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The ground-state properties of a system of liquid He and of an artificial mass-3 boson system are cal-
culated by a variational procedure employing a Jastrow-type trial wave function in conjunction with the
Kirkwood superposition approximation for the three-particle distribution function. The parameters in a
Lennard-Jones 6-12 potential are determined in a self-consistent manner and the energy, pressure, velocity
of sound, pair-distribution function, and liquid-structure function are calculated as functions of density.
The agreement between the theoretical and experimental results is good.

INTRODUCTION

HE ground-state properties of a boson liquid can
be calculated by a systematic procedure employ-
ing a Jastrow-type trial wave function in conjunction
with the Kirkwood superposition approximation for the
three-particle distribution function. The calculation
employs a variational process in which the pair-distri-
bution function is the varied quantity. The Bogoliulov-
Born-Green-Kirkwood-Yvon (BBGKY) equation is
used to provide a one-to-one correspondence between a
pair-distribution function and a Jastrow-type wave
function. The procedure yields unambiguous results in
the sense that the optimum pair-distribution function
determined by finding the minimum value of the total
energy satisfies all available necessary conditions implied
by the connection between a pair-distribution function
and a many-particle wave function.

The calculation of the ground-state properties of
liquid He* and the ground-state properties of an arti-
ficial mass-3 boson system interacting through the same
potential is reported in this paper. The potential is a
Lennard-Jones 6-12 potential the parameters of which
are calculated in a self-consistent manner.

The mass-3 boson results are needed in a calcula-
tion of the ground-state properties of liquid He? by the
method of correlated basis functions.}—3

BASIC RELATIONS

Consider a system of IV spinless bosons in a volume Q
with the Hamiltonian

# x
H:—z—— Ar*—V(rlyrﬁy' ”rN)' (1)

=1

Of interest here are the ground-state properties of this
system in the limit N —c, Q@ —o, while the density
p=N/Q is held constant.
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The two- and three-particle distribution functions
are useful in describing the properties of such a system.
These functions are defined in terms of the trial func-
tion, ¥ (ry,re, - -ry) as follows: The two-particle func-
tion is given by

P® (r15)=p*g(r12)
_N(N_ l)f[\I’(rly : 'rN)I2dl'3' odry

S ¥ (e, - -1n)|%d1y- - -dry @
and the three-particle function by
P®(1,2,3)=p3®(1,2,3)

=N(N—1)([\7—2)f|\11(r1,- -ery)|2dry - -dry ®

fl‘l’(n,' . 'rN)]2dr1- . 'dl‘N

g(r) is the “radial” or “pair” distribution function which
is directly related to the experimentally measurable
liquid-structure function S(k). The normalization of
g(r) as determined from (2) is

] / [(r)—11dr=—1, @)

where it is assumed that g(e«)=1. The liquid-structure
function can be written

S(k)=1+p/[g(r)—-1:|e“'fdr. (5)
A trial wave function of the Bijl-Dingle-Jastrow*
(BD]) type:
W (ry,- - ry)=]] etvtrid (6)
i<j

is assumed for the ground state of the system. The
potential is taken to be a sum of two-body interactions

V(ryrs,: 1) =2 o(ryy), (7

<

where v(r) is a Lennard-Jones (L-J) 6-/ function. For
such a potential the boundary conditions on #(r) and

4R. Jastrow, in The Many-Body Problem, edited by J. Percus
(Interscience Publishers, Inc., New York, 1963).
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g(r) are
u(r)=—c at r=0, .
u(r)=0 at r=o0, ®
and
g(r)=0 at r=0,
&)

glr)=1 at r=o.

Using Egs. (6) and (2) the expectation value of the
Hamiltonian in the ground state can be expressed in
terms of g(r) and u(r) as

H)=(T)+(V),

(T)=Np(2/8M0) / (o,

(V)=3Np f ¢(()ir,

(the prime denotes differentiation). If g(r) is known,
(V) can be calculated immediately; however, the cor-
relation function #(r) must also be known to calculate
(T). The BBGKY equation® in the form

g'("lz) =g(rn)u’ (r12)
+p/[gk<3’(1,2,3)—-g(r12)g(r13)] cos(12,13)dr; (11)

can be used to derive a #(r) from a given g(r). The
function g;®(1,2,3) is the Kirkwood superposition ap-
proximation (KSA) for the three-particle distribution

function:
8:®(1,2,3)=g(r12)g(r13)g (723) - (12)

A discussion of the accuracy of the KSA as applied to
liquid He* and a comparison with an alternative approxi-
mation for the three-particle distribution function has
been given by Jackson.®

Abe,”® who first applied Eq. (11) to calculate the
ground-state properties of liquid He?, obtained an ap-
proximate solution to the equation and used an experi-
mentally determined g(r) in his evaluation of (H).
Abe’s approximation [giving #(r) as a functional in
g(r)] was later recognized as being identical with the
hypernetted-chain approximation.

Wu and Feenberg® (WF) calculated the ground-state
energy of liquid He* by solving Eq. (11) exactly on a
high-speed computer. They also used an experimental
g(r). The accuracy of calculations which use experi-
mentally determined pair-distribution functions is
limited by the lack of knowledge of g(r) for very small
and very large values of the variable r. The directly

8F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).

6 H. W. Jackson, Ph.D. thesis, Washington University, 1963
(unpublished).

7R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 57 (1958).

8 R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 407 (1958).
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measured quantity is the liquid-structure function S (k).
This function has not been measured over a sufficiently
large range of & values to allow an accurate determina-
tion of g(r).>'® Furthermore, experimental data are
available only over a limited range of pressures and
only for temperatures above 1°K.

Using the BBGKY equation the expectation value of
the kinetic energy is written

(TY=Np(/8M) T -7, (13)
Jum / (e () F/s(r)dr,
Jp=— p/g’ (7’12)dl'2/[g(7’23)"‘ 1]g(’13)“’ (713) (14)

X cos(12,13)dr;.

This division is useful in estimating the accuracy of the
calculation. All the uncertainty introduced into (T) by
the use of the KSA is contained in the term J,.

An extremum principle introduced by Wu and Feen-
berg?® is useful in devising a rapid numerical method for
solving the BBGKY equation. Equation (11) is the
Euler-Lagrange equation for the functional

J=— / g(ri)[ (r10) Pdrat2 / g (r)u (rig)dry

_ / ¢(rig(ra)graohd (ras) (r)

Xcos(12,13)dr2dr3. (15)

The extreme value

Joxt= / g (N (r)dr (16)

is attained when u(r) satisfies Eq. (11); consequently

(T)=Np(h/8M)J exs- 7
Thus the expectation value of the kinetic energy is ex-
pressed in terms of the extreme value of J.

A description of how this extremum principle is used
in this calculation to solve the BBGKY equation is
given in Appendix A.

Application of the virial theorem? yields the equation

P=H(T)/N—ts* / c(dr,  (19)

giving the pressure in terms of the pair-distribution
function g(r). For a Lennard-Jones 6-/ potential,

o(r)= &/ (—6)[6(*/r)!—1(r*/r)"],

® D. Henshaw, Phys. Rev. 119, 14 (1960).
W, Gordon, C. Shaw, and J. Daunt, Phys. Rev. 96, 1444
(1954).

(19)



151

Eq. (18) becomes

6*

1
P=2(T)/N—- (6Ir*1C—61r*5Cy),  (20)
3 (1—6)
where
C'm,=27l'p/ g(r)rr—dr . (21)
0
In terms of the Cn, (H) is given by
(H)/N=(T)/N+[€/(—6)]6r*'C:—lr*¢Cs]. (22)

Method of Calculation

The calculation begins with the construction of a
family of trial functions g(r,x;) representing possible
approximate pair-distribution functions. The trial
functions are parametrized by the set of variables a;,
1=1,2, -+ 5. The BBGKY equation provides a relation
between a g(r,a;) of this family and a BD]-type wave
function. The expectation value of the Hamiltonian is
expressed in terms of g(r,a;) and #(r,a;) as shown in
Eq. (10). A best pair-distribution function, the cor-
responding best #(r,&;) and best value of the energy are
all determined by the minimum value of (H) in the a;
parameter space.

The parameters a; are thus determined by the s
equations

d(H (i)
da;

=0, i=1,2, -

, (23)

)

ai=a;

where &; is the optimum set of the parameters.

The parameters ¢* and »* in the Lennard-Jones
potential are determined in a self-consistent manner so
that the minimum energy as a function of density and
the associated density coincide with the experimental
values for liquid He* at T=0°K. Equations (20) and
(22) with p=0 atm, p=po and (H (&:))= eV (& and po
being the experimental values of the ground-state
energy per particle and the equlibrium density for
liquid He* at T=0°K) along with Eq. (23), provide a
set of s+2 equations which are solved simultaneously
to yield €, * and the optimum set of s variational
parameters &; Because of the complexity of the
equations, the solutions must be found by an iteration
procedure in which €* and 7* are initially assumed
known. Here the values determined by gas phase calcu-
lations provide an initial input.

Once €* and 7* are known the variational procedure
[the solution of Eq. (23)] is repeated at different densi-
ties to yield the ground-state energy as a function of
density. From this “equation of state at 7=0°K,” the
pressure, compressibility, and velocity of sound are
calculated as functions of density. The optimum pair-
distribution function, liquid-structure function, and
correlation function are automatically obtained at each
density.
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The potential determined for He? is also assumed to
be appropriate for the description of an artificial mass-3
boson system. The ground-state properties at mass 3
are computed,as described above except that the inter-
action constants € and #* are not varied.

RESULTS: MASS 4

The explicit formula for the family of trial functions
used in the calculations is

g(r)=go(r)+0(r), (24)

where
(a) go(r)=(C+1) exp[— (@/n)**]—C
Xexp[— (1+2) (¢/n)*"]
and
(b)  8g1(r)=A{(d/r)™ exp[— (1+)(d/r)"]
—B(d/r)" exp[— (1+¢) (d/r)"]} .
The parameters in the set a; are p=2mpd?, 2, 4, y, q, m,

n. The parameters C and B are fixed by the normaliza-
tion condition [Eq. (4)] in the form

p [ oot 13ie=—1 23)
and
/6g1(r)dr=0. (26)
Equations (25) and (26) yield
C=(1.155574/9—1)/[1— (142)°*] 27)
and
— n—3) /10
| T(n=3)/10)(1+9) o8

 T((n—3)/10)(14y) m—vh0”

The exponential factor in the trial function is sug-
gested by the analytical form which fits the first rising
slope of the experimental g(7)%.

Only those g(r,a;) which satisfy the following condi-
tions are considered as trial pair-distribution functions:

(a) g(nN20 for 0<r<oo;
(b) S()20, for 0<k< o

() S)=0; (29)

(d) Amp2® / [1—g(r) Jrdr<2.8887.
0

Conditions (a), (b), and (c) are obvious physical
requirements. Condition (d) is the “Coulomb in-
equality” recently derived by Feenberg.!! A pair-dis-
tribution function which does not satisfy (d) cannot be
generated by a wave function. This condition is useful
here since the wave function generated from g(r) by

11 E. Feenberg, J. Math. Phys. 6, 658 (1965).
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F1c. 1. Ground-state energy per particle as a function of density
for the mass-4 system, [X =experimental energy at P=25 atm.

way of an approximate equation need not necessarily
be capable of reproducing the starting g(r).
Using Eq. (24) the function C; is

Ci=2mp / g(r)r'=2dr
0

(e rgan)

A[I‘((m+l—3)/10) BI’((n+l—3)/10):|}. (30)
(14y) mti=9) 110 (14-g) wti=81/10

The results given here are for /=12 (corresponding
to a 6-12 L-J potential); some results for /=22 are
discussed in Appendix B.

Graphical analysis indicated that m=16 and 7»=38
might be close to optimum values for these parameters.
Thus initial calculations were performed with m and »
fixed at these values. Subsequent variation of m with »
fixed at 8 yielded slightly improved results but not im-
proved enough to warrant further calculations involving
the variation of #. The final results show minimum en-
ergy for m=6.

The potential parameters determined by the pro-
cedure discussed in the previous section are given in
Table I. In computing €* and 7* the experimental values
of poand €, were taken to be ¢g= —0.97X 10715 erg/atom
and pe=0.0218 A3 (see Appendix B). The quantity Q*
is a measure of the strength of the interaction and is

TasBLE I. Parameters e* and #* for a Lennard-Jones
6-12 potential.

O*
€* r¥ (Units of

Calculated by (10715 erg) (A) M 42 /12)

Massey 1.409 2.974 7.434

Wu and Feenberg? 1.61 2975 8.52

Hershfelder and 1.411 2.869 6.96
Curtis®

Haberlandte 1.422 2.929 7.272

a See Ref, § in text, b See Ref, 15 in text, o See Ref, 16 in text,
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TasirE II. Ground-state energy per particle and optimum varia-
tional parameters as functions of density for the He! system.

d p e(p) (10718
¥ q A (A) n z (1072 373) erg/atom)
80 350 270 256 22925 800 2.18 —0.970
74 327 2.708 2.55 2.360 700 2.26 —0.967
7.0 305 2.718 2.546 2.427 610 234 —0.960
6.6 285 2725 254 2.495 520 242 —0.940
6.3 267 2737 2535 2.56 440 2.50 —0.9125
6.0 250 2.75 2.53 2.625 350 2.58 —0.880

related de Boer’s'?!® quantum parameter which enters
the theory of corresponding states. The values of ¢*
and r* calculated by WF® using the experimental g(r)
of Goldstein and Reekie,”* and the values given by
Hershfelder and Curtis'® and Haberlandt!® are also
shown in Table II. In the latter two references the
parameters are fixed by fitting the theoretical second
virial coefficient to the observed behavior of the vapor
phase.

The ground-state energy per particle €(p) is shown in
Fig. 1 as a function of density. The optimum parameters
for each calculated point are given in Table II. A plot
of the numbers in Table IT shows that the variational
parameters are smooth functions of density. Figure 2
and Table IIT exhibit the pressure as a function of
density. The pressure curve is calculated in two ways:
(a) from the relation P=p?(d¢(p)/dp) by numerical
differentiation of the e(p) versus p curve of Fig. 1;
(b) from the virial theorem as expressed by Eq. (20).
The smooth curve comes from (a) and the points from

32

28 L.

n
(=3
1

Y73 | 1 ! ! 1 1
T2l 22 23 24 25 26 27 28

eli0253)

F16. 2. The pressure as a function of density for the He! system,
O=points calculated from virial theorem; 1=curve 1
obtained by numerical differentiation of e(p) versus p curve;

2 and (-—---) 3, experimental data from Keesom
(see Ref. 17) at T=1.25°K and 1.75°K.

27, de Boer, Physica 14, 139 (1948).

18 7. de Boer and R. Lunbeck, Physica 6, 658 (1965).

141, Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955).

18 D, Hershfelder, C. Curtis, and R. Bird, Molecular Theory of
Liquids and Gases (John Wiley & Sons, Inc., New York, 1954).

18 R. Haberlandt, Phys. Letters 14, 197 (1965).



151

4.2

u 1 I I 1 1 1
T2l 22 23 24 25 26 27

e (102 23

Fic. 3. Ratio of kinetic to total energy, v (o) = | (T)/{E)|
for the He! system.

(b). The results from the two procedures agree to within
5% at all densities.

Also shown in Fig. 2 are the experimental data of
P versus p for temperatures of 7=1.25°K and 1.75°K as
given by Keesom.'” There being no experimental data
for lower temperatures, comparison with - theory
(T'=0°K) must be semiquantitative. Between 1.25°K
and 0°K, (8p/dT)p changes sign and becomes negative
at about 1.15°K ; however, the magnitude of (0P/dT)p
on the lower range is small compared to its average
value between 1.75°K and 1.25°K. From this it appears
that the experimental P versus p curve at T=0°K
should be very close to the 1.25°K curve in Fig. 2. On
this basis the theoretical results appear to decrease in
accuracy as the density is raised. This is consistent with
the calculated energy being too large at high densities.
The calculated value of e(p) at p=0.0259 A—3 (on the
melting curve) is —0.875X 1075 erg/atom. The experi-
mental value is —0.917X 10715 erg/atom.!®

The increase in the discrepancy between theoretical
and experimental results with increasing density can be
understood by noticing that a fixed relative discrepancy
in (T) produces an increasing relative discrepancy in
(H) as the density increases. Figure 3 shows the ratio
of the kinetic to the total energy as a function of density.

TaBLE III. The pressure calculated from the virial theorem
and the coefficients Cs and Ci2 as functions of density for the He!
system.

Pressure P Density p Cs Ciz
(atm) (102 5% (10 &-%)  (10-% A7)
0.00 2.18 2.937 3.621
4.01 2.26 3.403 3.878
8.78 2.34 3.198 4.145
14.24 242 3.360 4421
21.05 2.50 3.360 4720
29.13 2.58 3.528 5.043

17 W. H. Keesom, Helium (Elsevier Publishing Company, Inc.,
Amsterdam, 1942).

18 K. Atkins, Liquid Helium (University Press, Cambridge,
England, 1959).
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TABLE IV. Comparison of theoretical and experimental
pair-distribution functions.

Nearest- Height Distance of
Tempera- neighbor  of 1st closest
ture distance maximum approach
Source CK)  rm Q) glm) 7o (A)
Theoretical 0 3.48 1.31 2.18
Goldstein and 2.06 3.2 1.35 2.25
Reekie®
Henshaw? 1.06 34 1.42 2.27

a See Ref. 14 in text, b See Ref. 25 in text.
Inaccuracies in the kinetic energy result primarily from
the use of the KSA. Also the results at high densities
are not expected to be as accurate as at low densities
because the simple BDJ-type trial wave function does
not adequately represent a system under high pressure.

The velocity of sound and the isothermal compres-
sibility are calculated by numerical differentiation from
the curve of Fig. 2. In Fig. 4 results for the velocity of
sound are compared with the data of Atkins and
Stasior.!® Again the density dependence of the dis-
crepancy between the theoretical and experimental re-
sults is apparent. At P=0 atm the results differ by 3.4%,
and at P=25 atm by 9.5%,. The compressibility, not
shown here, has the same general behavior.

The pair-distribution function for the theoretical
system at P=0 atm is shown in Fig. 5. The experimental
data of Goldstein and Reekie* as given by WF? are
also shown. The Goldstein and Reekie data are for
T=2.06°K under normal vapor pressure. A meaningful
comparison of the two curves should be limited to
physically interpretable attributes. The distance of
closest approach, the nearest-neighbor distance, and the
relative probability of nearest neighbors (the height
of the first maximum) are compared in Table IV. These
quantities as given by Henshaw and Hurst!® are also
shown.

450

400|_ (2_|

()]
350 -

U M/SEC

250 -

200} . ~

(=]
o
)
o
8
I
a
8

PRESSURE, ATM

Fi1c. 4. The velocity of sound as a function of pressure for the
Het system. (1) Data of Atkins and Stasior (see Ref. 18), (2)
theoretical result.

1 D. Henshaw and D. Hurst, Phys. Rev. 100, 994 (1955).
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theoretical results for: 1 Het, 2 the
06 . mass-3 boson system at P=0 atm.
04 -
02| -
(o] | { | | | | 1 1 | |
22 26 30 34 38 42 46 50 54 58 62 6.6
rk)

Figure 6 shows the pair-distribution function at dif-
ferent densities. Qualitatively, the density dependence of

TABLE V. Results of the “Coulomb inequality’’ condition for Het
and the mass-3 boson system, ¥ =4mp?3/¢* [1—g(r) Jrdr.

Results for the Results for the
Het system mass-3 boson system
Density, p Density, p
(1072 A7) Y (102 A73) Y
2.18 2.584 1.64 2.466
2.26 2.587 1.80 2.515
2.34 2.602 1.96 2.556
242 2.610 2.12 2.585
2.50 2.615 2.28 2.594
2.58 2.617 2.44 2.599

the theoretical g(r) is exactly that found experimentally
by Henshaw® and is the expected behavior from the

15

definition of g(r). As the density increases the distance
of closest approach is unchanged ; the nearest-neighbor
distance decreases; and the relative probability of near-
est neighbors increases.

The results for the Coulomb inequality are given in
Table V. The optimum pair-distribution functions
satisfy the inequality at each density.

The liquid-structure function S (k) is calculated from
g(r) through Eq. (5). In Fig. 7 the theoretical S(&)
for P=0 atm is shown along with the experimental
data of Goldstein and Reekie. The interesting portion
of this curve is the region for £<0.8 A~2. In this region
experimental points are unavailable and comparison
can only be made with other theoretical determinations
of S (k). The straight line in Fig. 7 is calculated from the
Feynman formula?®

S(k)=nk/2MC, (31)

1.4
1.3
1.2
L1
1.0

0.9
[oX:}
o7
06
05
04
03
0.2
o1
00l

(16

1))
(3)

F1G. 6. The pair-distribution func-
tion g(r) for different densities for
Het. (1) p=0.0218 A-3; (2) p=0.0234
A73; (3) p=0.0250 A3,

20

24

28

32 36

40
Y(A)

2 R. P. Feynman, Phys. Rev. 94, 262 (1954).

23

48 52

56

60 64 6.8
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F1G. 7. The liquid-structure function » o8l ! .
(k). (----) Experimental data = !
(see Ref. 21); (1) theoretical result /
for the Het system at P=0 atm; (2) 06 @/ /7 -
theoretical result for the mass-3 boson /
system at P=0 atm; — Feynman 4
curve. o4 / -
g 22/
02 e -
00 1 1 1 ! L | 1 1 1 1 ]
04 o8 12 16 20 24 28 32 36 40 44 48
K (A)

where C is the velocity of sound. The local maximum or
“shoulder” in the theoretical S(k) near k=0.6 A1
agrees with predictions®?2 based on (i) Eq. (31), (ii)
the slope of the experimental S(k) at #=0.8 A~ and
(iii) the interpretation of observed intensity relations
in the inelastic scattering of slow neutrons in liquid He®.
The theoretical curve fails to coincide with the Feyn-
man S (k) as £ — 0 because the theoretical g(r) does not
have the proper asymptotic behavior. Equation (31)
has the consequence that
g(n)=1—(/2x°pMC)r*,

700

(32)

thus fixing the asymptotic behavior of g(r).?** Putting
m=4 in Eq. (24) yields a subfamily of distribution
functions with the asymptotic behavior

g(N=144@/r)™, m=4. (33)

Fi16. 8. Plot of integrand of
(8D(g)/3g)=0=29
x [ 66-13

X[cosgx— (gx)~! singx]dx,
D(g)=S(g/d), Gw)=g(xd).

-2

2t Allen Miller, David Pines, and P. Nozieres, Phys. Rev. 127,
2 W. E. Massey, Phys. Rev. Letters 12, 719 (1964).

For 4>0 this subfamily did not satisfy the Coulomb
inequality for any reasonable values of the other
parameters; and furthermore solutions to the BBGKY
equation were not found and also condition (29) (b),
S (k) >0, was not satisfied.

For 4 <0 this subfamily of trial functions satisfied
all the conditions of Eq. (29) but the energy values
obtained were larger than those for m=6. However, the
trial functions are not sufficiently general to support
any implication that Eq. (32) is not correct.

Any g(r) with the asymptotic form given by Eq. (33)
with >4 will yield an S (&) which is parabolic as £ — 0.
However, the results of the present calculation (energy,
etc.) are unchanged if the theoretical S (k) is continued
smoothly into the Feynman S (k) for 2<0.2 A-1,

The appearance of the shoulder in the theoretical S (k)
can be understood by considering the derivative of S(k)
at the maximum point %,~0.6 A% Using the dimen-

1) 62X= X [6(x)-{
2) PR=Cos gx ~ _5.'_“6§5.
3) PGX= G2X % PR

(2)

452 (1962).

% 7, Enderly, T. Gaskell, and N. March, Proc. Phys. Soc. (London) 85, 27 (1965).

# E. Feenberg, in Lectures in Theoretical Physics, edited by W.
Colorado, 1965), Vol. 7, Book C.

E. Brittin and L. Marshall (University of Colorado Press, Boulder,
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TABLE VI. Ground-state energy per particle as a function
of density for the mass-3 boson system.

d p, e(p) (10715

¥ q 4 (A 19 z (1072 A-3%) erg/atom)
15.00 1500 2.24 2.58 143 14000 1.32 —0.3868
1440 1330 2.29 2.58 1.505 12300 1.40 —0.3928
13.75 1175 234 2.57 158 10900 148 —0.3967
13.10 1030 2.39 2.56 1.655 9600  1.56 —0.3982
12.50 900 242 256 1.73 8500  1.64 —0.3972
11.85 800 2.47 2.55 1.80 7400 172 —0.3926
1125 725 2.52 2.54 1.87 6350  1.80 —0.3830
10.70 660 2.56 2.54 1.94 5400  1.88 —0.3675
10.15 600 2.61 253 2.01 4500  1.96 —0.3455
9.65 550 2.66 2.53 2.08 3700  2.04 —0.3175
9.15 500 2.71 2,52 2.148 3000  2.12 —0.2840
875 450 2.80 2.52 2.21 2350  2.20 —0.2420
840 410 2.89 251 227 1900  2.28 —0.1920
815 380 2.99 2.50 2.33 1700  2.36 —0.1375
8.00 350 3.14 249 2375 1500 2.44 —0.0680

sionless variables x=7/d, g=kd with G(x)=g(xd) and
D(g)=S(q/d), the derivative is written

aD(q) ® singma
—_— =2y / [Gx)— 1:|x2|:cosqu— :|dx.
9¢ 19=¢m 0 gm®

(34)

The integrand of Eq. (34) is plotted in Fig. 8. Curve
(1) is the factor 2%(G(x)—1), curve (2) is the factor
cosgmx— (gmx)™" singmx, and curve (3) is the product
of the two factors. The major contributions to the in-
tegral come from the regions in which g(r) is significantly
different from one. As can be seen from Fig. 8, these are
the regions near the origin (the ‘hole”), the first
maximum, and the minimum. The approach of (g(*)—1)
to zero cancels out long-range contributions to the
integral. Thus the shoulder occurs because of the rela-
tionship between the size of the hole in g(r), the height
and depth of the maximum and minimum points, and
the rate at which (g(»)—1) approaches zero.

The density dependence of the theoretical liquid-
structure function is entirely in conformity with the
experimental data of Henshaw.%25

The correlation function #(7) is shown in Fig. 9 for
two densities: the equilibrium density of the liquid;

TaBLE VII. Comparison of results for the mass-3 boson sys-
tem with predictions from the modified law of corresponding
states.

Corresponding- Mass-3
states prediction boson % Dii-
Quantity for Hed 2 system ference
Ground-state energy —0.208 to —0.350 —0.3983 48 to 12
per particle
(10718 erg/atom)
Equilibrium
De(r},sitgr of liquid 0.0182 0.01565 16
A—B

= See Ref. 18 in text.

25 D. Henshaw, Phys. Rev. 119, 9 (1960).
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0.3 #

ulr)

Fic. 9. The correlation function % (r) for different densities for
the Het system. (1) p=0.0218 A—3; (2) p=0.0250 A3, (---)
calculated by Wu-Feenberg (see Ref. 5) from experimental g (r) of
Goldstein and Reekie.

and a density near the experimental liquid-solid transi-
tion point for He® The integral term in the BBGKY
equation is negligible for very small  and thus, for
sufficiently small 7, %(r) is approximated very well by
Ing(r). Since

g‘—(:)),\,e—(d/r)w , (35)
then
zf_()r0)~ —P/ro, (36)
The trial form
u(r)=—Qr 37

has been used [[in conjunction with the experimental
g(r) of Goldstein and Reekie] to evaluate the WI?®
functional J. Maximum J is found at »=10. This in
fact is why the power of 10 was assumed in the family
of trial functions used in this calculation. However,
McMillan?® and Levesque?” using correlation functions
of the form given by Eq. (37) and using Monte Carlo
techniques to evaluate the many-body integrals found
that the total energy was minimized by values of v=35
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F16. 10. The ground-state energy per particle as a function
of density for the mass-3 boson system.

26 W, L. McMillan, Phys. Rev. 138, A442 (1965).
27D, Levesque et al. (unpublished).
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TaBLE VIII. The pressure calculated from the virial theorem
and the coefficients Cs and Cjs as functions of density for the
mass-3 boson system.

Pressure Density Cs Ciz
(atm) (1072 473) (108 A76) (10-8 A1)
1.33 1.64 2.028 2.476
3.45 1.72 2.161 2.677
591 1.80 2.296 2.883
8.78 1.88 2.432 3.095
12.1 1.96 2.574 3.315
15.8 2.04 2.682 3.538
20.5 2.12 2.828 3.783
26.89 2.20 2.989 4.071
34.6 2.28 3.156 4.380
43.90 2.36 3.321 4.690
56.0 2.44 3.588 5.115

and »=4, respectively. Their calculations are for a finite
(and small) number of particles.

The density dependence of #(r) is consistent with the
interpetation of |¢(ry;)|2=e*i) as a measure of the
direct correlation between particle pairs.

RESULTS: MASS 3

Results for the mass-3 boson system are needed to
calculate the ground-state properties of liquid He® by
the method of correlated basis functions® (CBF).

Using the potential determined for He* [Table IT]
variation of the family of trial pair-distribution func-
tions given by Eq. (24) is carried out to determine the
ground-state energy and other properties of the mass-3
boson system. The calculation proceeds exactly as for
He* except that the mass is different and the range of
densities considered is different. The minimum expecta-
tion value of H is found for m=6 at all densities con-
sidered just as for the He? system. Figure 10 and Table

65
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B 283
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Fic. 11. The pressure versus density for the mass-3 boson
system; (——) calculated by numerical differentiation of e(p)
versus p curve; O=calculated from virial theorem.
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F16. 12. The ratio of kinetic to total energy, v (o) = | (T)/{E)|,
for the mass-3 boson system.

VI give the ground-state energy per particle as a func-
tion of density. The equilibrium density has the value
p0=0.01565 A—% and e(po)=—0.3983X10~15 erg/atom.
We can compare these results with those of de Boer
and Lunbeck,'?13 who used the Modified Law of Corre-
sponding States (MLCS) to calculate the properties of
He?. In the MLCS calculation the effect of differing spin
and statistics is neglected ; hence, the results are strictly
applicable to a mass-3 boson system of the type con-
sidered here. Table VII exhibits the MLCS results and
those obtained here. The energy agrees fairly well but
the equilibrium density obtained here is 169, lower than
the MLCS value (experiment gives po=0.0164 A=3 for
He?). The results of the CBF? calculation for He? indi-
cate that the value of po calculated here is indeed too
small.

The pressure is given as a function of density in
Table VIII and Fig. 11. As in the mass-4 calculation,
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Fi6. 13. Isothermal compressibility 2z versus density for
(1) the mass-3 boson system and (2) the He! system.
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Fi16. 14. Comparison of correlation
functions for the mass-3 and mass-4
systems. (1) mass-3 boson system at
p=0atm; (2) He*system at p=0atm.

| |

the smooth curve is obtained by numerical differentia-
tion and the points are calculated from Eq. (20).

The ratio of the kinetic to the total energy,
v=|(T)/(E)|, is shown in Fig. 12. Obviously dis-
crepancies in the evaluation of () are more important
for this system than for the mass-4 system. The probable
error associated with large v is discussed later.

The compressibilities of the mass-3 and mass-4
systems are shown in Fig. 13. The reduction in compres-
sibility at a given density is a logical consequence of
the increase in zero-point energy when the mass is
reduced.

A comparison of the pair-distribution functions for
the mass-3 and mass-4 system (at P=0 atm is given in
Fig. 5. The differences in the functions are exactly as
predicted by Ricci®® on the basis of the MLCS; i.e.,
when the mass is changed from 4 to 3: (1) the effective
radius of the particles is unchanged; (2) the number of
nearest neighbors is reduced; (3) the distance to the

TaBLE IX. Comparison of mass-3 boson results
with experimental properties of He?.

Mass-3
boson He?
Quantity system  experimental
Density of liquid (A-3) 0.01565 0.0164
Ground-state energy per particle ~ —0.3983 —0.348
at P=0 (10715 erg/atom)
Compressibility at P=0 (atm™) 521072 4102

Properties at density of He? solid; p=0.0241 A3

Ground-state energy per particle ~ —0.09 —0.069
(10715 erg/atom)
Compressibility (atm™) 0.27X102  0.35X1072

28 F. P. Ricci, Nuovo Cimento 16, No. 3 (1960).

nearest-neighbor shell is increased; (4) the nearest-
neighbor shell is broadened.

The liquid-structure functions for the two systems at
P=0 atm are compared in Fig. 7. The shoulder has
practically disappeared for the mass-3 system. The
CBF calculation by Woo? shows that the shoulder is
even less apparent for He’. Thus an experimentally
verifiable prediction is made concerning the difference
in the small % behavior of S(k) for He* and He?® near
T=0°K.

The correlation functions for the two systems are
compared in Fig. 14. The density dependence of g(r),
S(k), and u(r) is qualitatively the same for both
systems.

A comparison can also be made between the calculated
properties of the mass-3 boson system and the experi-
mental properties of He?. Table IX shows these results.

ERRORS AND APPROXIMATIONS

The use of the Kirkwood form for the three-particle
distribution function is the major approximation in
this calculation. The error in the results due to the KSA
enters through the term J; in the kinetic energy. [See
Eq. (13).] The ratio J3/Jext gives an indication of the
magnitude of this error. J, and J; are given for the
mass-3 and mass-4 systems in Table X. Assuming that
the J; calculated here is not significantly different from
its exact value, the datain Table X at P=0 atm permit
the estimate that an error of 209, in J; would introduce
an error of only 2.99, in the kinetic energy for the
mass-4 system and 2.3, for the mass-3 system. The
effect on the total energy of this error goes up with in-
creasing density. For the mass 4 system at P=0 atm
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TaBLE X. Joxt, Ja, and J; as functions of density for: (A) Het
and (B) the mass-3 boson systems.

Density, p
(].0_2 A_a) Jext ]a ]b (]b/]ext) X 100
A) 2.18 484.94 415.07 69.87 14.40
2.34 502.86 430.87 71.97 14.31
2.50 529.99 447.75 82.23 15.52
B) 1.64 402.92 356.71 46.21 11.47
1.96 430.58 374.08 56.49 13.12
2.28 467.81 402.58 65.23 13.94
2.44 486.74 417.89 68.85 14.14

the assumed 2.99, error in (T) causes a 6.69, error in
(H). However, at P=22 atm a 209, error in J;, causes
a 3.19, error in (T') which in turn produces an error of
9.49%, in the total energy. For the mass-3 system the
same trend holds.

WEF,® using the experimental g(r) of Goldstein and
Reekie, found for He? J4/J ext=0.065 at P=0. This is
about half the value of 0.144 found here. The procedure
used in solving the BBGKY equation [Appendix B]
defines a quantity A which gives a measure of the limit
of error in Jeg due to the numerical solution of the
BBGKY equation. A has the value 0.059%,. For the
mass-4 system this produces possible errors in the total
energy of 0.109, at p=0.0218 A—3 and 0.159, at
p=0.0250 A—3. For the mass-3 system the corresponding
limits of error are 0.239, at p=0.0164 A3 and 2.59, at
p=0.0244 A-3,

For the mass-4 system the total error in the calcula-
tion (excluding the KSA) is estimated to be less than
19, at all densities and for the mass-3 system it is of
the order of 29 at maximum.

CONCLUSION

The results of the calculation compare favorably with
experiment. The density dependence of the calculated
quantities is especially encouraging. Since the equilib-
rium point (p= po, €(po)=€o) for the He* calculation
was fixed, the results at higher densities are the true
test of the calculation. Furthermore, encouraging results
have been obtained for the ground-state properties of
liquid He? using the mass-3 boson properties calculated
here. Experimental data for the liquid structure func-
tion at low temperatures (<1°K) and small values of
k (£0.6 A1) are needed to test some of the predictions
of this calculation.
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APPENDIX A: SOLUTION OF THE
BBGKY EQUATION

The BBGKY equation is written in terms of the
functional k(r)=g(r)u’(r) as

h0)=g ()5 f Co(l¥—r])—17h(")

Xcos(r',r)dt’. (A1)
Equation (A1) can be solved by a direct iteration proc-
ess defined by the equation

()= () —g0) f Co(lr—x])— 170 (r)

Xcos(r',;r)dr’, (A2)
where /,(r) can be, but is not necessarily, g’(r). After a
certain number of iterations hyy1(r)~k,(r) to the
required degree of accuracy.

A better method for solving Eq. (A1) uses the Wu-
Feenberg extremum condition. It is clear that an opti-
mum linear combination of functions, %.(r), #n—1(7),
-+, ho(r), is superior as a trial solution to Eq. (A1) than
any single function /;(r) (<#). This same linear combi-
nation can also serve, when inserted in the right-hand
side of Eq. (A2) in place of %.(r), to generate an im-
proved n--1th approximation. The condition for
choosing the optimum coefficients in a linear combina-
tion is that the WF functional J, constructed from the
trial solution, attain an extreme value.

Practical considerations limit the size of #. Here »
was taken as 1 and the extreme value of J calculated as
follows: Define the coefficients,

. f WO O gW)dr, (43)
0

— / ) Ui () g (P + / Ce(|—r])—1]

0

Xhy(r)hm(r) cos(t’ x)dr’. (A4)
Let ho(r) be an arbitrary approximate solution to Eq.
(1). Now use %o(r) in the right-hand side of Eq. (A2)
to generate the function % (r), and construct the trial
solution

hi(r) = (wo/ voo) ko (r)+avhy (r), (AS)
where
]’Ly (7) =/’l1'l (1’)-" (Voyr/l/o())hg(f) . (A6)
The WF functional J constructed from %,(r) is
J(l) = J(0)+2(11'ﬂ,1'"‘ay21}1111 y (A7)
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Fi1c. 15. Example of convergence of J(D for a typical set of the
variational parameters; I =No. of iteration-variation steps.

where J® is the WF functional constructed from Ao (r).
J® attains an extreme value for

av=(uv/vvv) (A8)

JO=JO+ (u2y/vrv).

and
(A9)

This process is repeated by using 4:(r) in Eq. (A2)
to generate a new function % (#) from which a new trial

solution
ha(r) = (u1/vi)hi(r)+avha (7) (A10)
is constructed, yielding the new WF functional
J@=JO4 (42 /vor2r). (A11)

This procedure continues until J&HD— 7D L5, where
8 is some accepted error in the calculation. A general
proof that Jex is a maximum cannot be given ; however,
the maximum property can be proved for a special
class of pair-distribution functions®: those subject to
the condition g()<1. In this calculation Jey is invari-
ably a maximum.

An example of the convergence of the J®, s to a
maximum value is shown in Fig. 15 for a typical set
of the variational parameters. In all cases J was as-

% E. Feenberg (unpublished).
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sumed to have reached a maximum when
| (@D —JD)/JD|X100<0.05=A. (A12)

A can be taken as a measure of the limit of error in the
calculation of Jexs.

APPENDIX B: CHANGE OF &, AND !

The experimental value of the ground-state energy
per particle used in this calculation differs from that
given by some other authors. The value used here,
eo=—0.97X10"1% erg/atom, was taken from WF.5
Atkins,'® Keesom,'” and Bleaney and Simon® give the
value e=—0.9938X107% erg/atom and McMillan?®
used ep=—0.988X 1015 erg/atom.

Using the value given by Atkins, the results of this
calculation are changed as follows: The potential
parameters become €*=1.419X10"1 erg (formerly
1.409) and #*=2.975 A (formerly 2.974). The new &
is closer to the values of Hershfelder and Haberlandt
[see Table I]. The ground-state energy per particle for
the mass-4 and mass-3 systems is shifted almost uni-
formly (by approximately 29,) as function of density;
hence, quantities which depend on the derivative of the
e(p)-versus-p curves (pressure, velocity of sound) are
relatively unchanged. For the He* system e(p) on the
melting curve becomes —0.894X 10~5 erg/atom instead
of —0.875X 10715 erg/atom as compared to the experi-
mental value of —0.917X107'% erg/atom. Thus the
discrepancy is reduced from 4.9 to 2.5%,.

The ground-state energy per particle was calculated
for the He* system using a L-J 6-22 potential. The
potential parameters were determined as €*=2.519
X10-15 erg and 7*=2.758 A. The corresponding values
calculated by WF5 using the experimental g(r) are
€=2.608 X101 erg and r=2.775 A. As for /=12, the
¢* given by the experimental g(r) is larger and the #*’s
are about equal.

The ground-state energy is in general larger (smaller
in magnitude) for /=22 than for /=12, but the difference
is not significant. Thus, for the family of trial functions
used here /=12 gives a slightly better description of
Het at T=0°K.

® B, Bleaney and F. Simon, Trans. Faraday Soc. 35, 1205
(1939).



