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The shift in energy levels of p molecules produced by the nuclear interaction energy has been calculated.
It is proportional to the probability of coincidence of the two nuclei and to their zero-energy scattering
length. In ppp it is 0.01 eV; in ppd it is 0.005 eV. The effect may be detected by measuring the hyper6ne
splitting of ppd, of which it is a considerable fraction, and a null test for its presence is given. Its magnitude
yields the difference of the nuclear scattering lengths in different spin states. As a by-product of our analysis
of the ppd hyperlne splitting, we discuss the possibility it presents, as compared to ppp, of studying the
p-p spin-spin interaction, which is a sensitive test of quantum electrodynamics.

I. INTRODUCTION
' N ordinary matter, nuclei are kept apart by their
~ - mutual Coulomb repulsion, so that the short-range
nuclear forces acting between them have a negligible
inQuence on molecular energy levels. However, in
muonic molecules, which are made of two hydrogen
isotopes and a muon, the mean Iiuclear separation is
200 times less, of order (nm„) ' instead of (nm, ) ', and
the probability of quantum-mechanical barrier penetra-
tion, whose dependence on the separation is roughly
exponential, becomes significant. This gives rise to the
familiar phenomenon of catalysis by muons of nuclear
fusion reactions' that only take place in ordinary matter
at thermonuclear temperatures. What does not seem to
have been discussed before is that the nuclear forces
also have a static eftect: They produce shifts in p, —

molecular energy levels.
It would be of interest to detect for the first time the

effect of nuclear forces on molecular energy levels. We
find, in fact, that the expected shift is a considerable
fraction of the p,-molecular hyperfine splitting (and also
changes the nuclear spin wave function by a few per-
cent. ) Its measurement has an immediate interprets;
tion: It gives directly the difference between the
zero-energy nuclear scattering lengths in different states
of total nuclear spin. Determination of these scattering
lengths by scattering experiments' is inherently less
accurate and depends on extrapolating to zero energy
the results of a phase-shift analysis at finite energies.
To measure the p-molecular hyperfine separation a
resonance experiment is conceivable' in which change
in population of the different hyperfine levels is detected
by corresponding change in the spin-dependent fusion
rate. Alternatively the muon decay asymmetry could
perhaps be used in familiar fashion to detect changes in
polarization induced by a laser beam, following a sug-
gestion attributed to Novick. 4

* Work performed under a Ford Foundation Grant.
' L. Alvarez et aL., Phys. Rev. 105, 1127 (1957).' R, A. Christian and J. L. Gammel, Phys. Rev. 91, 100 (1953).
' Vale Study on High Intensity Proton Accelerators, Internal

Report V.12, by the Vale design study group, p. II—89 (un-
published).

4 Ref. 3, p. II—91,

II. ENERGY SHIFT DUE TO NUCLEAR FORCES

The total Hamiltonian is

B=PM+ VN q

where V~ is the strong but short-range nuclear inter-
action Hamiltooian. We denote by P the projection
operator onto the space orthogonal to

~
M),

v=1 iM)(Mi. (3)

One easily veri6es that the iMtL
~
M)—(V~+8V& E) '—

XEV~~ M)] is an eigenvector of P with eigenvalue 8,
provided 8 satisfies

Z=Z~+(M
~
[V~ V~(II~+ I'V—~ Z) 'I'V~j

~

M—).-
(4)

Let us now relate the energy-level shift h=B—E~
to the nuclear scattering length. Because V~ is strong
it connects ~M) to highly excited states orthogonal to
~M) and the projection operator in I' in Eq. (4) may
be replaced by 1. The energy denominator is of order
of nuclear energies (MeV) so that the contribution to
the denominator of the kinetic and potential energies
of the muon is completely negligible, and the denomina-
tor in Eq. (4) may be replaced by (H2 —E) ', where EI&

is the total Hamiltonian of the two nuclei. We thus
seek the expectation value in the molecular state of the
operator Lv~ —V~(H2 E) 'V~]. It is independe—nt of
the muon coordinates and it vanishes unless the two
nuclei are a nuclear distance apart. For this configura-
tion, the molecular wave function. , which is squared and
integrated over muonic coordinates, may be replaced,
apart from normalization, by the regular Coulombic
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We now calculate the molecular energy level shift
produced by nuclear forces. The p molecule is made up
of two hydrogen isotopes and a muon. I,et B~ be the
molecular Hamiltonian which is the sum of the kinetic
and Coulomb interaction energies of the constituent
particles. Its eigenvalue E~ and corresponding nor-
malized eigenvector

~
M) satisfy

H~(M)=E~)M).
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TABLE I. Energy levels and probabilities of total nuclear spin for the various muonic molecules.
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wave function
~
P). So we find

Ar= Gn, n,'(0) (4s/2mr)ar. (6)

We have introduced the subscript I as a reminder that
the scattering length a, and consequently the level shift
6, depends on the total spin I of the two nuclei, n~

and s2.
This is the desired result which is, in fact, intuitively

obvious. It could have been obtained by introducing an
eBective nuclear interaction Hamiltonian, t/', ff —4+
X (2m„) 'a5(r), which gives the correct scattering
amplitude in Born approximation. However, we have
given a detailed derivation to make clear that the
Coulomb interaction has been disentangled correctly.
The quantity G„,„,'(0) is important because it deter-
mines the rate of nuclear fusion reactions. It has been
computed most recently for the ground state of ppp

' J.D. Jackson and J.M. Blatt, Rev. Mod. Phys. 22, 77 (1950).

Here C' is the familiar Coulomb penetration factor
which gives the probability, according to the Coulombic
wave functions, for the two nuclei to coincide, and
G'(0) is the same quantity, integrated over muonic
coordinates, in the molecular state. The binding energy
is about 2 keV (which is much closer to zero than one
ever gets in the corresponding scattering experiments)
so zero-energy scattering theory' is applicable. Apart
from a factor 2m„/4s. (I„=reduced mass) the matrix
element is —(k cot5) ', where 5 is the additional phase
shift induced in the Coulomb wave functions by the
presence of the nuclear forces. At zero energy the
nuclear scattering length a is given by' C'k cotb = —1/a
[apart from the familiar term involving h(r)) which is
negligible at —2 keV], and so we obtain

63~2= 0.0049%0.0004 eV.

Ag(2
——0.0005&0.0004 eV. (9b)

These may be compared with a dissociation energy of
the order of 200 eV.

III. MOLECULAR HYPERFINE SPLITTING

The most likely method of detecting such energy
level shifts is to measure directly the molecular hyper-
fine splitting. This was first calculated in the thorough
review article by Zel'dovich and Gershtein' and again
by Carter, ' neither of whom, however, included the
effect of nuclear forces. We calculate the hyperfine
splitting for spherically symmetric states, X=0 (E is
the total orbital angular momentum of lepton and
nuclei), of the various molecules.

Ig columns 2 and 3 of Table I, we list the total
nuclear spin I and the total angular momentum Ii of
the molecules. Except for PpP and (pl which have only
I=O because of the exclusion principle, they all have a

6B. P. Carter, Phys. Rev. 141, 863 (1966} and Erratum (to
be published). A more complete bibliography may be found here
and in Ref. 7.

7 Ya. B.Zel'dovich and S. S. Gershtein, Usp. Fiz. N'auk 71, 581
(1960) LEnglish transl. :Soviet Phys.—Usp. 5 593 (1961)].

and pad by Carter, ' who finds

G '(0)=2.5X10"cm ', G„s'(0)=1.0X10"cm ' (7)

(no estimate of error given). In the case of other a
molecules with higher reduced mass of the two nuclei,
this quantity decreases further. For a p-p scattering
length of —7.7 F,one finds in the ppp molecule an energy
level shift

6»———0.01 eV.

For quartet and doublet p-d scattering lengthss asrs
=12.5~0.1 fm and a~~2 ——1.4&1 fm, one finds in the
ppd molecule
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~„n=VI.»,n. (13)

Values of the relative overlap are tabulated in Ref. 6
and are a bit larger than 0.5.

For the a~pe~ molecule, the total hyperfine Hamil-
tonian is the sum

H= H(n„n, )+H(p, n, )+ H(u, n2),
E + g (P nzm2 P nin2)

+2 Avn2(p/F1/2 P/2 —1/2 )
+2~Vn2( P/12/+2 Pza —1/2 ) &

(14)

hyperfine splitting and two possible values of I, which
we distinguish by I) and I& for the greater and the
lesser. In these cases the energy level shift given by
Eq. (6) becomes an operator in spin space which we
write as

H(ni, n2) =Eo(ni, n2)+216„,„,(pz&"'"2 P—z&"'"'), (10)

where Eo —2'(hz&—+—hz&), 6= (Dz& Az&), —and ni and n2

label the two nuclei, n, p=, d, or t. The Pz"'"' are pro-
jection operators onto the states of total spin I of the
two nuclei.

The remaining part of the hyperfine interaction is
simply the familiar magnetic spin-spin interaction of
the p, with each nucleus. (We neglect the magnetic
spin-spin interaction of the two nuclei. ) It has a tensor
(D-wave) part which gives no contribution when evalu-
ated in a spatially symmetric state (8=0), and an
5-wave part

H(/2, n) =G„„'(0)(42rng„/3Mmi„)i„S, (11)

where o. is the fine-structure constant, g„ is the magnetic
moment of the nucleus in nuclear magnetons (gv= 2.79,
ge ——0.857, g, =2.98), 3f is the nucleon mass, m is the
muon mass, i„ is the spin operator of the nucleus, and
s is the muon-spin operator. The overlap G„„'(0) is the
probability that the p and the nucleus e coincide, inte-
grated over the position of the other nucleus. Just as
G„, ,'(0) in Kq. (6) determines the rate of nuclear
fusion, the quantity G„„'(0) determines the rate of /2

capture by the nucleus n. A comparison of Eq. (6) and
Eq. (11), giving respectively the ni-n2 nuclear level
shift and the p-e spin-spin level shift, is instructive
since they have a similar form. The weaker p-e spin-spin
forces are more than compensated for by the much
larger /2-n overlap, G„„'(0),which is enhanced by Cou-
lomb attraction, whereas the ni-n2 overlap, G„,„,'(0),
is reduced by Coulomb repulsion.

We rewrite H(/z, n) in the form

H(, )=Eo(, )+l~.-(p'+ ""—P'- ""), (12)

where i=spin of nucleus n, Eo(/21n) = , 2/1/(—i—+21),
and 6„=G„'(0)(i+—,') (42r12g /3Mmi). It is convenient
to write h„„as the product of the hyperfine splitting in
the pm atom Dv„„and the relative overlap 7„, which is
the ratio of the overlap in the molecule G„„'(0), to the
overlap in the pm atom:

where Eo= Eo(nino)+Eo(/2ni)+Eo(/in2). The matrix
elements of this Hamiltonian are easily evaluated in a
basis where a pair of P's are diagonal by simple re-
coupling of 3 angular momenta. The resulting eigen-
value problem is either one or two dimensional. The
eigenvalues for all p molecules are displayed in Table I.
There the ground states of the various molecules are
listed according to total nuclear spin I and total angular
momentum F of each molecule. The entries for dp, t and
t/it are obtained from the corresponding entries for P/sd

and P/2t by the substitution P —+ /, . The fourth column
expresses the corresponding hyperfine energy 6p pro-
duced by the nuclear and magnetic spin-spin inter-
actions, over and above the energy levels produced by
the Coulomb forces. When a state contains a super-
position of two different total nuclear spins I, the last
column gives the probability, Pz), that the greater spin
occurs, with Pz&+Pz& 1. These ——probabilities deter-
mine the fusion rate from the corresponding state, since
the latter depends strongly on the total nuclear spin.
The most convenient use of this table is, perhaps, to
invert the formulas and express the two-body inter-
action energies, A„or 6,„„in terms of the measurable
hyperfine separations which are the di8erences between
the hyperfine energy levels. Let us adopt for these
differences the notation hv(F1, F2) =ov,—ov2. Then for
the P/zd system we Gnd

6vv= "/ykvvy= Av(211 )+ Av(011) p (15)

h„e=yshv„s= ,'Av(2, 2), -
~«= »(2,2)+ O»(2 2) .

(18)

(19)

For the p/2t system this inversion cannot be effected
since the observable energy diGerences give only two
linearly independent symmetric functions of the three
unk. nowns 6», 6„&, 6„&. The result for the dIJ.t system
is obtained from Eqs. (15) to (17) for P/2d by the sub-
stitution p ~ t.

Let us now discuss the significance and use of Eqs.
(15) to (17) and, mutatis mutandis, of Eqs. (18) and
(19). We note first of all that Eq. (17) expresses the
interaction energy due to nuclear forces, A~g, entirely
in terms of the measurable hyperfine separations. Con-
sequently when the measurements are effected, a non-
zero value for the right-hand side of Kq. (17) means
that the e6ect of the nuclear forces has been detected,
indePendently of molecular 2//aeefunction calculations

a„s=ysav„s=-2, av(2, 0)+-,'%2{hv'(1,1')
—[Av(2, 1')+hv(0, 1)—ohv(2, 0)j')'" (16)

hvd = -', hv (2,0)—42V2{6v'(1, 1')
—[~v(2,1)+~v(0, 1)——;~v(2,0)j2)»2 (17)

We have made use of the inequality D„s)h„s [justified
by the numerical estimates below, Eq. (21) and Eq.
(23)] in determining the sign ambiguity of the square
root. For the dpd system we find
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This provides a null test for the effect of the nuclear
forces. Of course knowledge of the overlap probability
G~q'(0) yields, via Kq. (6) the difference of scattering
lengths:

&r g= &g2"" Dg—(2""=G„g'(0)(2~)(m, +my)
Xm mg (aalu~ gy/p") . (20)

As an estimate of the accuracy required in the
measurement of the hyperfine separation in order to
obtain a significant experimental value for h„q, we give
the calculated values of h„q, 6», and A„q. From Eqs.
(9) we have

~~~——63~2—6~~2= 0.0044&0.0005 eV, (21)

The uncertainty due to molecular wave functions is not
included here, or below, the estimated error being due
entirely to the uncertainty in the measured value of the
nuclear scattering length. From Eq. (13) and the
values y„=0.507, yq= 0.641 we have

6„„=y„Av„„=0.0926 eV,

~„g=yg~~„g= 0.0315 eV.

(22)

(23)

'tA'e thus have the ratios of nuclear- and magnetic-
interaction energies: h~q/6» ——5% A~q/A„~ ——14'%. Be-
cause of the precision characteristic of spectroscopic
determinations, if the hyperfine separations can be
measured at all, they should yield significant values for
A„g. If these estimated values are inserted into the
formulas of Table I, one obtains for the hyperfige
energy levels in electron volts, '

eo ——0.0027, eg= —0.0679, eg' ——0.0167, e2 ——0.0386. (24)

This includes the total change in energy, produced by
nuclear- and magnetic-hyperfine interactions, with re-
spect to the levels produced by purely Coulomb forces.
The contribution by the nuclear forces to these four
states are, respectively, in electron volts, 0.0005, 0.0040,
0.0054, and 0.0049. The states Ep and ~2 are pure states
of total nuclear spin, I,with J=

~ and I= -'„respectively.
The states e~ and e~ are mixed states with probabilities
of total nuclear spin

IV. THE p-p INTERACTION

The principal virtue of Kqs. (15), (16), and (17) is
that they separately express the p-d and y-p (and y-d)
interaction energies in terms of observables. These
interaction energies may be related to fundamental
quantities, provided that one knows, respectively, the
p-d and p-d overlap in the molecular wave function.
The problem of calculating each of them is essentially
independent. ' Consequently it is fortunate that by
means of Eqs. (15) to (17) the separate interaction
energies are separately expressed in terms of observables.

Up to now we have been concerned with the p-d
in, teraction. However, the p-p hyperfine interaction is
of very great interest because of the discrepancy of
45&17 ppm in the hydrogen (e-p) hyperfine splitting. "
It has been suggested" that the hyperfine separation
ot muonic hydrogen (p-p) is 200 times more sensitive
to the short-range phenomenon that is presumably the
cause of the discrepancy, if it is genuine. However, as
Professor Hughes has kindly explained to me, hyperfioe
measurements on p, molecules, however dificult, are
more likely to be effected than on muonic hydrogen
atoms (because in matter, the former are rapidly
formed from the latter).

The 6rst molecule that comes to mind is ppp. How-
ever, it is formed primarily in the lowest orthostate
which is K= 1.Therefore a calculation of the hyperfine
splitting must also include the coupling to K and the
tensor (D-wave) part of the dipole-dipole magnetic
interaction. On the other hand, the pyd molecule is
formed in the %=0 state, and the molecular hyperfine
separations are directly related by Eq. (15) to the
atomic hyperfine splitting,

7„6p„,=Au(2, 1')+ 6 p(0, 1) . (26)

Consequently the p-p interaction is perhaps better ob-
served in ppd rather than in pyp, depending, ot course,
on experimental feasibility. In this case the relative
p-p overlap, y„, must be calculated to 0.3%%u~ if the com-
parison of theory and experiment is to reveal in the p-P
interaction the same phenomenon that may be the
cause of the discrepancy in hydrogen.
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The nuclear forces contribute 2%% to these values. '

' The presence or absence of an electron bound to the ppd (or
dpd) system does not affect our hyper6ne energies or spin wave
functions significantly. This is because the spin-dependent part of
the interaction energy of the electron with the rest of the molecule
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