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Theory of the (Normal) Ground State of Liquid Helium Three*
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Arthur II. Compton Laboratory of Physics, Washington University, Saint Louis, Missouri
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A theory of the normal ground state of liquid He' is constructed using matrix elements in a representation
of correlated basis functions. The Rayleigh-Schrodinger perturbation theory is adapted to our nonorthogonal
basis. Several means of classifying terms are available; one of them is recognized as best suited for the study
of liquid He'. To the second order in the classification scheme, the following ground-state properties are
calculated and compared with experiment and results of the Brueckner-Gammel theory: energy per particle,
equilibrium density, compressibility, velocity of sound, and paramagnetic susceptibility. The radial distri-
bution function of liquid He' at zero temperature is also calculated. A study of the Lowdin transformation
as a procedure for orthogonalizing the correlated basis shows that the correction to the Hamiltonian in-
volves unphysical S dependences; these arise out of high-order irreducible clusters and unlinked diagrams.
It is verified that the unphysical terms cancel out completely in each of several lowest orders.

I. INTRODUCTION

THEORY of the normal' ground state of liquid
He' based on the method of correlated basis func-

tions (CBF) is presented here. In CBF, we employ a
tria. l basis

+(I n) =pose'(I n),
n—= (123 cV) = (kyar, k202, k,&r„,kN0&) .

is the so-called correlation factor, which in our case
is taken to be the ground-state boson-type solution of
the Schrodinger equation:

+P B—g BP B

—A,' ~
H= P h~+ P v(r, ,);

and the mod. el functions 4'(In) are Slater determinants
suitable for describing states of a system of noninter-

acting fermions of mass 3. Our choice of the correlation
factor is based on the belief that the correlations pro-
duced by the short-ranged repulsions depend little on
the boundary conditions and type of permutation sym-

metry satisfied by the space part of the wave function.
In a preliminary paper by Wu and Feenberg' (hereafter
to be denoted by I), the diagonal matrix elements of the
identity and the Hamiltonian operator, as well as the
fermion radial distribution function, were calculated.
The results were applied to establish a connection be-
tween known results for the fermion and the boson forms
of a hard-sphere system at low density, and to work out
properties of a hypothetical fermion He4 system. In a

* Supported in part by the National Science Foundation under
Grant No. GP-3211.

t Present address' . University of California at San Diego,
La Jolla, California.' By "normal" we mean that pairing effects in the Hamiltonian
are not investigated. If the ground state of liquid He' turns out
to be super, our theory should still yield a good approximate
account of the properties of liquid He' at very low temperatures—
slightly above the transition temperature which is definitely no
higher than a few millidegrees.' F. Y. Wu and E. Feenberg, Phys. Rev. 128, 943 (1962).

second paper' (hereafter denoted by II), Feenberg and
Woo reported the evaluation of diagonal and non-
diagonal matrix elements of the interacting fermion
system by a cluster-expansion technique. An ortho-
normal basis was constructed from +(I n) and used to
express the Hamiltonian operator in quasiparticle form:
a large diagonal component containing constant, linear,
quadratic, a,nd cubic terms in free-quasiparticle occupa-
tion-number operators and a nondiagonal component
representing the residual interactions involved in col-
lisions of two and three free quasiparticles. In this paper,
we shall report the results of applying the method of
CBF to the calculation of the ground-state properties
of liquid He'.

Section II summarizes the previous 6ndings (Papers I
and II) and recalls some results pertinent to the present
application of the theory, and then discusses the con-
vergence properties associated with the Lowdin orthogo-
nalization procedure employed in II. In Sec. III the
adaptation of the Rayleigh-Schrodinger perturbation
method to a nonorthogonal basis is presented: we have,
for practical reasons, chosen this procedure in preference
to the more frequently used two-step procedure of suc-
cessively diagonalizing 1 and II. Several means of
classifying terms in this calculation are available; among
them we single out one as being best suited for the study
of liquid He'. The ground-state energy and the equi-
librium density are determined numerically in Sec. IV
to the second order in the preferred classification scheme;
so are the other ground-state properties: compressibility,
velocity of sound, and paramagnetic susceptibility.
Finally, these results are compared with experiment and
with the Brueckner-Gammel theory. '

II. THE METHOD OF CORRELATED
BASIS FUNCTIONS

The system of interest to us is liquid He' at zero tem-
perature. The system is described as a set of E identical

~ E. Feenberg and C. W. Woo, Phys. Rev. 137, A391 (1965).
4K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040

(1958).
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mass-3 fermions confined to a cubic volume 0, E, and
0 approaching infinity while p= E/0 remains constant.
Periodic boundary conditions are prescribed so that the
momentum is a discrete quantum number. Between
each pair of particles, there exists a phenomenological
interaction v(r) which includes a strong, short-ranged
repulsive component and a weak, attractive component.
In fact, the form of the potential is taken to be of the
Lennard-Jones 6—12 type,

in this representation. It turns out that all these matrix
elements for the fermion system can be expressed in
terms of the boson liquid structure function S(k), which
is obtainable from the Fourier transform of the boson
radial distribution function ge(y):

S(k)= 1+p e'"'I ge(r) —1]dv,

(3) gs(rip) = 1V(E 1)—
(leap ) dvp4 "N ~

with the parameters e* and r* determined by Massey'
in a self-consistent calculation of the ground-state prop-
erties of liquid He4. The problem that we are required
to solve starts from the Schrodinger equation

Hpr =Epr,

jg2 N

Z A~+ 2 v(r'~).
235 i=i

Pr must be antisymmetric with respect to exchanging
any two particles. In this paper we are interested only
in the ground state fP corresponding to the lowest
eigenvalue Ep of Kq. (4) as a function of density and
spin.

To solve Eq. (4) we choose the basis functions de-
fined by Eqs. (1) and (2) and evaluate all matrix
elements of the identity and the Hamiltonian operator

The essential advantage of our approach is then clear:
the two-particle potential v(r) is completely eliminated
from the matrix elements, and all physical quantities
are expressed in terms of gv(r) and S(k). For further
discussions on the choice of the correlation factor, see
I and II and Refs. 6 and 7.

To express the fermion matrix elements in terms of
gs(r) or S(k), we employ a modification of the cluster-
expansion technique well-known from classical statisti-
cal mechanics. Many authors' ' have studied such
cluster expansion developments, of which two general
types have emerged as useful for our purpose. In II we
compared the two developments critically and decided
in favor of the (noninvariant) formalism of Iwamoto
and Yamada (IY) for application to the liquid He'
problem. For the fermion radial distribution function
generated by the ground-state configuration in C(ln)
we found

gr(y) =ge(y)p(r),

p (y) =p (&) (y) +p (8)(y)+.. .

F~'&(r) = 1—-,'P(krr),

F&'&(r) = —p gii(r') Pg&( I
r r'

I ) 1]P(krr')dv'+ ppl(k&y) g&(y') Lg&( I
r r'I ) 1]l(krr')l(k&

I
r—r'

I
)dv', (6)

where

kp ——(3m'p) '~'
3 .

l(x) =—(sinx —x cosx) .
xs

The asymptotic (r ~pp) behavior of F&"(r) and F&P'(y) is given by

F&'&(r) ~ 1—0 —I,r') ' F "(.) ~O —I,
r4)

'

hence gr(~) =gJ3(~) =1, with no term in 0(1/Ã).
Diagonal and nondiagonal matrix elements of the identity and the Hamiltonian operator are derived in I,

Sec. II, and II, Secs. IV and VI. Only those equations needed in this paper are quoted here.

W. E. Massey, Phys. Rev. Letters 12, 719 (1964); Ph.D. thesis, Washington University, 1966 (unpublished).
J. W. Clark and P. Westhaus, Phys. Rev. 141, 833 (1966).
C. W. Woo, Ph.D. thesis, Washington University, 1966 (unpublished).' See Refs. 1—8 in II.' F. Y. Wu, J. Math. Phys. 4, 1438 (1963).
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fnl1ln) =1,
h2 ar

EP= Q kn2,
2M ~=&

Diagonal Matrix Elements

{n~B~n)=E' (n)=E&t +Ep+E2 +E2~+

EP= P X'„.= P (mu, um)u(k, )k.„2,
2~ Ns&n 2~+ tn&n

E2 = Q [X Lmn X &mXmn X&mX mn X tnnXn1 XmnX n1 X n&X&m Xn&X &m72~ l&fn&n

where

—3h2
(lm22, m22l)S(k&„)u(k )u(k 1)k1„',

2~+2 t&m&n

(ab . ,lm )= (a,l)(b,m) (a,l) = b(o.,a 1), u(k) =S(k)—1,
and the X's and (X')'s are cluster integrals and derivatves evaluated in I and II. The notation

~ ) carries the
imphcation that our basis functions are normalized but not orthogonal. The simple bracket

~ ) is reserved for an
orthonormal basis.

Nondiagonal Matrix Elements

Given here are the working formulas for matrix elements whose initial and final states di6er in 2 or 3 orbitals":

{123'' N~ 1[1'2'3" N}={12I111'2')
=X12;1'2'+ g [X12n;1'2'n X122;1'2'(Xl 1 n+nX1' 1'n+nX2 2 n+nX2' 2'nn)7+ ' ' '

t (10)
n+2

{123 N
i
H

i
1'2'3 N)=(12[H i

1'2')

A2
/ 1{X12;1'2'+ p [X12n;1'2'n 2X 12;1'2'(Xln;ln+X1'n;1'n+X2n;2n+X2'n;2'n)

231
2X12;1'2'(X 1n;ln+X 1'n;1'n+X 2n;2n+X 2'n;2'n)7+ ' ' ' )

+f12~ 1~ 1'2'){2E&"(123 N)+2E&'&(1'2'3 N)), (11)

{1234 Ni 1i 1'2'3'4 N) —{123' 1i 1'2'3') =X122., 12 2 +
{1234 ' N(&)1'2'3'4 "N)—=f»3I&I1'2'3')

(12)

h2
=—X' 112222+ +f123~1~ 1'2'3'}{-,'E&2&(1234 N)+2E&'&(1'2'3'4. N)}, (13)

2M
—1

(m22, nm)u(k ),S (14)

X'm„,„„=—(m22t22m)u(kmn) fkm*'+kn*' —2km kn} t
Ã

X„„„,„,= b(.k .+k—„. k„k)—f (mn—,m'n')u(k ) (m22, 22'm—')u(k )),E
(16)

—1
b(k„,+k„,—k —k„)f (m22, m'22')u(k„) [k '+k„„'7—(m22, 22'm')u(k „)[k „'+k„„'7}, (17)

2g

&0 Note the difference between Eq. (19) here and Eq. (83) in II. The factors "$" associated with k„+', k„+', and k,+2 in II were
.due to typographical errors.
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—1
Xmnr, m n ~

—— b(k„+k„—k„—k ){(lmn,n'm'l)(le', mm', nl)+(lmn, m'ln')(lm', ml, nn')
g'2

(l—mn, n'lm')(ln', ml, nm') (l—me, m'n'l)(lm', mn', nl) }, (18)

X' „(.,„„)———b(k„+k„.—k —k„)
E2

&({(lmn,n'm'l)(ln', mm', nl)[kr*'+k *'+k *'—k~ kn —km km —kn k~7

+(lmn, m'ln')(lm', minn')[kr*'+k *'+k *z—kr km —km kr —kn k„7
—(lmn, n'lm')(ln', ml, nm')[k~*z+k *z+k *z—k~ k —km k~—k„k

—(lmn, m'n'l)(lm', mn', el)[kr*'+k *+k *—kr km —km kn —kn kr7} r (19)
1

n p= b(k—m+kn+kp k —k —kr)—
/2

&({(mnl, m'n'l') (mm', nn', lP) —(mnl, m l'n')(mm', nl', le')

—(mnl, l'n'm')(ml', nn', lm') —(mnl, n'm T)(mn', nm', ll')

+(mnl, l'm'n')(ml', nm', ln')+(mnl, n'l'm')(mn', nl', lm') }, (20)

X'„„r.,„. p
—— b(k„+k +kp —k„—k„—kr)

2%2

where

X {(mnl,m'n'l')(mm', nn', ll') [k„'+k» '+k&p'7 (mnl, m—'l'n')(mm', nl', ln') [kmm '+knp'+k» '7

(mnl, l—'n'm')(ml', nn', lm') [k p'+k '+kr '7 (mel, n—'m'l')(mn', nm', ll') [k '+k '+k~p'7

+(mnl, l'm'n')(ml', nm', ln')[kmpz+knm '+kr z7+(mnl, n'l'm')(mn', nP, lm')[k n z+knp'+krm z7}, (21)

k *'=—-,'k„'+-,'k„', (mm', nn', ll') = (k —mkmnknr p),
(k,k', k")=—u(k) u(k')+ u(k') u(k")+u(k") u(k)+u(k) u(k') u(k") . (22)

Later in our selection of a scheme to classify terms in the perturbation calculation, some four-orbital-diferent
elements are required. We shall introduce them when the need arises.

The diagonalization of 1 and B may follow a two-step procedure: first we transform to an orthonormal basis,
and next apply a standard perturbation theory. The advantage of such a procedure is that a second-quantized or
quasiparticle formalism may first be established as an intermediate stage, which then permits the employment of
all modern perturbative tools. However, the choice of an orthogonalization procedure for our problem is quite
limited. The only one that appears usable is the Lowdin transformation which gives rise to an explicit correction
series to the Hamiltonian (Sec. V of II). We use the convenient notations

{m(1[n}—+ K, {m~H~n} ~X
for matrix elements in the nonorthogonal representation and

(m[1[n)-+X „(m)H[ )n~H „
in the orthogonal representation, and separate the matrices X and X each into two parts, thus:

Mn = 8mn+ nimn bmn+ nimn q

x .=w .+-',x,[E«~(m)+E«&(n)7.

(23)

(24)

Comparison of Eqs. (23)—(24) with Eqs. (8)—(13) identifies ri and %.It is clear that they have no nonzero diagonal
elements. An extension of the work in II leads to

H, =E«&(m)b, +W,——,
' p [m prip, + ri ppp„7+q Q rl p rip, [Et'&(m)+E&+(n) —2E&"(Ip)7

+s' Z [3~mpnlpqoiqn+2nimpÃpqnlqn+3nlmpnipq% qn7+8 g nimpnipqniqn[E (Iz)+E (q) E (m) E (n)7

3 n Z [5~mpnipqniqrnirn+3aimp~pqniqrnirn+3nimpnipq~qrnirn+5gmpnipqniqr~rn7+ ' ' '
~ (25)

PQ~



If the nondiagonal part of H is to be considered as a perturbation, its elements must have the correct dependence
on E. For example, for ~m) differing in 2'orbitals from the ground state ~0), H0 must be proportional to X so
that the second-order correction to the energy becomes proportional to S:

I&&E&2&(0)= g
m&0 II00 +mm

I»»'2'& E&1&(123 E)—E&»(1'2'3 E)
(26)

In Eq. (26), E1I&(0)=Boo denotes EI'&(0) plus the
orthogonalization correction, and the symbol (12~ 1'2')
on the summation means 1, 2 ranging over the ground-
stRtc con6gurRtlon Rnd j. q

2 I'Rnglng outsldc the gl ound-

state con6guration. This requirement of a correct de-

pendence on F constitutes the 6rst convergence property
of the Lowdin transformation that we investigated.

Upon careful term-by-term investigation of Eq. (25)
by a diagrammatic technique, we noticed anomalously
high X dependences coming from two sources: (1) terms
with reducible vertices (ci or %"), and (2) terms with
unlinked parts. For ~m) and ~0) differing in. two
orbitals, we cite as an example of (1) the diagram in

Fig. 1, representing the term +,%0,ci, where ~p}
differs from ~m} in 4 orbitals and from ~0} in two
orbitals. Part of the 4-orbital-different g vertex is re-

ducible into a sum of products of two 2-orbital-different
ci vertices. OIle of these, (12 )

ci
)
1'2'}(np (

ci
~
34} as illdl-

cated by the dashed line in the diagram, is responsible
for the E dependence anomaly: from Eqs. (10)—(21)
wc obtRln

sulYlmatlon over tile lndlces 3, 4, A, and &8 under

constraint

then results in +~ %go, ci, =0($0), not O(1V-I) as re-
quired. As an example of (2), we cite the diagram in
Fig. 2, representing the term P~, ~'Ko~ci~~ci~ . The
analysis is straightforward in this case. Using the cluster-
ordering scheme of Clark and Kcsthaus, ' we were able
to verify in several lowest orders that these anomalous
E dependences cancel exactly, terms of type (2) cancel-
ing those of type (1).The crux of the verification lies in
the reduction of the reducible many-orbital vertices.
Wc are currently working on a general proof. The details
of the veri6cation will therefore be postponed tiH a later
paper. ' It is sufhcient to remark here that there is a
certain resemblance between the anomaly here and that
discovclcd by Brucckncr ln thc Raylcigh-Schrodinger
(RS) perturbation theory. As in the latter case, the
apparent anomalous E dependences in the Lowdin
transformation must be spurio'us (complete internal
cancellation of anomalous terms).

A second convergence property of the Lowdin trans-
formation is the more practical one involving the rate
of convergence of the cluster expansion. Ke return to

":;::,":c&II&&&&&+~'p+&&&ii,::p:iwl~,.".:'&i@4!'.:".i'&c!4:.:i:cl&j:,i&&c&&

'; ' %gjjcj 'r'7)+!'p$'j?gcc&".A;:i. , :,"":";.'; „' .. .4&A~~~$&'~~/'. &cia';+~%'jhow
"'„, W ' '

. jq%@rj~c'j&ijp+1@lrr&Q" I " ~" Q0js .'Ãc&&Srr&&Ice'c'p':r&ji44P)'jkj'j&c'trc' ' ccrQ+x4 '

%&4 f&sc,'Ni&4&;crt~;pA@'. %~/&c:(+%ME'$:;&r+j,.p""4. ;. '.r&&& Q~&I;"g@g, .„W9:»
S&sa&'c&&,:QiQc&&'cc&& ' '~ .„'+"$~++~.rcc&& c'.Kgc'A.err&+&tg+~c'r&r:1&&~-~&Q+ &I+@

@''~~4$kSYj4 c&:I"&AS@&,c+kj4'cr.'-"'~4@&cP'W(&K'j@CZIÃj'kjgi%@Sjecrc. "&&c& tc

".A ":-I"'g . ';:"-'.";.",;."-"--','r'ic c.",'-c. I&NI ';&':.;,':„, ,'ri';=, :i"-,&'S,Sc„:",;.;.";-r'cr& n -"'.:.'. :"a

.jc.W, ';, , :,.',, ",.
'&&&&I,

.j„';;»,.

Sggy4@i@ 4~P&~Q@@gr'r'Srrrrgj11&cog@ ~)~„'$+j@gjy+cc&'@KA~cI@jj@&)'-:ij&Ice&&".jg

h .&. &&&cc $&:chic&&&c&&'r&IAp'& '; & &v

i '::,$gc". ::,' c'.i:;,!'Cijgi'
r~Q

FIo. 1. A typical diagram anth a reducible vertex. FIG, 2. A typical diagram vrith UI}linked parts.
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Kq. (25) and examine the truncated series for Hpp.

E&'&(0)=Hpp

=«'&(0)-(Z ~.,a,.—.' Z ap, 'LE"'(0)-E"'(u)3}

=E&'&(0)+DEpg(0),
—A' E&'&(1'2'3 1V)—E"'(123 E)

AEOB(0) 2 ~12;1'2'X 12;1'2'+ X12;1'2' ~

(»I &'2') 2M

(27)

(28)

At p=0.0140 4 ' (see Appendices A and 8), numerical calculations on a computer yielded

Ei'&(0) 1
=—(Ep'+Ei'(0)+Es'(0)+Es'(0)+

E N

=(—2.843+2.686—0.756—0.127+ }'K=—1.040'K,

AEsg(0) = 1.9'K

(29)

Thus the orthogonality energy correction appears to be
too large (by an order of magnitude) to form part of a
sensibly convergent perturbation series. There are indi-
cations that AEpz(0)/%will be lowered by the inclusion
of higher order cluster integrals, but the accurate
evaluation of these requires an excessive amount of
computer time. This prevents a complete evaluation of
the I owdin transformation in our problem. Fortunately,
the orthogonalization of the basis is not required for the
study of the ground state. In the next section we return
to the nonorthogonal basis and discuss an alternative,
one-step procedure for computing the energy correction
generated by nondiagonal elements in X and K.

III. RAYLEIGH-SCHRODINGER PERTURBATION
THEORY AND THE CLASSIFICATION

OF TERMS

We have the Hamiltonian matrix and the identity
matrix in a representation of nonorthogonal correlated
basis functions. The matrix elements are denoted, re-

spectively, by 3C, and X,.The set of basis states
~
n}

are all normalized, and each involves a Slater determi-
nant specifying N occupied orbitals. One of these states,
~0}, is associated with a filled Fermi sea and thus has
the lowest energy expectation value (for any value of
the total spin, not necessarily zero). This we identify
as the unperturbed ground state (for the given total
spin). Taking the diagonal part of X as the conventional
unperturbed Hamiltonian, we have the unperturbed
ground-state energy

tion theory using a nonorthogonal basis, see for example
Ref. 11. It must be emphasized that for any extended
system such a derivation is purely formal. Complete
justiication for an extended system requires the adapta-
tion to a nonorthogonal basis of the Goldstone-Dyson
procedures in deriving the unlinked Schrodinger-type
perturbation formalism. The resulting Rayleigh-Schro-
dinger energy series is given by

pmmp
E(o&(0)=

m)0 Umm

pmmnnp+"' Z + (31)
te, m &0 Qmmnn
xnan

V .=X .—E«i(Q)X .. (32)

p, is an expansion parameter attached on to the "pertur-
bation" '0 „;it is a measure of the nondiagonal matrix
elements of bo/h the Hamiltonian and the identity. An
obvious requirement for the convergence of Kq. (31) is

mn
N &&1, m/n.

+mm
(33)

It is, however, difBcult to predict how well this condition
is satisfied. We are then forced to judge the convergence
of the series by numerical results.

Rewriting Kqs. (30)—(32) explicitly and letting p ~ 1,

E (0)=Xpp —=(0)H)0}. (30) "J.W. Clark and E. Feenherg, Phys. Rev. 113, 388 (1959);
J. W. Clark, Ph.o, &hopis„Washington University, 1959

For a derivation of the Rayleigh-Schrodinger perturba- (unpublished).
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we have

E—E(0)(P)+d&([E(t) (Q)+dg(E (2) (Q)+QE(s) (P)+.. .

E(0)(Q) —E rg+. Et&"(Q)+E &(Q)yE &(Q)+ ~ ~ ~

hE(')(P) =0,
'Uon'Uom

m)0 'Umm

{~o +lao-[E"'( )—E"'(P)j)'
)0 E&'&(m) —E&'&(P)

gE(s)(P)—
Uom Umn Uno

I&0t Umm UIIn
mgn

{%&& +-', go [E&'&(m) —E("(p)j){% +sf [E(o)(m)+E(o)(n) —2E")(p)j}
X{&o+sg o[E' '(n) —E "(p)j)

m, e)0;
mgn

[E(o)(m) —E(0)(p)7[E("(n)—E&'&(P)j

pansion series. Thus, for g& (r) we have instead of Eq. (6),

F(r) = {F(')(r))+ {F&"(r)+F(')(r))
+{[F"'(r)—F"'(r)l+ )+ " (36)

S»&(r) pf [g =( -', —(» ~)»&]P(ghrr —)d»'

A scheme must be devised to classify terms in this series.
It is most desirable to use a single expansion parameter,
but such a parameter does not always exist. Clark and
Westhaus (CW, an extension of the IY development)
used the Bijl-Dingle-Jastrow form of the correlation
factor gi«;;&](g f(rdg) and deaned a cluster-ordering
parameter

1Vo)

r)(r)dt),
0 0

In II we tested the rate of convergence by calculating
the fermion liquid structure function at k =0:S& (0).The

(35) normalization condition for gs(r) requires

n()=f'() —1

The order of an expression is given simply by the num-
ber of independent r&(r) factors. This results in an ap-
parently satisfactory classification scheme for studying
nuclear matter. For liquid He' in our development, we
first tried the correspondence" (N 1/X) f'(r) ~ g»(r)—
and classiled our terms by counting the number of inde-
pendent [gg&(r) —1j factors. Such a classification scheme
is, however, unsuitable. To see this it is sufhcient to
investigate the convergence properties of the fermion
radial distribution function gs(r) and the unperturbed
ground-state energy E&'&(P).

An essential characteristic of the C% classification
scheme resides in a peculiarity of the 4-orbital-different
(or, more conveniently, the 4-index) contribution. Part
of the 4-index contribution contains in its structure an
"internal momentum conservation" condition' "which
restricts the orbital labels by introducing a Kronecker
delta in place of a [gd&(r) —1] factor. This part is then
of the same ao order as the 3-index contribution and must
be included with the latter in a truncated cluster ex-

~~ This correspondence can be seen from a comparison of our
cluster integrals arith those derived by IY or CW. It is exact for
X~&, X'~» X'~~» Xg,~~» and X'qf~„d but not for Xf~„.

gs F. Iwa~mhoto and M. Yamada, Progr. Theoret. Phys. (Kyoto)
17, 543 (1956); 18, 345 (1957).

S(0) &+,pf=Lg (.) ~]S. —0= (37)

With Eq. (6), Eq. (37) is equivalent to requiring

0=S& (0)=S(0)+6(s)Sp(0)+6(s)Ss (0),

S(0)=1+pf [gp(r) —&]d»=0,

&&&'&Sp(0) =pf gp(r) [g«'!(r) &]d», —(38)

0&'&Sr(0) pf g»(r)F&»'(r)d». =

The deviation of S& (0) from zero was computed. With
the inclusion of F(') (r), Eq. (38) is replaced by

0=ST (0)=S(0)+6(')Ss(0)

+{6(s)S&(0)+h(4)8] (0)),
(39)

0&'&8»(0) =pf g»(r) P&'&(r) dk .

For a rough estimate, we continued the use of the grd(r)
for a Di@ss-4 system as specified in Appendix C of II,
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where it was obtained with the truncated form of Sr(0)
in Eq. (38)

Sr(0)=0—0.542+0.697= 0.155. (40)

The present, reordered Eq. (39) gave

SE(0)=0—0.542+ (0.697—0.631)= —0.476. (41)

While Eq. (40) does not give us a very good normaliza-
tion and has little to say about the rate of convergence,
Eq. (41) is certainly unacceptable. It will be seen
presently that the omitted part of A&o'Sr(0) is of the
same order of magnitude as A&o'r8(0). We believe that
it is of the opposite sign, so that the two parts grouped
together yield a small, negative total 6&4'Sr(0) which
tends to improve Eq. (40).

Turning next to E"'(0), the CW classification scheme
replaces the truncated form

E&o&(0)=Eos+EP(0)+Eo~(0)+Eo~(0) (42)

by

E"'(0)=Eo'+Ei'(0)+EF(0)+[Eo'(0)+Eo"(0)] (43)

h2 1
Eor(0) = P —X'o& .

2~ It:lmn 24

b(ko+k„—k&—k.)u(k )
3fE2 ka, &I,&m, &n

&& {u(k )—-,'u(ko )}k„„'. (44)

Using the ge(r) for a mass-3 system as specified in
Appendix A, at p=0.0148 A ', we obtain with Eq. (42),

E&o)(0) Nf 2 874+2 788 0 804 0 132}oK
= —(1.022'K)N, (45)

and with Eqs. (43) and (44),

E&'&(0)=N( —2.874+2.788—0.804
—[0.132+0.064]}'K=—(1.086'K)N. (46)

Details of this calculation are given in Appendix B. In
Eq. (45) the convergence is excellent; in Eq. (46) it is
acceptable but obviously not as good. A more significant
point is that (E4~(0) )

is smaller than (Eo"(0) ( by a
factor of 2, whereas we expect ~E4~(0)

~
to be small

compared to ~Eo~(0)
~

by a much larger factor if the
cluster expansion is convergent in a natural fashion. It is
more likely that the omitted part, [EP(0)—E4r(0)], is
actually comparable in size to E4~(0) but of the opposite
sign, so that there is a near cancellation between the two
parts of E4~(0). This conjecture could be tested by

numerical evaluation of [E4~(0)—E4~(0)] which re-
quires an extensive machine calculation that we have
not attempted. Note added in proof Th. e author is grate-
ful to Dr. F. Y. Wu for pointing out an error in the
evaluation of E4~(0), and for providing the correct
results now appearing in Eqs. (46) and (33).

The physical reason that we distrust N&o/0, Eq. (35),
as an ordering parameter for liquid He' is that it is by
definition a measure of the correlation volume against
the specific volume, and for liquid He' this ratio is
practically unity. Thus, [6&o'Sr(0)—6&"Sr(0)] and
[E4r(0)—E4r(0)] are expected to be of the same order
of magnitude as A&'&Sr(0) and E4 (0), though one order
higher in co.

A second classification scheme which we investigated
next is based on the fact that

(47)

In the range 0&~k &~2k', u(k) averages to about —0.66.
For k &~2k',

~
u(k)

~
(0.15.For each term to be classified,

we count the number of independent u(k) factors. Like
the CW classification, this scheme is not always reliable.
In fact there is some connection between these two
schemes: compare

u(k) —=S(k)—1

=p e'"'[g (sr) —1)]do

E—1
f'(r) —1 dv

g
S

e'"'[f'(r) —1]ds
0

to Noo/0, Kq. (35). Numerical results similar to those
discussed in connection with the co ordering caused us
to reject this scheme as well.

The classification scheme that we finally employed is
the direct and natural one of using two expansion
parameters. p classifies the perturbation order and the
index number subclassifies the cluster order. In the
calculation of the ground-state energy, Kq. (34), the
zeroth-order term is E& &(0), which we calculate as
accurately as possible, including terms up to all 3-index
contributions. The first-order correction is zero. The
second-order correction is given by AE&o~(0). Including
all 2-index contributions and no more, it reads

aE&»(0) =—
(12(1'2')

E&'&(1'2'3 N) —E&'&(123 N) k'
X12;1'2' M ~12;1'2'~ 12;1'2'

4 2M

(49)

(k'/2M)'
+ 12;1'2' y . (48)

E&o)(1'2'3 N) —E&o) (123 N)

&o)(m) E&oI(Q) (EP+.EP(m)+Eor(m)} —fEo +EP(0)+Eo+(0)}.
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Judging from the speed at which the E'oi(0) series converges and the way F(r) converges (Appendix C), we con-
clude that the 3-index contributions are sufficiently small so that Eqs. (48) and (49) give a good estimate of
DE&'&(0), which is itself small compared to E'0'(0). These 3-index contributions, as well as corrections higher than
the second order, are omitted because they involve integrals too complex for actual evaluation.

This section is concluded by making the observation that the two-step procedure of diagonalizing 1 and H
successively (I,owdin transformation+ordinary RS perturbation using the orthogonalized basis) would lead, at
least in the second order up to 3-index contributions and in the third order up to 2-index contributions which we
have checked, to precisely the same results as the one-step procedure outlined in this section. In the second order
up to 2-index contributions, the corrections in the two steps are given, respectively, by

E(oi(1 2 3. . .N) E( )0(123. . .N)
~Eon"'(0) =- X12 1'2' + Xi2;i'2'X 12;1'2'

(12I lr2r) 2M
and

(i'i'/2M)'
~E.."'(0)=- Z X 12;1'2' ~

ii2[i'2') E&'&(1'2'3 N) —Ei i(123 N)
(51)

Compare Eq. (48) with Eqs. (50) and (51). It is as if
we had here obtained AEi'i(0), Eq. (48), by first
truncating the Lowdin series long before any kind of
convergence has been reached (shown numerically in
Sec. II), and then turning immediately to the truncation
of the (ordinary) RS series, which in all likelihood con-
verges at an equally slow rate as the Lowdin series. In
our one-step procedure such arbitrariness is avoided.
The situation appears to be that the Lowdin trans-
formation produces a strong shift in the Hamiltonian
matrix away from the diagonal form. A large (un-
physical) change in the diagonal matrix elements (the
orthogonality correction) must then be compensated by
a large change of opposite sign given by the second-
order RS energy correction. That either change has been
computed accurately is doubtful. On the other hand, the
one-step calculation avoids the artificial resolution of a
small eGect into two large effects of opposite sign and
yields an encouragingly small energy shift.

IV. RESULTS AND DISCUSSIONS

Figure 3 shows the fermion radial distribution func-
tion gr(r) as compared to gii(r)' for a mass-3 system.

1.2

There is as yet no experimental result for comparison
with gr(r). Qualitatively, gr(r) shows a somewhat di-
minished peak and a slight shift toward larger r as
compared with gs(r), consistent with the requirement
of extra repulsion imposed upon a system of fermions by
the Pauli principle. Quantitatively, gr(r) must be offered
as a prediction. It is understood that scattering experi-
ments measuring Sr(k), thus indirectly g&(r), will soon
be under way at several laboratories. Appendix C gives
the essential intermediate details leading to our results.

All other ground-state properties are based on our
second-order perturbative calculation using Eqs. (34)
and (48). The only other device required is the so-called
quadratic approximation of $(k), as explained in Ap-
pendix B. The properties computed are (1) equilibrium
density and ground-state energy per particle, (2) com-
pressibility and velocity of sound, and (3) paramagnetic
susceptibility. Table I gives the known experimental
results, the theoretical results of Brueckner and Gammel,
and our results using two different methods of analysis.

A. Equilibrium Density and Ground-State
Energy per Particle

The boson energy Eo~ and radial distribution function
g~(r) for a range of densities p were made available
to us by Massey. ' Table II shows the fermion energy

I.O

0.9

TAsr. E I. Our numerical results compared with experiment
and the Brueckner-Gammel calculation.

0.8

0.7

0.6
0.5
0.4

0.2

Pro. 3. The boson
and fermion radial dis-
tribution functions. Po

z(0)/s
E0
C0

y/Xp

0.0164—2.52
3.8

180
11.1

Ground-state
properties' Experiment

The B-G
theory

0.0136—0.96
5.3

169
(12)

Qur
results

0.0148—1.35
99

117
(13.9)

Linear
estimates

fitted
fitted

3.6
184

O. I

0.0 I i I

20 3.0 4.0 5.0 6.0 7.0 8.0
r (A)

& po denotes the equilibrium density in A 3, E(0)/N the ground-state
energy per particle in 'K, Xo the compressibility in %/atm, co the velocity
of sound in m/sec, and X/x~ the paramagnetic susceptibility in terms of the
ideal fermion value-X~.
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TABLE II. E&'& (0), nE&'& (0), and E(0) [energy unit: ('K)N. g.

0.0132
0.0140
0.0148
0.0156
0.0164

4.305
4.477
4.647
4.812
4.976

Epa

—2.802—2.845—2.874—2.885—2.877

zg(0)
2.583
2.686
2.788
2.887
2.986

—0.702—0.753—0.804—0.855—0.905

—0.121—0.127—0.132—0.137—0.141

g~(p) (0)
—1.042—1.039—1.022—0.990—0.937

pe(2) (0)
—0.282—0.303—0.327—0.351—0.375

Z(0)
—1.324—1.342—1.349—1.341—1.312

E(0)=E&'&(0)+DE&"(0) for several values of p, as calcu-
lated in our second-order theory using Eqs. (34) and
(48). The calculation of EP(0) in E& '(0) required the
use of the quadratic approximation described in Ap-
pendix B. It is seen from Table II that the cluster-
expansion leading to E&"(0) converges quite well for
all densities. The calculation of 2 E&"(0) made use of a
geometrical construction. A detailed description appears
in Appendix D. Note that AE&'&(0) is smaller than
E&"(0) by a factor of about 3, indicating that the con-
vergence is suKciently rapid to make the second-order
perturbation theory meaningful.

The results in Table II are plotted in Fig. 4, which
we use as an aid to locate the minimum. The smooth
curve 6tted to the data shows that the minimum falls at

p&&= equilibrium density= 0.0148 A ', (52)

E(0)/N= ground-state energy per particle
=—1.35'K. (53)

These values, in particular E(0)/N, do not agree too
well with experiment. We suggest that the disagreement
has its source in the critical nature of the boson calcu-
lation. The inadequacy results from using (1) an ap-
proximate trial function and (2) the Kirkwood super-
position approximation in computing the expectation
value of II. Massey believes that source (1) is by far the
dominating factor, causing the energy estimate to be
higher than would result from an exact calculation. All
these errors are actually small, but not at all negligible
since Eon results from a critical balance of (T) and. (V).
For example, at p= p&&=0.0148 K ', (T)/N=11. 764'K,
(V)/N= —14.638'K, E&& /N= —2.874'K. Thus a mere

7% decrease in (T)/N or (V)/N would lower E&&n/N by
1'K (or 35%).This critical balance is even more signifi-
cant at higher densities (where (T) gradually catches
up with (V) and eventually surpasses it), which means
than an even smaller correction than 7% would be
sufhcient to account for our disagreement with experi-
ment at the correct density 0.0164 A '.

TABLE III. Compressibility and velocity of sound.

B. Compressibility and Velocity of Sound

The pressure of the liquid is given by

dr&(0 p)/N)
~(p) =p'

The compressibility and the velocity of sound are,
respectively,

( dP'&
1t(p)=~ p

& dp)

and

d LE(0; p)/N j d'[E(0; p)/N j -'
2p2 +p3

dp
(55)

c(p) =
Apl&. (p)l

(56)

Table III shows 1&.(p) and. c(p) at various densities.

-I.3I

»I.32

FIG 4. The energy-
density curve.

-I.33

-I.34

Returning again to Table I, our density and energy
values appear to be improved over those of Brueckner
and Gammel' (BG), which prior to our calculation was
the only erst-principle theory" of liquid He' in existence.
This observation may however be misleading. As shown
in Appendix A, the two-particle potential determined
by Massey is different from that used by Brueckner and
Gammel. Without an extensive recalculation it is im-
possible to estimate how a change of potential from that
of Massey to that of BG would affect our results.

0.0132
0.0140
0.0148
0.0156
0.0164

X(%/atom)

27.93
17.80
9.94
5.52
3.19

c(m/sec)

74.1
90.2

117.4
153.4
196.8

-I.35-

DI32 .QI4Q QI48 .QI56 .QI64

pt A-3)

"By a Grst-principle theory we mean one that starts from a
Schrodinger equation with an assumed (in most cases phe-
nomenological) interatomic potential.
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At the calculated equilibrium density,

Zo=a a4Fo/atiu,

co=112.4 m/sec.

is good. In turn it means that the second derivative of
(1/X)EE„„&(0;p) with respect to p is unchanged from

(57) our previous value d'$E(0; p)/N j/dp'. At p= 0.0164 A ',
this value is 4 58.X10"K/A ' With the first derivative
set to zero at equilibrium, we finally obtain

These values have been entered into Table I.
On 6rst sight, our results for the compressibility and

the velocity of sound are disappointing. This is clearly
a consequence of the very strong dependence of E on p.
(See Table III.) With a poor determination of ps, it is
not unexpected that EG, and consequently cG, disagrees
with experiment. A more reaonable way to evaluate
the results of our calculation can be obtained by fitting
our ps and E(0)/X to the measured values before calcu-
lating EG and cG. As discussed in an earlier paragraph, a
correction for ps and E(0)/l&l should begin from the
boson calculation. Let us express the correction to
EsB/F as a power series in (p—ps)/ps. In the lowest
order,

K(0.0164 A ') =3.6%/atm,

o(0.0164 A ') = 184 m/sec,

in good agreement with experiment.

(64)

(65)

and

E"(0;*=0)&0,

E(0; x=0)(E(D;x=ai),

(66)

(67)

C. Magnetic Properties

Necessary conditions for an antiferromagnetic (total
spin zero) ground state include

(P—
Ps'&

&B(p) —Es MB(p)+&i+/~ .
~

(59) where x defines the spin distribution:
& p, &'

Xg——l&&)'(1+x)/2, (68)

where Es,MB(p) is the energy computed by Massey. We
can determine u and b by forcing our results to agree
with experiment. Retaining E~", E2, E3, and hE&''

unchanged, experiment requires

1—Es,m ..iB(0.0164 A ') =—Es MB(0.0164 A ')

+f (—2.52'K) —(—1.312'K)}, (60)

and the primes on E(0;x) refer to derivatives with
respect to x. Equations (68) and (69) are also sufFicient
conditions provided that E(0; x) has no minimum in the
intervals between x=0 and

~
x~ = 1 excluding endpoints.

If the gound state is antiferromagnetic, the paramag-
netic susceptibility at T=O'K may be calculated by a
simple formula derived in I (in a slightly different form):

dEExsat(0 j p)

—p=G, G164 A ~

X/X~=
—ssLE"(0; X=o)/lVe, ] (69)

EE„,&,(0; 0.0164 lii ') —EE„,.&(0; 0.0156 A ')
=0,

(0.0164—0.0156) A '
(61)

where

EB*-i(0;p) =Eo,E-.&'(p)+Ei'(p)+Es'(p)
+E'(p)+~«'&(p). (62)

Equations (59)—(62) then lead to

A test for condition (62) was made at p=0.0140 A '
with the result

and

E«&(0; x= 0)/iV= —1.04'K. ,

E«&(0; x= +1)/iV= —0.66'K.

(20)

(71)

Since b E&'&(0; x) is several times smaller than E«i(0; x),
and also the dependence of energy on density is not very

u= —1.15'K, b = —0.537'K. (63)
TABLE IV. EP(0; x) and aE&'&(0; x) (in units of Ee~)

At the experimental density p= 0.0164 A ', we now have
0.0 0.05 0.10 0.20

1—E „,(0;0.0164 A-)
E

1.312'K—1.15'K—0.058'K = —2.52'K.

The smallness of b causes the linear correction term to
be small compared with the constant term a. This sug-
gests that the linear estimate of the correction, Eq. (59),

EB
EP(0 x)
Eg"(0.x)
EP(0; x)
aE&&)(0 x)
E(0; x)

-0.635
0.60000

-0.16883
-0.02836
—0.066567
—0.298757

—0.635
0.60083

—0.16936
—0.02868
—0.066484~
—0.298694

—0.635
0.60333

—0.17094
—0.02965
—0.066240
—0.298500

& Estimated by extrapolation or interpolation.

—0.635
0.61336~

-0.17723~
—0.03348~
—0.065382
—0.297732
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Fzo. S. (1/N)E(0; x)
at p=0.0140' 3.

)Efo,x}
f8@)
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-.02981-

-.029N'
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discussed herc. Table IV and Fig. 5 show our results
obtained at p=0.0140 A—'. Using these we computed

E"(Q;x=0)
={LE+"(Q x=O)+EP"(Q x=0)

+EP"(Q x=o)+ "j+LaE&'&"(0 x=o)+ "g}
={Ã.667—o.424—o.262+" j+L0.06g+" j}¹,
=0.049¹g+ (73)

In our approximation, then, condition (66) for anti-
ferromagnetism is satisned, although it is undeniable
that the almost total cancellation in Eq. (73) puts the
magnetic behavior of the ground state of liquid He' in
a very critical 1cglon.

Finally, using Eq. (73),

strong, Kqs. (70) and (71) indicate that condition (67)
for antiferromagnetism is satisaed. . This is opposite to
the result found in I for a hypothetical fcrmion mass-4
system. The cause is traced to the more concentrated
gs(r) in the latter case: a larger mass leads to smaller
zero-point motions, therefore a more concentrated gs(r)
and a more spread out S(k); and the slower rise of S(k)
to its peak causes a more negative EP(Q; x), which is
su%.cient to rcvcrsc thc sign of

1/&{E&»(Q x=0)—E'o'(0 x=+1)}
To test condition (66) o«alen»«xjxz, we need

E"(Q;x=O). The proper way to calculate E"(0;x=O)
begins from the expression {E(Q;x)—E(Q; x= 0)}.
Whereas E(Q; x= 0) involves integrations of momentum
states over two Fermi spheres, each associated with one
spin orientation and of radius k~, E(Q; x) involves
integration over two Fermi spheres of Nweqeu/ radii
kg+ and kp . Expanding the integration limits
k~+——k~(1~x)'~' in power series of x and the integrands
in Taylor series about x=O, E(Q; x) and E(Q;x=0)
combine to yield

E(Q x)—E(Q x=O)=Cx'+C'x4+
- d2

E"(Q;x=o) = {E(Q;x)—E(Q; x=o)}
SX - x=Q

{1—0.636—0.393+ "}+{0.101+ "}
=13.9. (74)

0 072+ ~ ~ ~

This is close to the (extrapolated. ) experimental value of
II.1 and the theoretical value of 12 given by Brueckner
and Gammel„although both theoretical values are
equally unreliable.
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APPENDIX A: RESULTS OF THE
BOSON CALCULATION

In Fig. 6 the two-particle interaction determined by
Massey' is compared with the Yntema-Schneider po-

I I I I I 1 I $ I
I I I I

For a complete set of formulas, see Ref. 7.
In our working approximation we actually took an

alternative route for convenience of numerical com-
putation: we evaluated EP(Q;x), Em (0;x), Es~(Q;x) and
5E&'&(Q;x), each for a range of jxi: LO.O, 0.05, 0.10j
for E~(Q'x) and $0.0, 0.10, 0.20$ for DE~2'(0'x) then
we 6ttcd each set of three points to an even biquadratic
in x, from which we computed the second derivative
at x=0. The calculation of AE&~&(Q;x) resembled that
of hE&'&(Q; x=O) except for a difference in integration
limits. Appropriate modihcations in the procedure de-
scribed in Appendix D were required but will not be

-I
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FIG. 6. Tvvo-particle potentials assumed in the Brueckner-Gammel
g,nd the present theories.
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TAal.z V. Parameters used in results quoted in Appendix A.

~0~6)(.K)

0.0132
0.0140
0.0148
0.0156
0.0164
0.0140.

1.43 2.24
1.505 2.29
1.58 2.34
1.655 2.39
1.73 2.42
1.515 2.2

14000 15.0 1500 —2.802
12300 14.4 1330 —2.845
10900 13.75 1175 -2.874
9600 13.1 1030 —2.885
8500 12.5 900 —2.877
9000 15.0 1200 —2.843

a The last line. gives an earlier version of Massey's results vrhich vie used
for the calculation of the magnetic susceptibility and the second-order
Lowdin correction.
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tential used by Srueckner and Gammel. Massey's
calculation for the hypothetical boson He' system leads
to the following results:

gs(r) (o+1)e—(d/z)M oe
—(&+z) (dlz)M

d~ tn zl

+g
~

e
—0+m) (dlr)~z

Il~ & ()+4) (dlr)M—
)r

m= 6, n= 8, d'= ))/2n. p,

(;={(1.155574/ri) —1}/{1—(1+s)"}

FIG. 7. The boson liquid structure function and the
quadratic approximation at p =0.0148 A '.

as given in Eqs. (83}and (84) of I. We determine 8 in

the following manner: calculate EP(0) exactly through

integration, using Eq. (30) of I, and then substitute into

the left-hand side of Eq. (81).Equation (82) then gives

an estimate of EP(0). For a special case, p=0.0241 A ',
the error of this approximation was found to be less than

2/o.
S(k) and its quadratic approximation at p=0.0148

A s are shown in Fig. 7.
In this approximation E4~(0) reduces to

m —3) r4 —3))
~(1+&)(~—s)(to I ~(1+.&)(~ s)()o

1o ) 1o i
)-23 2164 2176

S z(4)=~ + S O')lllz (SZ).—
k 770 25025 25025

with the parameters as given in Table V.

APPENDIX B: THE UNPERTURBED
GROUND-STATE ENERGY

APPENDIX C: TABLE OF
INTERMEDIATE RESULTS

TAsLz VI. Intermediate results leading to g)z(rl.

further reduces EP(0) and Es~(0) to

—3j. 6
Es~(0)= BEep, ———

5 2 7
(81)

—3 ~3 352 472
EP(0)=

~

-Ii— J3s+ Iis Xe„
5 (7 315 735

(82)

Equation (8) giving E(o)(0) can be reduced to inte-

grable expressions: Eq. (30) of I. The quadratic
approxlmatlon

1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0
5.4
5.8
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6.6
7.0
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8.6
9.0

0.660
0.721
0./82
0.839

0.888
0.928
0.958
0.979
0.991
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1.000
1.000
0.998
0.997

0.996
0.996
0.997
0.998
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—0,004
—0.003
—0.002
—0.001
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0.039
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0.041

0.028
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0.006
0.001
0.000

0.001
0.003
0.004
0.005
0.004
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0.760
0.829
0.891

0.945
0.986
1.014
1.029
1.032

1.026
1.016
1.006
1.000
0.997

0.998
0.999
1.001
1.003
1.003
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APPENDIX D: CALCULATION OF AE"&(0)

Upon substitution of the explicit expressions for X12;12 alld X 12 12 Eqs. (16)—(17), Eq. (53) becomes

h2
AE&2&(P)— b(kp+k2 —kl —k2) (12)1'2')u'(hip) hip'+

2MN2 (»I1'2')

+(1212'1')u (kp2) kp2+

~ ~( )@2~;12

P2'; 12-

kP2

1'2'12 2~11' ~1'2—(12,1'2')(12,2'1')u(hip)u(kp2) klp +kp2 + +
2 ~2E"'1 2'»-

{($1q$2)Ty(kl)k2)+(1 (SI)$2))Ta(kl~k2) }~

2E k1~1 kRs2

It,
'

T„(kl,k2) = Q b(kp+k2' —kl —k2) u'(klp) klp'+
4M%2 kI »2

+u (~P2) ~P2+ +

1'2', 12 2~11' ~1'2
u(klp)u(~p2) ~lp +~1'2+ +

2 6'E & 1~ 2', 12-
(D2)

T.(kl,k2) = p b(kp+k2 —kl —4)4'E' »,k2

X u(&IP) &II +
1' 2', 12 ~11'' + +u(~P2) ~P2+

1'2', 12 ~1'2

4
(D3)

A2E&o&p2 „=E&'&(1'2'3 IV)—EI"(123 ~V). (D4)

k1 and k2 range over all orbitals inside the Fermi sphere, and k1. and k2. range over all orbitals outside. Further,
for zero total spin,

3 2

AE& &(0)=—P {T„(1„k,)+T.(1 „l,)}=A'—
+ kl, k2 Sm.

{T„(kl,k,)+T.(kl, k,)}dkldk2, (D5)

3)
T,(kl, k2)+ T.(kl, k2) =——~'P{Tl(kl, k2)+ T2(kl, k2) —T2(kl, k2) },

2 Sx
(D6)

Tl(klyk2) J 2~ xll'+
1'2', 12/~F Xll'

u'(kPxII')
4 1'2'; l2/~F

(D7)

r A E p2';l2/kgP +1'2
T2(kl, 4)=J 2I xp2'+ + u'(k pxp2)2 7 2 ~~~ 2

4 1P/2~F2

xll' +xl'2 A E p2'; 12/~E xll' xl'2
T2(kl)k2) =J 2 + + iu(kpxII )u(kgxp2)

2 A E p2~;12/kp )
(D9)

vrhere the functional J[f(xl,x2,xl,x2)j is dined as

J[f(XI,X2,xp, xy) j= f(xlyx2yxl'yx2')dxp
Xii &1
21 &1(X2~ = (XI+&a—XI~ j)

(D10)
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h ndle The calculation of Jkf(»|x»xi'&xm')~~The integration» Eq (Ds) red"
b d on the following geom«r'cal co"s""threefold one%hlc 18 easf 0

8 dg Th yo fi io ifiT. k ~ =x along the azimuthal ax1s. x~ isth, , es
that xp may not terminate in a unit sp ere a ou e
(see Figs. 8—9). For an arbitrary @ we have the construction in ig.

k

FIG. 8 GCOIBetrlcal constructH)n I.
Pro, 9. Geometrical construction II.

0&~ 8&» 0'1, limits on xi are x cos
0 4

0~1&~8&~ O~q, limits on xi~ are 1 to x cos8—(1—x' sin'8 ' ', an x cos
Oi&~8&~s., limits on xi are l to ~.

X(f(x„x„x,,x,.)j=
Xl/ +1

(Xl+XX—XV I +1
f(xi,xg,xii,xy)dxi~

COS 82

Cosel

ds f(xi)xsq XP qX1I )Xii dX11.

Xm;+(I -X~(i -S~}}l~~

xs —(1 -x&(1 —s&33»&

f(Xi,xi,xP,X1~)Xii dXii+
—j,

ds f(xi,xi,xii,xmi)xii dxp

0'1 and 0'2 are defined as follows:

g
costi= cosO~g=-,

2

V2&x~&2,

costi= 1

F1I1allfq froIQ Flg. 9q

Xim+X' —Xg'
cos(xi, x) =

2

X22+X'—Xim

COS(xy, X)=
2$2X

cos(xi,xi.)= sin(xi, x) sin8 cos4+cos(xi, x) cos8,

cos(xi,xp) = —sin(xl, x) S1118co++cos(x2qx) cos8.


