method'
in which B(T) is calculated as a function of the new
parameters

g = tss/est i

s=
( Vo) (m/hs)ats(4(g —1)s/~s]

4(g—1)sj Vo(

The parameter s is the effective depth parameter used
in nuclear physics by Blatt and Jackson. ' An electronic
computer was used to calculate a quantity f(r) which
was proportional to T'I' B(T) and independent of the
T/r ratio. For a particular g value, calculations were
performed for various s values which gave minimum
values of f(r) in the vicinity of the theoretically ex-
pected minimum value. The lateral spread of the cal-
culated curve when plotted against T is, of course,
dependent on the T/r ratio. Thus if f(r) is normalized

T. Kihara, Rev. Mod. Phys. 27, 412 (1955}.' J.M. Slatt and J.D. Jackson, Phys. Rev. 76, 8 (1949}.

to be equal to Ts~'B(T) and the ratio T/v is chosen so
that the best comparison is obtained for the two curves
the third parameter r is then determined. To check the
computation a calculation was first made for He4

with g=1.5, s=1.0, and agreement was obtained with
the results of Kihara.

The He' virial coefBcients can be compared with a
few measured values in the range of 1.5-4'K' and with
theoretical curves calculated for the 6—12 potential and
the exponential-six potential. "Results of the fittings
indicate that there is a range of g values over which for
some s value a fit can be found to the observed data and
to the theoretical curves for B(T) in the temperature
range from 1 to 10'K. Figure 1 is a typical comparison
of the calculated virial coefBcients of the Herzfeld
potential with the experimental and theoretical values
for He'. In Table I the parameters of the Herzfeld

TABLE. I. Herzfeld potential parameters determined by
6tting of second virial coefIjcient.

1.5
1.75
2.0
2.25
2.5
2.75

0.895
0.865
0.845
0.825
0.810
0.798

2.39
2.85
3.37
3.81
4.23
4.57

ag(X)

2.594
2.386
2.185
2.055
1.95
1.88

3.89
4.16
4.370
4.624
4.89
5.16

Vp(E')

-21.11—10.82—7.03—4.96—3.76—2.93

'o W. E.Keller, Phys. Rev. 9S, 1571 (1955)."J.E. Kilpatrick, W. E. Keller, E. F. Hammel, and N.
Metropolis, Phys. Rev. 94, 1103 (1954).
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FIG. 1. A comparison
of the second virial
coefELcient multiplied by
T312 calculated for the
Herzfeld potentials with
the experimental values
and with the theoretical
values for the exponen-
tial-six and for the 6-12
potential.
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potential are listed for various fittings. A general con-
clusion can be drawn that as g becomes smaller the
calculated B(T) curve has excessive curvature and
tends to lift up from the He' and the six-twelve values
in the region of 10 deg and of 0 deg. As g becomes larger
the Herzfeld B(T) curve is too broad. The conclusion is
that the best set of parameters from the basis of the
second virial coeKcients alone is that of g=2.0: i.e.,
ar=2. 18 A am=4. 37 A, Ve= 7.03 K.

Certainly the second virial coefficients themselves
are not a reliable determination for the parameters of a
crude potential such as the Herzfeld potential. The
virial coefficient expansion is a low-density expansion,
and the virial coeKcients are most sensitive to the long
range part of the potentials. It is certainly desirable,
therefore, to use other criteria for the parameterization
of the He'-He' interaction.

We know that scattering data for momenta up to
values of order k~ are important in the h.oo theory, and
we can impose an additional restriction on the potential.
We require that the parameters reproduce B(T) fairly
well in the low-temperature region and that they also
give the proper phase shifts for the lower partial waves
near k~. The set of parameters corresponding to g= 2.5
is the best of all the sets in Table I in this respect.

A third set of parameters has also been chosen by the
criterion that they should reproduce the experimental
binding energy and density when a h.oo calculation is
performed. Taking a binding energy of 2.53'K per
particle and a density parameter re (defined by
1/density=(4/3)are') equal to 2.43 A we find a suit-
able choice of parameters to be

ar ——1.85 A,

ae ——3.95 A,

Vp= —10.7'K.

This potential is intended to phenomenologically com-
pensate for errors inherent in the A.00 approximation and
in the use of the Herzfeld potential. The strength
parameter for this potential is s=1.19, which indicates
the presence of a bound state. This is contrary to most
data on the He'-He' interaction and indicates that the
calculations with potentials determined from virial
coefficient and scattering data mill yield. insufhcient
binding.

There is of course more than one set of three potential
parameters which will yield the two experimental
quantities of binding energy and density. We find that
the core radius is very important in determining the
proper density for the system but that the energy can
be fit over a range of u2 and Vo values. No attempt was
made to find a physical reason for choosing one par-
ticular pair of a2 and Vo values in preference to the
others, and calculations are presented for one member of
this set only.

IV. RESULTS

Van Leeuwen and Reiner" have solved the three-
dimensional T-matrix equation exactly for a potential
made up of an arbitrary number of step potentials in
general and for a Herzfeld potential in particular. Their
analysis can be applied to the two-dimensional system
and the result is the same as if the normalized. spherical
Bessel functions in their result are replaced by cylin-
drical Bessel functions and the square of a& or of u&

at any point is simply replaced by a& or a2, respectively.
Having the exact T matrix enables us to solve Eqs.
(7) to (9) self-consistently to obtain the zero-tempera-
ture bulk properties of the system. This was first done
for the three-dimensional system and values of E/X
and p were found as functions of ro. For the pure virial-

"J.M. J. Van Leeuwen and A. S. Reiner, Physica 27, 99 (1961).
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-0.02

-0.04'R

4l

based on the A00 approximation. Their result is made up
of one term equal to the usual effective-mass term
multiplied. by the momentum distribution factor p(kr)
plus temperature-dependent correction terms which
can give a contribution at absolute zero. Most theoreti-
cal calculations of the specilc heat rely on the effective-
mass approximation and, because of the inherent limita-
tions of our approximation, we also will obtain the
speci6c heat from

-0.06 M

-0.08 M

m dV(kt, pIp(kt))
C=

h'kp

C m* k'kr dpIp(k)

Cfgee

Ct„„(14)

(15)

25.0 The ratio of C/Ct„, was calculated at the energy mini-
mum for the three-dimensional system and the results
are m*/m=1. 25 for the g=2.5 set of parameters,
m*/m= 1.27 for the g=2.0 set, and m*/m= 1.1 for the
"physical set". These numbers are to be compared to
m*/m=1. 88, obtained by Bruecj~ner and Gammel.

The calculations in two dimensions are done over a
range of densities and our two-dimensional specific
heat as a function of ro is pictured in Fig. 3 for the
g= 2.5 potential. In this case m*/m is less than one and
approaches one as the density goes to zero. At the point
of maximum binding the results are C/Ct„, ——m*/m
=0.86 for the above set of parameters, m*/m=0. 88
for the g=2.0 set, and m*/m=1. 49 for the "physical
set."

IO.O 20.0

Fn. 2. Variation of y and E/E with the separation parameter r0
Herzfeld potential (a1 ——1.95 A, a2=4.89 A, Va= —3.76'K).

V. DISCUSSION

The 400 theory is an approximation in which an
attempt is made to treat two-particle correlations in
the medium while replacing the sects of the other

X - POINT OF MAXIMUM 8INOING

08

08

I
IO.O

I

20.0I5.0
r. (A)

FIG. 3. Variation of speci6c heat with the separation parameter
r0 expressed as the ratio of the interacting to the free Fermi gas
for the Herzfeld potential (Gq =1.95 A, Gp =4.89 L, Vp = —3.76'Kl.

coefFicient potential corresponding to g= 2.0 the energy
per particle remains positive and has values of 0.1~E/N
~0.2'K at densities corresponding to 3.5~rp~4. 0 A.
The potential based on considerations of both virial
coeKcient and phase shifts yields slightly more attrac-
tion, with E/N= —0.1'K at re=3.25 A at the energy
minimum. Thus the A.00 approximation with the Herz-
feld potential fitted to virial coeKcients and phase
shifts does not seem to be a good approximation applied
to the three-dimensional system. These results are in
agreement with those of Beck" who used separable
potentials fit to de Boer phase shifts in a too calculation.
He Gnds the system is self-bound with a binding energy
of —0.04'K at a density corresponding to rp=3.25 A.
Brueckner and Qammel" in a diferent calculation using
a realistic two-body potential find E/N= —0.9'K at
re=2 6 A.

When two-dimensional calculations are done with
the same potentials the general feature of very weak
attraction persists, but maximum binding does not
occur until extremely large interparticle separations.
The virial-coeflicient potential (g=2.0) yields a mini-
mum energy per particle of —0.03'K at rp ——14.8 A.
The virial-coefficient —phase-shift potential (g= 2.5)
yields a minimum of energy at E/N= —0.047'K and
rp 13.3A. F——igure 2 illustrates the variation of the
energy per particle and the chemical potential with ro
for the latter potential. I'inally when the potential
parameters which yield the experimental bulk proper-
ties for the three-dimensional system were used an
energy minimum of E/Ã= —0.68'K at r p 2.9A——
ls found.

Puff and Reiner" have obtained an expression for
the specjt6c heat of a system of interacting fermions

~'D. E. Beck and A. M. Sessler, Phys. Rev. 146, 161 (1966).
~4 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040

(1958).
'6 R. D. Puff (private communication).
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particles by an average field. For a dilute system this
should be a good approximation and indications are
that it is valid for nuclear matter. Helium is however
significantly denser than nuclear matter when expressed
relative to the respective close-packed densities figured
according to the respective repulsive-core sizes. The
calculations presented here along with those of Brueck-
ner and Gammel indicate that corrections to the two-

body theory must be incorporated before a theory can
be applied to liquid He'. Bethe" has shown that when
the three-particle problem is treated correctly the
result reduces to the two-particle result except when
the three particles are close to one another. In that case
the wave function is reduced to —', of the more elementary
value corresponding to the fact that the wave function
can be excluded from the strong repulsive core only once.

However, the two-dimensional system is less dense
than the three-dimensional system and a two-particle
theory such as App may be expected to have more
validity in this situation. Our results for the two-
dimensional system probably bracket the true behavior
of the system, with the virial coeKcient potential in-
dicating too little attraction and the potential based
on the three-dimensional physical properties indicating
too much.

There is a considerable difference between the density
of the monolayers measured by Goodstein and the
densities calculated at maximum binding with the App

approximation. This is not a basic disagreement between
theory and experiment since a great range of densities
is available to the monolayer. With sufhcient attraction
the substrate could bind the system even though the
two-dimensional system by itself would not be bound
at the same density. Goodstein et at. report a coverage
corresponding to r0=2.0 A. Even with the very attrac-
tive phenomenological potential the calculated p, is
positive for ro(2.1 A. Our calculations are not applica-
ble at greater densities since a positive p, results in a
more complicated kernel in the T-matrix equation. The
energy per particle can be extrapolated to go positive
near an ro of 2.0 A and to increase with a decrea, sing ro

at a rate in excess of a 'K/A. If there is, therefore, any
validity in the A.pp model the He' atoms in the observed
monolayer are close enough together to experience strong
mutual repulsion with the large adhesive forces of the
substrate holding the layer together.

"H. A. Bethe, Phys. Rev. 138, 8804 (1965).

The calculated quantity that is to be compared
directly with experiment is the specific heat at the
same density as in the experiment. Unfortunately
the only experimental data available are far into the
positive-p region of density. The significant thing is
that Goodstein et at. report a specific heat proportional
to the square of the temperature. The most direct ex-
planation of this is a two-dimensional. Debye model
with collective, phonon-like excitations. The App

calculation is, of course, based on single-particle-like
excitations, and the calculated specific heat would be
proportional to T. The question arises as to whether a
collective-state-excitation model would be appropriate
at high densities while a Fermi-liquid theory as App

might become valid as low densities are approached. To
answer this question experiments are needed with He'
monolayers with coverages that range from those of
Goodstein down to those which correspond to r p

values of 12 A or more. An observation of a change in
the temperature dependence of specific heat as the
coverages are decreased would be the most direct
evidence of such a change of behavior.

The search for a specific heat linear in T at low
d.ensities would be futile if the surface of the substrate
is so rough that the ground-state wave function of a
He' atom on the substrate were localized. In that case
a two dimensional Fermi-liquid model would not apply
however low the density. The most direct interpreta-
tion of the T' specific heat would be that collective ex-
citations occur so that the helium atoms are interacting
with each other and are not found to be in localized
ground states in which case an exponential specific
heat would be expected.
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