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Ground State of Liquid Helium —Boson Solutions for Mass 3 and 4t
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The ground-state properties of a system of liquid He and of an artificial mass-3 boson system are cal-
culated by a variational procedure employing a Jastrow-type trial wave function in conjunction with the
Kirkwood superposition approximation for the three-particle distribution function. The parameters in a
Lennard-Jones 6-12 potential are determined in a self-consistent manner and the energy, pressure, velocity
of sound, pair-distribution function, and liquid-structure function are calculated as functions of density.
The agreement between the theoretical and experimental results is good.

INTRODUCTION

'HE ground-state properties of a boson liquid can
be calculated by a systematic procedure employ-

ing a Jastrow-type trial wave function in conjunction
with the Kirkwood superposition approximation for the
three-particle distribution function. The calculation
employs a variational process in which the pair-distri-
bution function is the varied quantity. The Bogoliulov-
Born-Green-Kirkwood-Yvon (BBGKY) equation is
used to provide a one-to-one correspondence between a
pair-distribution function and a Jastrow-type wave
function. The procedure yields unambiguous results in
the sense that the optimum pair-distribution function
determined by 6nding the minimum value of the total
energy satisfies all available necessary conditions implied
by the connection between a pair-distribution function
and a many-particle wave function.

The calculation of the ground-state properties of
liquid He4 and the ground-state properties of an arti-
ficial mass-3 boson system interacting through the same
potential is reported in this paper. The potential is a
Lennard-Jones 6—12 potential the parameters of which
are calculated in a self-consistent manner.

The mass-3 boson results are needed in a calcula-
tion of the ground-state properties of liquid He' by the
method of correlated basis functions. ' '

The two- and three-particle distribution functions
are useful in describing the properties of such a system.
These functions are dedned in terms of the trial func-
tion, %(rr, rs, r~) as follows: The two-particle func-
tion is given by

(rrs) =p'g(rrs)

&(&—1)fI+(rt '' r~)I'«s «s
(2)

fl+(rr, " r~)l d« "drN

and the three-particle function by

P~ l(1,2,3)=p g&@(1,2,3)

1V(X—1)($—2)f I@(rt, r~) I'dr4. dr~
~ (3)

fl+(rr, " r~) I'drr

g(r) is the "radial" or "pair" distribution function which
is directly related to the experimentally measurable
liquid-structure function S(k). The normalization of
g(r) as determined from (2) is

p [g(r)—1]dr= —1,

where it is assumed that g(~) = 1.The liquid-structure
function can be written

BASIC RELATIONS

Consider a system of X spinless bosons in a volume 0
with the Hamiltonian

S(k)=1+p Lg(r) —1je'~'dr (5)

(6)+(rr, . rg)=g el"'"*"

A trial wave function of the Bijl-Dingle-Jastrow

(1)
(BDJ) type:

Of interest here are the ground-state properties of this is assumed for the ground state of the system. The
system in the limit E~~, Q~~, while the density potential is taken to be a sum of two-body interactions
p= 1V/0 is held constant.

V(rr, rs, r~) =P v(r;,),*Present address: Solid State Science Division, Argonne Na-
tional Laboratory, Argonne, Illinois.

t Supported in part by the U. S. Air Force Once of Scientific
Research under Grant No. AFOSR-62-412 and the National
Science Foundation under Grant No. SP-3211.

F. Y., Wu and E. Feenberg, Phys. Rev. 128, 943 (1962).' E. Feenberg and C. W. Woo, Phys. Rev. 137, A391 (1965).' C. W. Woo, Phys. Rev. (to be published).

where v(r) is a Lennard-Jones (L-J) 6 lfunction. For-
such a potential the boundary conditions on N(r) and

4 R. Jastrow, in The Many-Body Problem, edited by J. Percus
(Interscience Publishers, Inc. , New York, 1963l.
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g(r) are

and

u(r) = —~ at r=0,
u(r) =0 at r= ~,

g(r) =0 at r=0,
g(r) =1 at r= oo.

(8)

measured quantity is the liquid-structure function S(k).
This function has not been measured over a sufficiently
large range of k values to allow an accurate determina-
tion of g(r).s I Furthermore, experimental data are
available only over a limited range of pressures and
only for temperatures above 1'K.

Using the BBGKY equation the expectation value of
the kinetic energy is writte

Using Eqs. (6) and (2) the expectation value of the
Hamiltonian in the ground state can be expressed in (T) N (p/8M)(J +J )
terms of g(r) and u(r) as

(»=(T)+«),

(T)=N p (A'/8M) g' (r)u'(r) dr,

(U) =-,'Np g(r)v(r)dr,

([g'(r)] /g(r))dr,

(1 ) Js= —p g'(r12)«s [g(rss) —1]g(r13)u (r13)

X cos (12,13)dr, .

(the prime denotes differentiation). If g(r) is known,

(U) can be calculated immediately; however, the cor-
relation function u(r) must also be known to calculate
(T). The BBGKY equation' in the form

g'(r12) g(r12)u (r12)

This division is useful in estimating the accuracy of the
calculation. All the uncertainty introduced into (T) by
the use of the KSA is contained in the term J~.

An extremum principle introduced by %u and Feen-
berg' is useful in devising a rapid numerical method for
solving the BBGKY equation. Equation (11) is the
Euler-Lagrange equation for the functional

+p [gs" (1,2,3)—g(r»)g(r»)] cos(12,13)drs (11) J g(„„)[u(r„)]2dr +2 g (r )u (ri )dr

can be used to derive a u(r) from a given g(r) The.
function gqi'i(1, 2,3) is the Kirkwood superposition ap-
proximation (KSA) for the three-particle distribution
function:

p g(r12)g(r23)g(r31)u (r12)u (r13)

)&cos(12,13)drsdrs. (15)
The extreme value

gk (1 2 3) g(rl&)g(rrs)g(rs3). (12)
g'(r)u'(r)dr (16)

A discussion of the accuracy of the KSA as applied to
liquid He' and a comparison with an alternative approxi-
mation for the three-particle distribution function has
been given by Jackson. '

Abe, "' who first applied Eq. (11) to calculate the
ground-state properties of liquid He4, obtained an ap-
proximate solution to the equation and used an experi-
mentally determined g(r) in his evaluation of (H).
Abe's approximation [giving u(r) as a functional in

g(r)] was later recognized as being identical with the
hypernet ted-chain approximation.

Wu and Feenberg' (WF) calculated the ground-state
energy of liquid He' by solving Eq. (11) exactly on a
high-speed computer. They also used an experimental
g(r). The accuracy of calculations which use experi-
mentally determined pair-distribution functions is
limited by the lack of knowledge of g(r) for very small
and very large values of the variable r. The directly

~ F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).' H. W. Jackson, Ph.D. thesis, Washington University, 1963
(unpublished).

7 R. Abe, Progr. Theoret. Phys. (Kyoto} 19, 57 (1958}.
8 R. Abe, Progr. Theoret. Phys. {Kyoto) 19, 407 {1958).

is attained when u(r) satisies Eq. (11);consequently

(T)=Np(h/8M) J.„t,. (17)

P= '(T)/N 'p' g (r)-rv'(r)dr, —- (18)

giving the pressure in terms of the pair-distribution
function g(r). For a Lennard-Jones 6-I potential,

v(r) = e*/(I —6)[6(r*/r)' —l(r%)s],

' D. Henshaw, Phys. Rev. 119, 14 (1960).
"W. Gordon, C. Shaw, and J. Daunt, Phys. Rev. 96, 1444

(1954).

Thus the expectation value of the kinetic energy is ex-
pressed in terms of the extreme value of J.

A description of how this extremum principle is used
in this calculation to solve the BBGKY equation is
given in Appendix A.

Application of the virial theorem' yields the equation
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Eq. (18) becomes

P= , (T—)/1V —— (6lr*'C 6l—r*'C ),
3 (l—6)

where

C =2s p g(r)r' "d—r
0

(21)

The potential determined for He4 is also assumed to
be appropriate for the description of an artificial mass-3
boson system. The ground-'state properties at mass 3
are computed, .as described above except that the inter-
action constants e* and r* are not varied.

RESULTS: MASS 4

In terms of the C, (H) is given by

(H)/X= (T)/X+ [e*/(l—6)][6r*'C~—lr*'Cp]. (22)

Method of Calculation

The calculation begins with the construction of a
family of trial functions g(r, n, ) representing possible
approximate pair-distribution functions. The trial
functions are parametrized by the set of variables a;,
i = 1, 2, . s. The BBGKY equation provides a relation
between a g(r,n,) of this family and a BDJ-type wave
function. The expectation value of the Hamiltonian is
expressed in terms of g(r, n;) and u(r, n, ) as shown in
Eq. (10). A best pair-distribution function, the cor-
responding best u(r, n;) and best value of the energy are
all determined by the minimum value of (H) in the n;
parameter space.

The parameters ni are thus determined by the s
equations

The explicit formula for the family of trial functions
used in the calculations is

where
g(r) =go(r)+5gr(r), (24)

and

p [gp(r) —1]dr= —1 (25)

bgt(r)dr=0 (26)

(a) gp(r) = (C+1) exp[—(d/r) "]—C
Xexp[—(1+x)(d/r) "]

and

(b) bgr(r) =A {(d/r) exp[—(1+y) (d/r) "]
—B(d/r)" exp[ —(1+q) (d/r)'P]) .

The parameters in the set o, i are g = 2xpd', 2', A, y, q, m,
e. The parameters C and 8 are fixed by the normaliza-
tion condition [Eq. (4)) in the form

rI (H(n, ))
(23) Equations (25) and (26) yield

C= (1.155574/rt —1)/[1—(1+s)"]
=0, i=1, 2, s,

~o'i a,=a;
(27)

I'((m —3)/10) (1+q) '" '& "P
8=

I'((u —3)/10)(1+y)'" ""' (28)

The exponential factor in the trial function is sug-
gested by the analytical form which fits the first rising
slope of the experimental g(r)'.

Only those g(r,n;) which satisfy the following condi-
tions are considered as trial pair-distribution functions:

(a) g(r) &~0 for 0&r& ~;
(b) S(k) &~0, for 0~&k& pe;

(c) s(0) =o; (29)

(d) 4s p'~' [1—g(r)]rdr&2. 8887.

Conditions (a), (b), and (c) are obvious physical
requirements. Condition (d) is the "Coulomb in-

equality" recently derived by Feenberg. "A pair-dis-
tribution function which does not satisfy (d) cannot be
generated by a wave function. This condition is useful
here since the wave function generated from g(r) by

"E. Feenberg, J. Math. Phys. 6, 658 (1965).

where a.; is the optimum set of the parameters.
The parameters e* and r* in the Lennard-Jones

potential are determined in a self-consistent manner so
that the minimum energy as a function of density and
the associated density coincide with the experimental
values for liquid He' at T=O'K. Equations (20) and
(22) with p=0 atm, p= pp and (H(n ')) = eplV (ep and pp

being the experimental values of the ground-state
energy per particle and the equlibrium density for
liquid He' at T=o'K) along with Eq. (23), provide a
set of s+2 equations which are solved simultaneously
to yield ~*, r* and the optimum set of s variational
parameters o.;. Because of the complexity of the
equations, the solutions must be found by an iteration
procedure in which e* and r* are initially assumed
known. Here the values determined by gas phase calcu-
lations provide an initial input.

Once e* and r* are known the variational procedure
[the solution of Eq. (23)] is repeated at different densi-
ties to yield the ground-state energy as a function of
density. From this "equation of state at T=O'K, " the
pressure, compressibility, and velocity of sound are
calculated as functions of density. The optimum pair-
distribution function, liquid-structure function, and
correlation function are automatically obtained at each
density.
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TAszE II. Ground-state energy per particle and optimum varia-
tional parameters as functions of density for the He4 system.

-l.OC

FIG. 1. Ground-state energy per particle as a function of density
for the mass-4 system, H =experimental energy at 8=25 atm.

way of an approximate equation need not necessarily
be capable of reproducing the starting g(r).

Using Eq. (24) the function C1 is

C(——21rp g(r)r' 'dr-
/l-3y- C

I
(C+1)—

10d' k 10 / (1—+s)(' 0)/10

F((m+I—3)/10) I'((@+I—3)/10)
A —8 (30)

(1+y) (en+1—0) /10 (1+q) (++1—0) /10

The results given here are for /=12 (corresponding
to a 6-12 L-J potential); some results for /=22 are
discussed ln Appcndlx B.

Graphical analysis indicated that m=16 and m=8
might be close to optimum values for these parameters.
Thus initial calculations were performed with ns and n
6xed at these values. Subsequent variation of m with e
axed at 8 yielded slightly improved results but not im-

plovcd enough to warrant further calculations Involving
the variation of e. The 6nal results show minimum en-

ergy for m=6.
The potential parameters determined by the pro-

cedure discussed in the previous section are given in
Table I. In computing e* and r* the experimental values
of ps and eo were taken to be 00———0.97X10—"erg/atom
and po ——0.0218 A ' (see Appendix J3). The quantity Q*
is a measure of the strength of the interaction and is

TAsLz Z. Parameters c~ and r'fp for a Lennard- Jones
6-12 potential.

related de Boer's"" quantum parameter which enters
the theory of corresponding states. The values of e*

and r* calculated. by WF' using the experimental g(r)
of Goldstein and Reckie, '4 and the values given by
Hershfelder and Curtis" and Haberlandt'6 are also
shown in Table II. In the latter two references the
parameters are 6xed by 6tting the theoretical second
virial coe%cient to the observed behavior of the vapor
phase.

The ground-state energy per particle e(p) is shown in
Fig. 1 as a function of density. The optimum parameters
for each calculated point are given in Table II. A plot
of the numbers in Table II shows that the variational
parameters are smooth functions of density. Figure 2
and Table III exhibit the pressure as a function of
density. The pressure curve is calculated in two ways:
(a) from the relation I'=p'(()e(p)/()p) by numerical
differentiation of the e(p) versus p curve of Fig. 1;
(b) from the virial theorem as expressed by Eq. (20).
The smooth curve comes from (a) and the points from

20
PRESSURE

ATM

)8

I"' 2.l %.2 23 2.4 25 - 2.6 2.7 2.8
p(to A )

Calculated by

Massey
Wu and Feenberg&
Hershfelder and

Curtisb
Haberlandt'

a See Ref, 5 ln tegt,

1.409
1.61
1.411

& See g,ef, 15 ln &erat,

Q@
(@nits of
hleeres/h')

7.434
8.52
6.96

(~)
2.974
2.975
2.869

2.929

o See g,ef, 1$ ln tegt,

I"xo. 2. The pressure as a function of density for the He' system,
o=points calculated from virial theorem; ( ) 1=curve 1
obtained by numerical differentiation of e(p) versus p curve;
(-———) 2 snd (———-) 5, experimental data from Keesom
(see Ref. 17) at T=1.25'K and 105'K.

"J.de Boer, Physics 14, 159 (1948)."J.de Boer and R. Lunbeck, Physica 6, 658 (1965)."L.Goldstein and J. Reekie, Phys. Rev. 98, 85'/ (1955)."D.Hershfelder, C. Curtis, and R. Bird, Mofeee/fur Theory of
I.iquzfgs cod Guses {John Wiley R Sons, Inc. , ¹wYork, 1954)."R.Haberlandt, Phys. Letters 14, 19'/ (1965).



TAsLz IV. Comparison of theoretical and experimental
pair-distribution functions.

Source

-Tempera-
ture
('K)

Nearest-
neighbor
distance
r (i.)

Height Distance of
of 1st closest

maximum approach
g(r ) rt} (X)

3.0
Theoretical
Goldstein and

Reekies"
Henshavrb 1.06

3.48
3.2

3.4

1.31
1.35

2.27

a See Ref. 14 in text. & See Ref. 25 in text.

I,e )c l"2.l M 2.5 2.4 2.5 2.5 2.7
p(iosA }

Fio. 5. Ratio of kinetic to total energy, y(p) =
( (T)/(E})

for the He' system.

(b). The results from the two procedures agree to within

5% at all densities.
Also shown in Fig. 2 are the experimental data of

E versus p for temperatures of T= 1.25'K and 1.75'K as
given by Keesom. '~ There being no experimental data.
for lower temperatures, comparison with theory
(T=O'K) must be semiquantitative. Between 1.25'K
and O'K, (I}p/8T) r changes sign and becomes negative
at about 1.15'K; however, the magnitude of (BI'/BT) p
on the lower range is small compared to its average
value between 1.75 K and j..25'K. From this it appears
that the experimental I' versus p curve at T=O'K
should be very close to the 1.25'K curve in Fig. 2. On
this basis the theoretica, l results appear to decrease in
accuracy as the density is raised. This is consistent with
the calculated energy being too large at high densities.
The calculated value of e(p) at p=0.0259 A ' (on the
melting curve) is —0.875X 10 "erg/atom. The experi-
mental value is —0.917)&10-is erg/atom. "

The increase in the discrepancy between theoretical
and experimental results with increasing density can be
understood by noticing that a fixed relative discrepancy
in (T) produces an increasing relative discrepancy in

(H) as the density increases. Figure 3 shows the ratio
of the kinetic to the total energy as a function of density.

Inaccuracies in the kinetic energy result primarily from
the use of the KSA. Also the results at high densities
are not expected to be as accurate as at low densities
because the simple BDJ-type trial wave function does
not adequately represent a system under high pressure.

The velocity of sound and the isothermal compres-
sibility are calculated by numerical differentiation from
the curve of Fig. 2. In Fig. 4 results for the velocity of
sound are compared with the data of Atkins and
Stasior. " Again the density dependence of the dis-
crepancy between the theoretical and, experimental re-
sults is apparent. At E=0 atm the results differ by 3.4%
and at I'=25 atm by 9.5%. The compressibility, not
shown here, has the same general behavior.

The pair-distribution function for the theoretical
system at E'=0 atm is shown in Fig, 5.The experimental
data of Goldstein and Rccklc as glvcn by WF alc
also shown. The Goldstein and Reekie data are for
7=2.06'K under normal vapor pressure. A meaningful
comparison of the two curves should be limited to
physically interpretable attributes. The distance of
closest approach, the nearest-neighbor dista, nce, and the
relative probability of nearest neighbors (the height
of the first maximum) are compared in Table IV. These
quantities as given by Hcnshaw and: Hurst'9 are also
shown.

450

Tom III. The pressure calculated from the virial theorem
and the coefBcients Ce and Cl~ as functions of density for the He4
system.

Pressure I'
(atm)

0.00
4.01
8.78

14.24
21.05
29.13

Density p
(10~ L-3)

2.18
2.26
234
2.42
2.50
2.58

Ce
(10-3 L-6)

2.937
3.403
3.198
3.360
3.360
3.528

Cq
(10 e A 's)

3.621
3.878
4.145
4.421
4.720
5.043

200
I

I0
I

I5

PRESSURE, ATM

I I

20 25 30

"D.Henshaw anti D. Hurst, Phys. Rev. 100, 994 (1.955).

FIG. 4. The velocity of sound as a function of pressure for the
"W. H. Keesom, IIelelrN (Elsevier Publishing Company, Inc., He' system. (1) Data of Atkins and Stasior (see Ref. 18), (2)

Amsterdam, 1942). theoretical result.
'8 K. Atkins, Liquid Helium (University Press, Cambridge,

England, 1959).
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f.2

1.0
Fn. 5. The pair distribution

function g(r). (---) Represents
experimental data (see Ref. 14);
theoretical results for: 1 He', 2 the
mass-3 boson system at I' =0 atm.

04

I I I

2.2 2.6 5.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6
r (A)

definition of g(r). As the density increases the distance
of closest approach is unchanged; the nearest-neighbor
distance decreases; and the relative probability of near-
est neighbors increases.

The results for the Coulomb inequality are given in
Table V. The optimum pair-distribution functions
satisfy. thc lnequallty at cRch density.

The liquid-structure function S(k) is calculated from

g(r) through Eq. (5). In Fig. 7 the theoretical S(k)
foI' I=0 atm ls sho&n Rlong with thc experimental
data of Goldstein and Reekie. The interesting portion
of this curve is the region for k&0.8 A '. In this region
experimental points are unavailable and comparison
can only be made vnth other theoretical determinations
of S(k). The straight line in Fig. 7 is calculated from the
Feynman formula'0

Figurc 6 shows thc pair-dlstrlbutlon function Rt dif-
ferent densities. Qualitatively, the density dependence of

Results for the
He4 system

Density, p
(10~ &-3) I'

Results for the
mass-3 boson system

Density', p
(10~ &-&) V

1.64
1.80
1.96
2.12
2.28
2.44

2.18
2.26
2.34
2.42
2.50
2.58

2.466
2.515
2.556
2.585
2.594
2.599

2.584
2.587
2.602
2.610
2.615
2.617

the theoretical g(r) is exactly that found experimentally
by Henshaw' and is the expected behavior from the

S(k) = i'rk j23lC,

TwaLE V. Results of the "Coulomb inequality" condition for He4
and the mass-3 boson system, F=4rp'~'J's" D g(r)]rdr. —

I.5
I

I I I ) I I I I I I I I I I I & I I I & & I

IA t3)
l.a

I.2

I.O
Ch

0.9
0,8
0.7

0.8

0.5
0.4
03
02
O. I

0.0 I, l I I I I I I I I I I I I I I I I I I I
20 2.4 2.8 M 5.8 4.0 4.4 4.S 5.2 5.8 8.0 8.4 8.8

Pro. 6. The pair-distribution func-
tion g(r) for different densities for
He4. {1}p=0.02N 3;&; (2) p=0.0234
g ', (3) p=0.0250'. 3.

'0 R. P. Feynman, Phys. Re@.94, 262 (1954).
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l.2

l.0

FIG. 7.The liquid-structure function
S(k). (-——-) Experimental data
(see Ref. 21); (1) theoretical result
for the He4 system at P=0 atm; (2)
theoretical result for the mass-3 boson
system at P=O atm; —+ Feynman
curve.

0.8

0.6

0.4

0.2

0.0 I I t

0.4 0.8 l.2 l.6 2.0 2A 2.8 3.2 3.6 4.0 4.4 4.8

thus Axing the asymptotic behavior of g(r) ""Putt.ing
m=4 in Eq. (24) yields a subfamily of distribution
functions with the asymptotic behavior

g(r) =1+A(d/r)", m=4. (33)

where C is the velocity of sound. The local maximum or
"shoulder" in the theoretical $(k) near k=0.6A '
agrees with predictions' ""based on (i) Eq. (31), (ii)
the slope of the experimental $(k) at k=0.8 A ', and
(iii) the interpretation of observed intensity relations
in the inelastic scattering of slow neutrons in liquid He'.

The theoretical curve fails to coincide with the Feyn-
man S(k) as k ~ 0 because the theoretical g(r) does not
have the proper asymptotic behavior. Equation (31)
has the consequence that

g (r) = 1—(k/2z'pMC) r~, (32)

For A &0 this subfamily did not satisfy the Coulomb
inequality for any reasonable values of the other
parameters; and furthermore solutions to the BBGKY
equation were not found and also condition (29) (b),
$(k) ~&0, was not satisfied.

For A(0 this subfamily of trial functions satisfied
all the conditions of Eq. (29) but the energy values
obtained were larger than those for m=6. However, the
trial functions are not su%ciently general to support
any implication that Eq. (32) is not correct.

Any g (r) with the asymptotic form given by Eq. (33)
with m) 4 will yield an S(k) which is parabolic as k ~0.
However, the results of the present calculation (energy,
etc.) are unchanged if the theoretical S(k) is continued
smoothly into the Feynman $(k) for k&0.2 A '.

The appearance of the shoulder in the theoretical $(k)
can be understood by considering the derivative of S(k)
at the maximum point k =0.6 A '. Using the dimen-

O.S

I) G2X~XLG(x)-O

2) PR=cos qx —Sin qx
qx

W PGX G2X & PR

FIG. 8. Plot of integrand of

(aD(q)/aq) =0=2'

X l G(x) —17x'
0

Xfcosqx —(qx) ' sinqx7dx,

D(q) =S(ql&), G(x) =q(x~)

04

O.O

- 0.4

I l

4.0 4A

X

- 0.8

- l.2 C2)

"Allen Miller, David Pines, and P. Nozieres, Phys. Rev. 127, 452 (1962).
22%. E. Massey, Phys. Rev. Letters 12, 7i9 (1964)."J.Enderly, T. Gaskell, and N. March, Proc. Phys. Soc. (London) SS, 27 (1965).

E. Feenberg, in Lectures ie Theoretical Physics, edited by W. E. Brtttin and L. Marshall (University of Colorado Press, Boulder,
Colorado, j.965), Vol. 7, Book C.
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y g

15.00 1500
14.40 1330
13.75 1175
13.10 1030
12.50 900
11.85 800
11.25 725
10.70 660
10.15 600
9.65 550
9.15 500
8.75 450
8.40 410
8.15 380
8.00 350

(i.) q s

2.24 2.58 1.43 14 000
2.29 2.58 1.505 12 300
2.34 2.57 1.58 10 900
2.39 2.56 1.655 9600
2.42 2.56 1.73 8500
2.47 2.55 1.80 7400
2.52 2.54 1.87 6350
2.56 2.54 1.94 5400
2.61 2.53 2.01 4500
2.66 2.53 2.08 3700
2.71 2.52 2.148 3000
2.80 2.52 2.21 2350
2.89 2.51 2.27 1900
2.99 2.50 2.33 1700
3.14 2.49 2.375 1500

p. e (p) (10"
(10 ' L 3) erg/atom)

1.32
1.40
1.48
1.56
1.64
1.72
1.80
1.88
1.96
2.04
2.12
2.20
2.28
2.36
2.44

—0.3868—0.3928—03967—0.3982—0.3972—0.3926—0.3830—0.3675—0.3455—0.3175—0.2840—0.2420—0.1920—0.1375—0.0680

TABLE VI. Ground-state energy per particle as a function
of density for the mass-3 boson system.

p p I 3 0 40 5.0 6.0 70 8.0 9,0 ' IO,O l I.O
I I I I I I I I I & I I t I t & I

0.2 "
O. I

-'

. o.c
-OJ-
- 02-

u(r) - 03-
«04
- 0.5-
- 0.6-

0.7—

-0.8-
g OA I t t I 1 I I t I I I t t I 1 I

FIG. 9. The correlation function e(r) for different densities for
the He' system. (1) p=0.0218' ', (2) p=0.0250', ', (---)
calculated by Wu-Feenberg (see Ref. 5) from experimental g(r) of
Goldstein and Reekie.

sionless variables x=r/d, q=kd with G(x)=g(xd) and

D(q) =S(q/d), the derivative is written

=2g LG(x) —1]x' cosq„x—
0

sing x
ds.

(34)

TABLE VII. Comparison of results for the mass-3 boson sys-
tem with predictions from the modi6ed law of corresponding
states.

Quantity

Corresponding-
states prediction

for He''

Mass-3
boson
system

% Dif-
ference

The integrand of Eq. (34) is plotted in Fig. 8. Curve

(1) is the factor x'(G(x) —1), curve (2) is the factor
cosg x—(g x) ' sing x, and curve (3) is the product
of the two factors. The major contributions to the in-
tegral come from the regions in which g (r) is signiiicantly
different from one. As can be seen from Fig. 8, these are
the regions near the origin (the "hole"), the 6rst
maximum, and the minimum. The approach ot (g (r) —1)
to zero cancels out long-range contributions to the
integral. Thus the shoulder occurs because of the rela-
tionship between the size ot the hole in g(r), the height
and depth of the maximum and minimum points, and
the rate at which (g(r) —1) approaches zero.

The density dependence of the theoretical liquid-
structure function is entirely in conformity with the
experimental data of Henshaw. "5

The correlation function N(r) is shown in Fig. 9 for
two densities: the equilibrium density of the liquid;

(35)g(r) e (d/r)&0—

then
m(r) — P/r"— (36)

The trial form
N(r)= —Qr "

has been used Pin conjunction with the experimental

g(r) ot Goldstein and Relief to evaluate the WF'
functional J. Maximum J is found at v=10. This in

fact is why the power of 10 was assumed in the family
of trial functions used in this calculation. However,
McMillan" and Levesque'7 using correlation functions
of the form given by Eq. (37) and using Monte Carlo
techniques to evaluate the many-body integrals found

that the total energy was minimized by values of v=5

I I I l I I I

-0.05

»0.10

Io-0.15
~QJ I

-0.20

O 0.25

~-b.30

-0.55

and a density near the experimental liquid-solid transi-
tion point for He4. The integral term in the BBGKY
equation is negligible for very small r and thus, for
suKciently small r, e(r) is approximated very well by
lng(r). Since

Ground-state energy
per particle
(1.0 "erg/atoml

Equilibrium
Density of liquid

(~-')
0.0182 0.01565

—0.208 to —0.350 —0.3983 48 to 12
«oAo

O.y5 a I

IA
I I l I I l I I I I

l,5 1.6 I.? I.s I9 2.0 2.1 2.2 23 2A

p (Io 'A-')

FIG. 10. The ground-state energy per particle as a function
of density for the mass-3 boson system.

a See Ref. 18 in text.

' D. Henshaw, Phys. Rev. 119, 9 (1960).
~' W. L. McMillan, Phys. Rev. 138, A442 (1965).
'7 D. Levesque et al. (unpublished).



151 GROUND STATE OF LIQUID He 16|

Tax,E VIII. The pressure calculated from the virial theorem
and the coefficients C~ and C» as functions of density for the
mass-3 boson system.

70

Pressure
{atm)

1.33
3.45
5.91
8.78

12.1
15.8
20.5
26.89
34.6
43.90
56.0

Density
(10-' x-')

1.64
1.72
1.80
1.88
1.96
2.04
2.12
2.20
2.28
2.36
2.44

C6
(10'A ')

2.028
2.161
2.296
2.432
2.574
2.682
2.828
2.989
3.156
3.321
3.588

CIg
(10-6 ~-»)

2.476
2.677
2.883
3.095
3.315
3.53$
3.783
4.071
4.380
4.690
5.115

50

40

20

10

and v=4, respectively. Their calculations are for a 6nite
(and small) number of particles.

The density dependence of I(r) is consistent with the
interpetation of

~
y(r ~) ~'=e"&"'~' as a measure of the

direct correlation between particle pairs.

RESULTS' MASS 3

Results for the mass-3 boson system are needed to
calculate the ground, -state properties of liquid He' by
the method of correlated basis functions' (CBF).

Using the potential determined for He4
t Table IIj

variation of the family of trial pair-distribution func-
tions given by Eq. (24) is carried out to determine the
ground-state energy and other properties of the mass-3
boson system. The calculation proceeds exactly as for
He4 except that the mass is different and the range of
densities considered is different. The minimum expecta-
tion value of H is found for m=6 at all densities con-
sidered just as for the He' system. Figure 10 and, Table

55
I l I I I l I I

50

55

50

30
K
y) 25
V)
LLJ

Q.
~ 20

l5

lo

p II
l.6 l.7 I.8 I.9 2.0 2.I 2.2 2.5 2 4 2.5

~(lo A )

FIG. 11. The pressure versus density for the mass-3 boson
system; ( ) calculated by numerical differentiation of e(p)
versus p curve; Q =calculated from virial theorem.

"l.6 l.7 I.S I.S 2.0 2.l 2.2 23 2.4 2.5

DENSITY, $0 A )

Fro. 12. The ratio of kinetic to total energy, y(p) =
( (T)/(E) ),

for the mass-3 boson system.

VI give the ground-state energy per particle as a func-
tion of density. The equilibrium density has the value

pe ——0.01565 A ' and e(ps) = —0.3983)&10 "erg/atom.
We can compare these results with those of de Boer
and Lunbeck. ,""who used the Modified Law of Corre-
sponding States (MLCS) to calculate the properties of
He'. In the MLCS calculation the e6ect of differing spin
and statistics is neglected; hence, the results are strictly
applicable to a mass-3 boson system of the type con-
sidered here. Table VII exhibits the MLCS results and
those obtained here. The energy agrees fairly well but
the equilibrium density obtained here is 16% lower than
the MLCS value (experiment gives ps

——0.0164 A ' for
He'). The results of the CBF' calculation for He' indi-
cate that the value of po calculated here is indeed too
small.

The pressure is given as a function of density in
Table VIII and Fig. 11. As in the mass-4 calculation,

5.5
I I J I I ! I I I I

5.0

4.5

4.0

3.5

P 3,0
C

2.5
O

~ 2.0

l.5

l.p

0.5

p,p » 1 & I I I I I I

l.6 l.7 l.8 l.9 2.0 2.I 2.2 23 2.4 2.5 2.6 2.7

DENSITY, IO(IO If )

FxG. 13. Isothermal compressibility kz versus density for
(1) the mass-3 boson system and (2) the He4 system.
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Properties at density of He'
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(10 15 erg/atom)
Compressibility (atm ')
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—0.09 —0.069

0.27X10 ' 0.35X10 '
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TABLE X.J,~, Js, and Js as functions of density for: (A) He'
and (3) the mass-3 boson systems.

APPENDIX A: SOLUTION OF THE
BBGKY EQUATION

Density, p
(10~ L-') J. ~

(A) 2.18 484.94
2.34 502.86
2.50 529.99

415.07
430.87
447.75

Jb (JQ/ Jex&) X100

69.87 14.40
71.97 14.31
82.23 15.52

The BBGKY equation is written in terms of the
functional h(r) =g(r)ss'(r) as

h(r) =g'(r) —g(r) [g(lr' —rl) —1]h(r')

1.64
1.96
2.28
2.44

402.92
430.58
467.81
486.74

356.71
374.08
402.58
417.89

46.21
56.49
65.23
68.85

11.47
13.12
13.94
14.14

Xcos(r', r)dr'. (A1)

Equation (A1) can be solved by a direct iteration proc-
ess defined by the equation

the assumed 2.9% error in (T) causes a 6.6% error in
(P). However, at I'=22 atm a 20% error in Js causes
a 3.1% error in (T) which in turn produces an error of
9.4% in the total energy. For the mass-3 system the
same trend holds.

WF, ' using the experimental g(r) of Goldstein and
Reekie, found for He' Js/J, „,=0.065 at I'=0. This is
about half the value of 0.144 found here. The procedure
used in solving the BBGKY equation LAppendix B]
defines a quantity 6 which gives a measure of the limit
of error in J, ~ due to the numerical solution of the
BBGKY equation. A has the value 0.05%. For the
mass-4 system this produces possible errors in the total
energy of 0.10% at p=0.0218 A ' and 0.15% at
p =0.0250 A '. For the mass-3 system the corresponding
limits of error are 0.23% at p= 0.0164 A ' and 2.5% at
p=0.0244 A '.

For the mass-4 system the total error in the calcula-
tion (excluding the KSA) is estimated to be less than
1% at all densities and for the mass-3 system it is of
the order of 2% at maximum.

CONCLUSION

The results of the calculation compare favorably with
experiment. The density dependence of the calculated
quantities is especially encouraging. Since the equilib-
rium point (p=pp s(pp)=ep) for the He calculation
was fixed, the results at higher densities are the true
test of the calculation. Furthermore, encouraging results
have been obtained for the ground-state properties of
liquid, He' using the mass-3 boson properties calculated
here. Experimental data for the liquid. structure func-
tion at low temperatures ((1'K) and small values of
h (&~0.6 A ') are needed to test some of the predictions
of this calculation.

hn+1(r) =g'(r) —g(r) [g(l r' —rl )—1]h„(r')

Xcos(r', r)dr', (A2)

p1 =40r h1 (r) (g'(r)/g(r))rsdr,
0

(A3)

s) ——4x h1(r)(h-(r)/g(r))rs«+ Lf(l r' —r I)—I]

Xh1(r)h (r) cos(r', r)dr'. (A4)

Let hp(r) be an arbitrary approximate solution to Eq.
(1). Now use hp(r) in the right-hand side of Eq. (A2)
to generate the function h1 (r), and construct the trial
solution

where hp(r) can be, but is not necessarily, g'(r). After a
certain number of iterations h„+,(r) h„(r) to the
required degree of accuracy.

A better method for solving Eq. (A1) uses the Wu-
Feenberg extremum condition. It is clear that an opti-
mum linear combination of functions, h„(r), h„,(r),
' ' ', hp(r), is superior as a trial solution to Eq. (A1) than
any single function h1(r) (l(e). This same linear combi-
nation can also serve, when inserted in the right-hand
side of Eq. (A2) in place of h„(r), to generate an im-
proved 00+1fh approximation. The condition for
choosing the optimum coeflicients in a linear combina-
tion is that the WF functional J, constructed from the
trial solution, attain an extreme value.

Practical considerations limit the size of e. Here ts

was taken as 1 and the extreme value of J calculated, as
follows: Define the coefIjl.cients,
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where
h1(r) = (pp/Ppp)hp(r)+111 h1 (r)

hv(r) hl" (r) (&pv /&00)hp(r) ~

J"'=J"'+211vp v —11v'vv v,

The WF functional J constructed from hr(r) is

(A5)

(A6)

(A7)
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FIG. 15. Example of convergence of J& ) for a typical set of the
variational parameters; I=No. of iteration-variation steps.

where J(') is the WF functional constructed from hp((r).
J&'~ attains an extreme value for

and
a„=(p„/p„„)

J(&)—J(P)+ ()42r,/pr, r,)

(A8)

(A9)

This process is repeated by using h, (r) in Eq. (A2)
to generate a new function h2 (r) from which a new trial
solution

(A10)~2((r) (141/Pll)~1(P)+(22'~2'(P)

is constructed, yielding the new WF functional

J(2)—J(1)+()422'/p2'2') ~ (A11)

This procedure continues until J(+'&—J( && 8, where
8 is some accepted error in the calculation. A general
proof that J, ~ is a maximum cannot be given; however,
the maximum property can be proved for a special
class of pair-distribution functions": those subject to
the condition g(r)(1. In this calculation J, 4 is invari-
ably a maximum.

An example of the convergence of the J'I&, s to a
maximum value is shown in Fig. 15 for a typical set
of the variational parameters. En all cases J was as-

22 E. Feenberg (unpublished).

sumed to have reached a maximum when

~

(J'+"—J' ')/J' '~ X100(0.05=6. (A12)

6 can be taken as a measure of the limit of error in the
calculation of J. ~.

APPENDIK 8: CHANGE OF Sp AND /

The experimental value of the ground-state energy
per particle used in this calculation differs from that
given by some other authors. The value used here,
ep= —0.97X10 '2 erg/atom, was taken from WF. '
Atkins, ' Keesom, '7 and Bleaney and Simon" give the
value ep= —0.9938X10 " erg/atom and McMillan"
used ep

———0.988X10 "erg/atom.
Using the value given by Atkins, the results of this

calculation are changed as follows: The potential

parameters become e*=1.419X10 " erg (formerly
1.409) and r*=2.975 A (formerly 2.974). The new e*

is closer to the values of Hershfelder and, Haberlandt
Lsee Table Ij.The ground-state energy per particle for
the mass-4 and mass-3 systems is shifted almost uni-

formly (by approximately 2%) as function of density;
hence, quantities which depend on the derivative of the
e(p)-versus-p curves (pressure, velocity of sound) are
relatively unchanged. For the He4 system e(p) on the
melting curve becomes —0.894X 10 "erg/atom instead
of —0.875X10 "erg/atom as compared to the experi-
mental value of —0.917X10 '2 erg/atom. Thus the
discrepancy is reduced from 4.9 to 2.5%.

The ground-state energy per particle was calculated
for the He4 system using a L-J 6—22 potential. The
potential parameters were determined as ~*=2.519
X10 '2 erg and r*=2.758 A. The corresponding values
calculated by WF' using the experimental g(r) are
e*=2.608X10 " erg and r=2.775 A. As for i=12, the
ee given by the experimental g(r) is larger and the r*'s
are about equal.

The ground-state energy is in general larger (smaller
in magnitude) for l=22 than for f= 12, but the difference
is not signiicant. Thus, for the family of trial functions
used here i=12 gives a slightly better d,escription of
He4 at T=O'K.

~oB. Bleaney and F. Simon, Trans. Faraday Soc. BS, 1205
(1939).


