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Cluster coefficients for a quantum gas can be related by means of a Laplace transform to the resolvent of
an interacting system. Techniques developed by Faddeev are applied in order to express resolvents in terms
of quantities which satisfy coupled integral equations. The resulting theory for the cluster coefficients is free
of convergence difficulties encountered in series expansions of those coefficients in terms of a binary-collision
kernel or two-body scattering matrix. Present computational difficulties necessitate an approximate solution
of the Faddeev equations. The assumption of a separable two-body scattering matrix makes possible such a
solution and a subsequent calculation of cluster coefficients.

I. INTRODUCTION

HE equation of state of an imperfect gas of low
density p,

8= 3" Bu(B)p", Bi=1. (L.1)

n=l1

expresses the pressure p in terms of virial coefficients
B,, which are functions only of the temperature
T [B= (kT)™]. Those coefficients derive their im-
portance from being a measure of correlations, both
dynamical and statistical, of no more than » particles.
Their calculation consequently requires the solution of
the #-body problem.

An expression for the second virial coefficient valid
for all temperatures was given by Beth and Uhlenbeck!
more than 30 years ago. But even a formulation of the
quantum theory of the nth virial coefficients for >3
had to wait for many years, in contrast to its classical
counterpart.

Lee and Yang, in dealing with imperfect gases,
made, among others, the following crucial observations?:

(1) It is possible to isolate the effects of statistics from
dynamics in a unique way. If, in other words, one has
found a technique for treating the problem in Boltz-
mann statistics, no difficulties in principle are en-
countered in Bose-Einstein (BE) or Fermi-Dirac (FD)
statistics.

(2) So-called cluster operators, describing the correla-
tion between precisely # particles and not fewer, can be
expanded in a binary-collision operator provided only
pair interactions are present in the #-body Hamiltonian
H,. The binary-collision operator serves then as a tool
to calculate cluster and virial coefficients.

Pais and Uhlenbeck?® and later Larsen* subsequently
applied the Lee-Yang theory to a calculation of the
third virial coefficient. Even for temperatures as low as
1°K, convergence is annoyingly slow. The presence of
two- and/or three-body bound states is likely even to

L E. Beth and G. H. Uhlenbeck, Physica 3, 729 (1936); 4, 915
(1937).

2T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).

3 A. Pais and G. H. Uhlenbeck, Phys. Rev. 116, 250 (1959).

4S. Y. Larsen, Phys. Rev. 130, 1426 (1963).
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invalidate entirely the series expansion in the binary-
collision kernel.

It has been noted in the meantime®:$ that the Laplace-
transform relation between the statistical operator
exp(—BH,) on the one hand and the resolvent
(Z—H,)™" on the other enables a concise formulation
of the Lee-Yang theory. The binary-collision operator
corresponds to the two-body scattering operator con-
tinued off the energy shell, and the Lee-Yang series has
its parallel in Watson’s” multiple-scattering expansion
of the resolvent. Statistics there may be handled with
the help of a diagrammatical representation of the par-
tition function Trexp(—BH) as given by Bloch and
de Dominicis.® The result of all manipulations is a
theory which runs parallel to the binary-collision
expansion of Lee and Yang. Though far easier to handle,
it leaves all inherent convergence difficulties unsolved.

Recent years have witnessed striking developments
in many-particle scattering theory. A formalism first
proposed by Faddeev® has been further developed and
generalized by Weinberg,'® Lovelace,"* and Rosenberg!®
and may be said to replace the multiple-scattering ex-
pansion of a resolvent with a set of coupled integral
equations. It is of interest to remark that one incentive
has been the wish to formulate integral equations with
Schmidt-Hilbert kernels which allow Fredholm-type
solutions. Formulated in diagrammatical language, one
aims at the removal of unlinked parts from the resolvent
or equivalently from the scattering matrix. It has been
observed by Weinberg!® that a formally similar pro-
cedure is required to obtain cluster coefficients from the
partition function.®

The following is an account of a closed theory of the

third virial coefficient based on Faddeev-type tech-

5 A. J. F. Siegert and E. Teramoto, Phys. Rev. 110, 1232 (1958).

6 A. S. Reiner, Physica 26, 700 (1960).

7K. M. Watson, Phys. Rev. 89, 575 (1953).

8C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459 (1958);
10, 181 (1959).

9L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)].

10 S, Weinberg, Phys. Rev. 133, B232 (1964).

11 C, Lovelace, Phys. Rev. 135, B1225 (1964).

2T, Rosenberg, Phys. Rev. 140, B217 (1965).

18 The idea of applying Faddeev techniques to statistical
physics has already occurred to Faddeev (Ref. 9) and has also
been suggested by J. M. Blatt (private communication).
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niques with application to a boson gas. We recapitulate
in Sec. II the elements of the Lee-Yang theory bearing
on the statistical aspect. It is then shown in Sec. III
how one may obtain the third cluster coefficient (the
only nonelementary coefficient present in B;) by means
of quantities which satisfy coupled integral equations.
The technique is by far superior to series expansions,
since no convergence difficulties are ever encountered,
nor do bound states pose problems.

Present-day computers still lack the capacity to solve
coupled integral equations in three variables, as the
exact Faddeev equations happen to be. One has there-
fore from a practical point of view to resort to an ap-
proximation. All approximations of this kind have to
our knowledge assumed a factorizable two-body off-
energy-shell ¢ matrix which forms the basic elements of
the kernel of the integral equations. Those approxima-
tions turn the Faddeev equations into a set with a
simpler kernel. Elsewhere!* we have discussed separable
¢t matrices which provide an accurate approximation in
the neighborhood of all bound states and resonances of
the two-particle subsystems. Approximately correct be-
havior over as wide an energy range as possible is
necessary, since the quantity of interest is not the re-
solvent but the partition function. The operation that
links the two is a weighted energy integration. Unless,
therefore, the intermolecular potential is assumed to be
separable (leading to a separable ¢ matrix for all ener-
gies), such an approximation will yield trustworthy
results only for low temperatures. Those may, however,
be far higher than the temperature below which expan-
sion methods converge.

Section IV contains the version of the theory of the
third cluster coefficient in the approximation of a sepa-
rable ¢ matrix. Although we have a particular expression
in mind for actual calculations, the formulation can be
applied for any other choice. The approximation in a
way answers the question posed by Pais and Uhlen-
beck?: whether higher virial coefficients are expressible
in terms of scattering data, as is the case with B,. The
input data are, among others, energies of bound states
and resonances as well as form factors at those
singularities.

In the last section, we compare the Faddeev approach
with the Pais-Uhlenbeck calculations.

II. CLUSTER COEFFCIENTS FOR
A QUANTUM GAS

We recall the two Mayer equations!®

?6=hm Z bn(V,ﬂ)Z",

V—00 n=l1

p=lim 3 nb.(V,8)z",

V—0 n=1

(2.1)

“ A, S. Reiner, Nuovo Cimento (to be published). See also
H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).

15 See, for instance, K. Huang, Statzstical Mechanics (John Wiley
& Sons, Inc., New York, 1963).
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from which the virial series (1.1) results after elimina-
tion of the fugacity 2. The coefficients b,(V,8) tend to
the so-called cluster coefficients 5,(3) which are inde-
pendent of the volume V if V — «. By comparison one
finds, for instance,

Bz= -_ (bz/b12) N B3= - b1—4(4b22— 2b2b3) ’

A theory of the measurable virial coefficients B, there-
fore addresses itself to the cluster coefficients
bm (1< m< n) in which all m-body correlations reside.

Cluster coefficients are related to dynamics, i.e., to
the #-body Hamiltonian H,, through the density
operator

etc. (2.2)

By recursion one defines cluster operators U, which
carry particle labels 1, 2,---:

Ui()=Ww.(1), (2.4a)
U.(12)=W,(12)— W (1)W1(2), (2.4Db)
U;3(123)=W;3(123)—[W.(12)W+1(3)
+cyclic permutations of the arguments]],
+2W (1)W1(2)W1(3), etc.  (2.4¢)

It can be shown!® that the following relations hold
between b, and U,:

1
b,(B)=lim — TrU,.
Vow u |V

(2.5)

It is through the symmetry of the states used in the
trace calculation that the specific statistics enter. Lee
and Yang? have shown that it us useful (although
devoid of any realistic meaning) to calculate the matrix
elements of the cluster operator U, in Boltzman sta-
tastics. These elements for BE or FD statistics may then
be expressed in terms of matrix elements of U,,, m<#,
for Boltzman statistics.

Their reasoning goes as follows. Consider an element

' -N'|Wy|1---N)
=T Yl NOPF(L V) exp(—Be), (26)

where ¥, denotes an eigenstate of Hy belonging to the
eigenvalue e,%, and where 1---N represent a set of,
say, single-particle momenta. For the corresponding
matrix element in BE statistics one has

(1’---N'|WxBE|1---N)
=N! & gl NW*{1---N)
"5”“““ Xexp(—ﬁei(z\r))
=T WP Ny (L)

Xexp(—BeM).

2.7
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The first sum is over symmetric states only; the second
runs over all permutations of 1---N.
Defining

<1'...N',UN311...N)E§ (P(I’---N")|Ux|1---N),
(2.8)

one establishes the following relations for matrix ele-
ments of the first three cluster operators:

(U|UEE[1)=(1|U:|1),
{(172'| U:BE|12)=(12'| U55|12)
H2' UL 1INV | UL 2),
(12/3'| U;B5|123)=(1'2'3'| U,5| 123)
(13| US| 12)(2' | U1 | 3)
+(2'3"| U28|12){1"| U4]3)
+(273'| U28|13){1| U.1|2)
(12| U5 [13)(3'| U1 2)
+(173"| U25|23)(2'| U1 | 1)
+(1'2'| U25]23)(3'| U1]1)
+(2'| UL 1) | U1] 21| U4 3)
+ (37| UL | 1)1’| U1 2)¢2"| U4|3).  (2.9¢)

Equations (2.5), (2.8), and (2.9) then define the
cluster coefficients for a boson gas in terms of matrix
elements of cluster operators in Boltzmann statistics.

At this point we mention the relation” between the
statistical operators W,, (2.3), and the resolvents

Ga=(z—Ha)™;

(2.9a)

(2.9b)

1
Wn(ﬂ):—:

e C

PG, (2)ds. (2.10)

The integration path C is counterclockwise along a de-
formed contour of the inverse Laplace transform and
passes from o--ie¢ in a loop around the left-most singu-
larity of the integrand to co—7e.

The difference between perturbed and unperturbed
resolvents may be related in a standard fashion to the
scattering operator 7'y :

Ga(2)=GL(@)[1+T»(2)GL(2)]. (2.11)
T, satisfies a Lippmann-Schwinger equation
To=V+VGLTr=V+VG.V, (2.12)

with V=73, v, where a denotes a pair index.
We consider in particular T9=1¢ and use a partial-
wave expansion in the relative momenta:

(kks | £(2) | ka'ke’)
=8(K—K")(1/27%) i Qi+ Dh(kE, 2—1K?)
XPik-E), (213)

where 2k=k;—k;, K=k;+k;. Units z=m=1 are used
throughout.

REINER
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Defining v;(kk’) in a similar way we observe from the
second identity (2.12) the following spectral decompo-
sition of ; (see, for instance, Ref. 14):

gn(k)gni (k)
z+5nl(2)
2 r*h(kg, ¢+ieh* (K, ¢+ie)
+- / ¢ dq.
0

z—¢*

Li(kE 2) =0, (RE )+Zn,“

™

(2.14)

gn1(k) above is the bound-state form factor

g (B)=— (-t ew) / )Ry, (2.15)

Ji(kr) and i being the unperturbed and perturbed
radial wave functions. After noticing that (2.14) dis-
plays the analytic behavior of #; in 2, we turn to a calcu-
lation of the first cluster coefficients.

III. THE FIRST THREE CLUSTER CO-
EFFICIENTS FOR A BOSON GAS

All matrix elements of U,BE, Eq. (2.9), contain parts
exclusively made up of operators U;. Since U; does not
contain the interaction, their contribution gives the
cluster coefficients of an ideal boson gas. These read, in
terms of the thermal de Broglie wavelength A= (2#8)'2,

bno= N2,

b= b1,oBE.

(3.1)

The second cluster coefficient depends only on two-
particle dynamics. The well-known exact Beth-
Uhlenbeck result!

ba=bz,o+22\" 3 (2i+1) {Z efemt®

l,even n

1 o ds,(k)
+- f e—ﬁwd/e}, (3.2)
o dk

m

expresses by in terms of €,;®, the binding energy of the
nth bound state of the relative motion of a pair, and
8:(k), the scattering phase shift—both of the partial
wave [ .

We now turn to the third cluster coefficient b3, which
by Egs. (2.5) and (2.9c) invites the following
decomposition?®:

b3=bs,0+b3,1+b3,2,

with b;,0 given by (3.1).

bs,1 in (3.3) comprises all 3-particle correlations due
to a single pair interaction with a third particle being
only statistically correlated to the pair. One may

(3.3)
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readily verify that

bs,l"—'% 11,1__1’11‘)o V_l///dk1dk2dk3<l(gl U]]kg)

X {(kiks| Us®| kiko)+ (kski| US| kiks)} .

The cluster operators Us appearing in (3.4) can now
be reduced by means of Egs. (2.3), (2.4), (2.11), and
(2.13) to partial-wave ? matrices. Performing all but
one k integrations, one is left with

(3.4

0

b3,1=28\"83%271 37 \2l+1)

l,even

1
Bdbe— 198k
2w

iz(kk,z)

Xf e s dz. (3.5)
c (=)

Equation (3.5) is a first example where one inter-

mediate bound state may occur. The part of the contour

to the left of the branch point =0 of both f; and the

denominator may be considered separately, and leads
by way of Eq. (2.14) to

b3, B8y =20\"33"%27~1 3" (2141)etbem®

l,even

0 0 2
X / dk ke ‘”‘”WI: / jz(kr)\hn(r)r2dr] . (3.6)
0 0

The continuum part of 3,1 can be rewritten in a non-
singular form which is convenient for an actual
calculation!®:

b3,1"=24)\_33"3’27r—1 Z (2l+ 1)

l,even

° B
x[ f e*(4/3)5’°2k2dk{ze“l(") sing; (%)
0

1 r ® Im[i; (kk, k2+1,e) —fl (kk, x+l€)]
Lo

x—k?
Xe—ﬁ”‘dx} :I , 3.7

where we have used

bk, k*-ie)= — k1™ sing, (k). (3.8)

The most interesting part of &3, Eq. (3.3), is 83,2 in

which dynamical three-particle correlations are con-
tained. Again one finds from Egs. (2.5), (2.9¢), (2.4c),

16 Expressions similar to (3.6) and (3.7) result in a treatment of
the second cluster coefficient along these lines. Whereas the bound-
state part is readily reproduced, no direct evaluation of the con-
tinuum part of (3.2) has succeeded (Ref. 6). At any rate, b;,; can
in principle be exactly calculated for any temperature.
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(2.3), (2.10), and (2.11)

ba 2—11m —/'//dkldkzdka——

X / ez 3 (P (kikoks) | Gs¢ | kikoks). (3.9)
¢ P

Here we have introduced®
G3*=G3—2 o G3,a+2GY, (3.10)

the connected part of the three-particle resolvent, in
terms of G3, G3°, and

G3,a (Z—Ha —’Ua)_l (3.11)

The latter is the resolvent of a three-particle system
interacting only through a single pair interaction 7.

It is just the connected operator G3° which has ex-
tensively been studied by Faddeev, Weinberg,©
Lovelace, and Rosenberg.!? Defining a particular 3-
body scattering operator #, by

G3,u= 630[1+taG30:| ’
one finds for G3° [Eq. (3.10) by means of (2.11)]

(3.12)

G*=GP(Ts— > o 1)GSL. (3.13)
With Faddeev we write
T3=%aTa, (3.14)
with each component 7, satisfying
To=vaF2.GT
=l +1.Gs" 3 Tp. (3.15)
fra

Then b3, can, by means of (3.13) and (3.15), be cast in
a form containing only #, and the solutions of the
Faddeev equations (3.15), viz.,

lim “///dkldkﬂkr— dz 8%
V-0 6V ¢

2 (P(likoks) | 30 8.G® 3 Tg|kikoks)
P B#a

X
I . (3.16)

Regarding the kinematics we shall, here and in the
ensuing developments, keep as close as possible to the

notation of Lovelace® Define a center-of-mass
momentum

b32

1
P=;/—6(k1+k2+k3) 5 (3 17)

and, further, three palrs of additional momenta, which
are, for each pair 47, its relative momentum

pi=3(ki—kj), (3.18)
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and q;;, the momentum of the remaining particle with

respect to the center of mass of the pair:
ai;= (1/2V3) (ki+k;—2k;) . (3.19)

The index ¢j will again be replaced by «, and the set
P, p., q. can be used interchangeably for any «. For
instance, if a=1 and =2,

Ps=—3Pet35V30,

3.20
9= —3V3pa— 3. (3.20a)

In fact, any two momenta out of the set pa,q.(a=1,2,3)
can be chosen to be independent, and we have for
the case chosen above

Poa=— (1/\/3)‘112_ (2/\/3)(],8 )
ps= (2/V3)q.— (1/¥V3)gs.

It is sometimes convenient to use dependent momenta
instead of lengthy expressions like (3.20a) and (3.20b).
We shall adhere to Lovelace’s convention: Sets of more
than two momenta carrying the same number of primes
are linearly dependent. The kinetic energy Hs°, for
example, can be expressed as

HY=P4pl+q.'=P+pi+as.

We now return to the specific matrix elements appearing
in (3.16). It is permissible to redefine for each element
of the sum o the most convenient set P,p,q. It is then
readily seen that the six states P(kiksk;) may, for fixed
P, be specified by the sets Z=pa.da, F=psds, Z=p,ay. Inte-
grating out the center-of-mass momentum one finds for

(3.16)
1 f e b
i J ¢ (2= pa’— )

(3.20b)

(3.21)

b3,0=22\"3 f apedq.—
2w

X <El taGl’oo ﬂz: Tﬁl Pa%) . (3.22)

We denote by |Z) the state vector

I'E):;{ [pyay)+ | — P10} (3.23)

again with p,, q, combinations of p, qqa.

As above with b3,1, we first discuss the contribution of
bound states. Three-body bound states will appear
whenever the determinant of the matrix resolvent of the
Faddeev equations vanishes, i.e., when

1 —123Gs"  — 123G
Ag)=|—tnGy 1 —131G?|=0. (3.24)
—123Gs®  —1asG° 1

Any method which leads to a solution of the Faddeev
equations (3.15) will also make possible a solution of
the eigenvalue equation (3.24). Having thus in prin-
ciple determined the spectrum —e,®, we may assess
their contribution to &3,2. Again we consider the part of
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the contour C which consists of small circles around
z=—¢,®. The contributions of those poles are of course
the same as those from 73 directly. Just as in the two-
body bound-state contribution of &s,1, (3.6), one con-
cludes that the 3-body counterparts read, in terms of
the bound-state vectors |¢,3),

63’2]353:22)\—3 E 5'9"(3)//dpad%

X E ") s° | Palle) -

A further evaluation of (3.25) requires a detailed
analysis of the symmetries of the wave function ¢,®,
for instance, its reflection properties.

Far more complicated is the remaining part. One may
note that from its definition (3.12), ¢, is seen to be re-
lated to the two-particle scattering matrix ¢ (2.13) as
follows:

(3.25)

(Pl | ta(2) l P./q.")
(2l+1)

=6(qa—'qa,) lz ila(i’a?a’; z_qaz)Pla(ﬁa'ﬁa,)'

22
(3.26)
When substituted into (3.22) this gives
1
V'32=8r"\" X | dpadqudps’dq./dp’— P e F*

lama e c

o 1R T e BVl 2= )V ane B
(z - Paz_ qaz) 2 (z - Palz_ qa,2)
X (P4 | ﬁ; T5(2) | pata). (3.27)

After using conservation of total angular momentum
one has exhausted all possibilities for further reduction.
Then one will have to solve for the matrix elements of
T which satisfy integral equations in three variables.
Even when known, (3.27) is still extremely complicated.
But in principle one has in the results of this section all
the ingredients of the third virial coefficient for all tem-
peratures expressed in terms of the off-energy-shell ¢
matrix and the solution of the Faddeev equations.

IV. SEPARABLE-~MATRIX APPROXIMATIONS

The task of solving coupled integral equations in
three variables is too formidable for present-day com-
puters. One has therefore to invoke approximations,
which to the best of our knowledge have so far all
consisted of the retention of some separable part of &.
A ¢t matrix separable for all z is exact only if the inter-
action itself is separable. However, one notices from
(2.14), the spectral decomposition of £, that the residue
of ¢ factorizes at bound-state poles, which is in fact also
true for resonances.!"** In particular, Lovelace justified
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the use of a separable ¢ matrix provided the bound-state
or scattering energy of the three-particle system is in
the neighborhood of a dominant singularity. The satis-
factory description of #-d scattering and the H? binding
energy using nucleon-nucleon scattering data and the
energy of the bound and virtual states in d shows the
expediency of such a simple choice for certain static
three-body problems.

An application of the Faddeev techniques to statisti-
cal physics puts more stringent requirements on an ap-
proximation. It should be borne in mind that it is not
G35 but connected parts of the partition function one
needs to calculate. The operation that links the two is
a weighted integration over the energy variable. What-
ever the approximation, therefore, one should try to
obtain a ¢ matrix close to the exact one over as broad an
energy interval as possible.

We have discussed elsewhere! the merits of a number
of separable ¢ matrices which include all poles and reso-
nances for a given partial wave and which can be applied
in the Faddeev equations without undue increase of the
number of channels. Those £ matrices should therefore
give a correct description for relatively low values of
the energy parameter. The weighting function =82 will
favor those values provided 7' is low enough. As a
result, the validity of calculations of B; based on sepa-
rable ¢ matrices will be limited to alow-temperature
region, which can, however, be far wider than in expan-
sion approximations (see below).

Our starting point will now be a £ matrix assumed to
be of the form

(pa|i(2)|p'q')=6(q—q") ZZ oin(D, 2—¢)om(p’, 2—¢%)
=3(q—q')(2/7) ZZ VimB)h(p, 2—¢%) (4.1)

XY um*@W(P, 2= )

All approximations for ¢ we have in mind will have poles
and resonances, as well as residues at these singularities,
like the exact ¢ matrix. We now show that the approxi-
mation (4.1) leads to more tractable expressions and
start with the three-body bound-state contribution
(3.22). The following is a generalization of the single-pole
procedure used by Phillips.” The bound-state wave
function |¢?) is a solution of the homogeneous integral

equation
[¥3)=G5*Ts|¢?). 4.2)
With Faddeev we expand [¢3):
=% IV, (+3)
each of the components |¢,) satisfying?
[Va)=Gta 2 |¥5). (4.4)

B

17 A, C. Phillips, Phys. Rev. 142, 984 (1966); and to be

pubiished.
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Consider the amplitude {p.qq|¥.), which by means of
(4.1) may be written as

(Pala| ¥ )= — (¥4 po+ g
X Z Olymg (pa; —e®— Qaz)
lama

X / APe/T1yme (Da — e —0,2) (P ¢ | ﬂz ¥s)
o

=— (D poHg.9
X Z Ulama(Pa’ - 6(3) - q€'2)
lama
X (qa I Qlama> .

Next consider the amplitude {p.q.|¥s), which by means
of (4.4) is seen to satisfy (85%a)

(paqa l ‘/’ﬂ> = *%\/3 (5(3)+pa2+4a2)-1

XIZ a18ms(Ps, — €®—qa*) (| Qupmg), (4.6)
BmB

(4.5)

where pg, qg are the combinations (3.20a) in terms of the
independent momenta pe, q.. From (4.5) and (4.6) one
establishes the homogeneous coupled integral equations

102 X / (o] Brametyms | 45')

X{a6'| Qugms)das’ -

The quantities & are the following functions of the in-
dependent momenta a, qs:

(4.7)

(‘Ial Blama,lgmg (Z) l qs)

V3 G1uma (D 2— qaz)a'lami) (Ps, 2—q5%)
= (1 - 3«13)_2'

4.8
P (4.8)

3 is a generalization of the potentials Z introduced by
Lovelace® which describe the interaction between the
bound or resonating systems in channels o and 8. The
set (4.7) serves as an eigenvalue equation, and the de-
terminant of its matrix resolvent replaces (3.24) in the
separable approximation. Once solved, (4.5) and (4.6)
yield the amplitudes which by (3.23), (3.25), and (4.3)
are seen to enter the three-body bound-state contribu-
tion. For its evaluation one needs integrals of the type

Ia= / APalo{Dalle| Ya){ Wa| Della)t We| — Pala)}

2
== 5

T even
M\

/ / D" APaga’da| i (Pay — €® —g.2|?]

X{ga | Quama) |?;  (4.9)
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as well as

Iaﬂ=//dpadqa<paqalwﬁ>

X { <‘b3| paqa>+ (‘l/ﬁl - pa‘la)} ) (410)
and
Ig,= f dPadaa{psas|¥a)

X{<¢ﬂ‘ paqa>+ <¢ﬁ' _paqa)} . (411)

Unlike the result (4.9), one cannot give I,g, Ig. in
closed form without first expressing pg, qg in terms of
Pa, 4o in (4.6). But clearly, whatever the form for ¢ used,
only a double integral will result. Substitution into
(3.25) leads to

bs.zBS“=22)\_3Z eﬂe,(ﬂ)//pazdpaqaqua:; Ig,. (4_12)
v Y

Next we will be concerned with the reduction of 53,2,
Eq. (3.27), which will require a solution of the Faddeev
equation (3.15), but now under the assumption (4.1)
for £. Consider

(P’ | T ‘ Pele)
=3 Gtama(Pa’s 2= §a?) [8 (Qe— Ge") 0 1oime (Pary 5— )

lamea
Tlama (e, 5—a'?) (Pe’" Q" | > T l Polla) I
X / dp." ore

/! /
Z_p a2_ qa 2

(4.13)

We call the last integral {q.’| Ri m,(Pals)); from (3.15)
it is seen to satisfy

(9.’ I Riyme (Palla))

=23

lama

dq’ﬂ(‘l’al Flamaylgmg [ q's)

X [0 tama (Patle) + (a5 I Rigmg (0295))]. (4.14)

We assume that (4.14) has been solved and find,
upon substituting (4.14) into (3.27),

Y g\ Z f/d P 1 e 82 p

2= A~ P qa_f-__—— 2
> 1gmp 2mi J ¢ (3= pa’—ga?)?

X Z {o'lama(p'h 2_972)+°'la7na(_1’1a 2_972>}

b

X <q’)' I Rlama (paqa)> . (4: 15)

Notice again that angular integrations for the y=a part
of the bracketed expression could be performed ex-
plicitly. Regarding the remaining part, the same remark
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is in order as was made above for the bound-state
contributions.

The resulting expression for b3/, Eq. (4.15), is a
three-fold integral. Two variables will be p,, ¢., the
third some real x as in (3.7). Again we find that after
solution of the Faddeev equations we are left with a few
feasible quadratures.

Before closing this section we wish to outline the
necessary steps in an actual calculation of the third
virial or cluster coefficient. One starts, of course, with a
determination from the second virial coefficient of the
parameters characterizing a potential well of given
functional shape. In the case of He? such a well will
just produce a bound state or not. We wish to stress
that this is actually immaterial for the following step,
namely, the choice of some separable ¢ matrix associated
with the two-body potential. The approximate f matrix
changes continuously if the bound-state pole moves to
the neighboring unphysical sheet. Its contribution
there will be considered as important as that of a truly
bound state. This observation makes it necessary to
investigate whether additional resonances exist in other
partial waves.

A choice

)2k’
(ki) [y~ 08D

R (4.16)
with g eventually z-dependent in order to satisfy off-
energy-shell unitarity,'* would be the simplest conceiva-
ble. One then has to solve the partial-wave integral
equations (4.8) and (4.3), after which the calculation
of the bound-state and continuum contributions (4.9)
and (4.15) is reduced to repeated quadratures. Calcula-
tions along these lines are in progress.

V. DISCUSSION

We presented above a theoretical framework for the
calculation of the third virial coefficient of a boson gas,
which incidentally can be generalized to any virial co-
efficient of a boson or fermion gas. Of the three cluster
coefficients which determine the third coefficient, the
first two are well-known expressions valid for any
temperature.

The third cluster coefficient contains three-particle
correlations of statistical, dynamical or mixed nature
The first is of course the expression for an ideal gas. The
mixed part, on the other hand, though containing only
the interactions between a single pair, is already of non-
elementary nature. Its magnitude may be expressed in
terms of a single off-energy-shell two-body scattering
matrix which is in principle calculable. The possibility
of a two-body bound state offers no difficulty, and its
contributions can in fact be isolated. We note that since
no approximation is involved, the mixed correlation
term can also be calculated for any temperature.
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The major stress in this paper lies on &;,5, the dy-
namical part of the third cluster coefficient, which em-
bodies all interactions except the single one contained
in the mixed term. It has been shown that the Faddeev
theory for the three-body scattering problem provides a
closed formulation of the dynamical correlation
problem.

In principle all there is to be done is the solution of
coupled integral equations and several quadratures.
Though conceptually simple, the computational diffi-
culties are enormous and one has for the moment to
resort to approximations. It is for instance simpler to
solve the Faddeev equations for any factorizable two-
body off-energy-shell scattering matrix. The corre-
sponding theory of the third cluster coefficient has been
discussed and its validity for low temperatures seems
assured.

It is appropriate to compare the Faddeev approach
with the application of the Lee-Yang theory of cluster
coefficients by Pais and Uhlenbeck? and by Larsen.* We
have already discussed the unmistakable advantages of
the former, which is an exact theory in what appears as
an essentially closed formalism. None of the inherent
difficulties in series expansions, like slow or dubious
convergence in the presence of bound states, appears.
The Faddeev approach, for instance, treats in a per-
fectly natural way two- or three-body states if present.
One and the same formalism is used for two-body
forces which are repulsive, too weak to give binding
but sufficient to produce a resonance, or for attractive
forces. This is in constrast with the formalism of Pais
and Uhlenbeck, which requires different treatments for
qualitatively different binding properties of the
interaction.

Guided by the exact theory of the second virial co-
efficient in terms of bound-state energies and scattering
phase shifts, Pais and Uhlenbeck?® posed the question
whether all virial coefficients may be determined from
scattering data. In fact already the multiple-scattering
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expansion (and therefore also the binary-collision ex-
pansion) provides a hint: The basic element in the
theory is the off-energy-shell scattering matrix, which
apart from special values of momenta and energies is
not measurable. One learns, however, from the very
example of the second virial coefficient that the argu-
ment is inconclusive. To our knowledge it has as yet not
been demonstrated how the known expression for the
second cluster coefficient results if one starts from a form
in terms of a off-energy-shell ¢ matrix.!® It would repay
the effort to find the manipulations leading to the known
answer. It may teach us how to compute other cluster
coefficients or parts of them in terms of quantities on
the energy shell in spite of their appearances as func-
tionals of off-energy-shell scattering matrices.

Note added in proof. B. Baumgarth has recently ex-
pressed the 2 integral in (3.5) in terms of the ¢ matrix
on the energy shell and its derivative.

It is remarkable that the separable approximations
discussed actually provide in some remote sense an
answer to the question of Pais and Uhlenbeck. The
elements one retains in a separable ¢ matrix are in
essence known and consist of energies and form factors
of bound states and resonances. The latter may be con-
sidered as measurable properties of the off-energy-shell
¢ matrix, to be contrasted with phase shifts, which
follow from ¢ on the energy shell. This holds for a simple
choice [Eq. (4.16)] as well as for more sophisticated
ones." If is further satisfactory to see that nearby singu-
larities on the second sheet, through their energies,
widths, and resonance form factors, play a role equiva-
lent to their bound-state partners.
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