
P H Y SIC AL R EV I E'gl' VOLUM E 151, NUMBER 4 25 NOVEMBER 1966

Spin-Density-Matrix Analysis. Positivity Conditions and
Eberhard-Good Theorem

PIERRE MI&NAERT

Centre de Physique Theoriqle de l'Ecole Polytechnique, Paris, France

(Received 16 June 1966)

We derive the conditions that the positive-definiteness of the spin density matrix implies on its multipole
parameters. We also derive the general conditions imposed by the Eberhard-Good theorem. General formu-
las are given for arbitrary spin j, and detailed results are worked out for j=1 and j=-,. Some applications
of these results to spin determination are considered.

INTRODUCTION

0 study the production and decay of resonant
states, ' the most interesting quantity to consider

is the spin density matrix of the resonant states. This
matrix describes the spin distribution of the particle
and carries all the information from the production
process to the decay process. Thus, a determination
of the multipole parameters of the density matrix, '
through the decay angular distribution and through the
polarization angular distributions of the decay products,
allows one to assign a spin to the resonance' and to
test the various models4 proposed for the production
process.

However, a complete determination of the density
matrix is not always possible. For instance, in the case
of a parity-conserving decay into 2 spinless particles
(X*—+Err, p —+2sr), no polarization measurement is
possible. And in most cases, owing to large statistical
errors in the determination of multipole parameters,
one cannot decide uniquely the spin of the particle
studied or draw definite conclusions about the dynamics
of the production process.

One way to remove some of these ambiguities is to
use the theoretical conditions imposed on multipole
parameters by the general properties of the density
matrix. The aim of this paper is to look for these condi-
tions. ' In the first section we review the genral proper-
ties of spin density matrices and multipole parameters.
In Sec. II we derive the conditions imposed on the
density matrix by its positive-definiteness and in Sec.
III we discuss the conditions deduced from the Kber-
hard-Good theorem. In Secs. IV and V we show how
one can obtain conditions on multipole parameters.
Finally in Sec. VI we give some applications.

' For a review of this subject see R. H. Dalitz, Ann. Rev. Nucl.
Sci. 13, 339 (1963); R. H. Dalitz, Lectures given at the Inter-
national School of Physics on Strong Interactions, Varenne,
July 1964 ito be published); J. D. Jackson, in Iisgh Energy Physics
1965 (Gordon and Breach, Science Publishers, Inc., New York,
1966).

~ N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963).
For a review of spin determination see R. D. Tripp, Ann.

Rev. Nucl. Sci. 15, 325 (1965).' J. D. Jackson, Rev. Mod. Phys. 37, 484 (1965);J. D. Jackson,
J. T. Donohue, K. Gottfried, R. Keyser, and B. E. Y. Svensson,
Phys. Rev. 139, B428 (1965).

~ An analysis of spin density matrix has also been made by
M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev. 140, B192
(1965);R. H. Dalitz, Nucl. Phys. 87, 89 (1966).

When dealing with multipole expansion of spin
density matrices, we have found it very convenient to
use the formalism of 3-j and 6-j symbols introduced
by Wigner and Racah. We have used the formulas
given in the textbooks of Edmonds' and Wigner. ~

In Appendix A we review some of the results relevant
to this paper.

p=P
~ m)P (m

~

.

When the vectors
~
m) are orthogonal and normalized

to unity, P is the probability for the system to be in
the state described by the vector ~m) .Thus we have

0~&p„~&1 and g p„=1. (1.2)

The general properties of the density operator follow
from its definition. It is a se1f conj segate, Posi-tine operator
with unit trace.

The dynamical state of a sample S of particles with
fixed energy-momentum and fixed spin j is represented
by a statistical mixture of pure polarization states.
The number of pure states contributing to the descrip-
tion of the sample S depends on the way this sample is
prepared; at most we can have 2j+1 independent
states. If we choose a frame of reference and a quantiza-
tion axis, the 2j+1 vectors

~
jm) (proper vectors of

J' and j,) form a basis in the spin space. The spin
density operator p which describes the polarization
state of the particles is represented in this basis by a
trace-1, Hermitian, positive, (2j+1))&(2j+1)matrix.

6 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

7 E. P. Wigner, Group Theory and Its A pplication to the Quantum
Theory of Atomic Spectra (Academic Press Inc. , New York, 1959).

For a review of density matrix techniques see U. Fano, Rev.
Mod. Phys. 29, 74 (1957).

I. SPIN DENSITY MATRIX AND
MULTIPOLE PARAMETERS

When the dynamical state of a quantum system is
incompletely known, the state is not represented by a
unique vector in the Hilbert space but by a statistical
set of vectors. A convenient way to describe this set
is to consider the density operator'
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Let us denote by p the matrix elements of p

u"-= &jmlul j~) (1.3)

If we rotate the frame of reference by a finite rotation
R(npp), the basis vectors

~
jm) undergo a unitary

transformation'.

~j m) ~ U(R)
~jm) =D'»[R(ups)]"'

~jm'), (1.4)

where DU&(R) is the (2j+1)-dimensional representa-
tion of the rotation group. The corresponding unitary
transformation of operators is

~~a'= ~(R)~~ '(R)

the properties of 3-j symbols one can derive the follow-
ing properties of TML.

L ( )M(7' I)t

Tr(Tsrz) = (2j+1)404so, (1 12a)

2j+1
Tr(T~zT~. ~'t) = brr, .b~~ . (1.12b)

2L+1

The general properties of the density operator
impose conditions on the multipole parameters. The
Hermiticity of p implies

or I, ( )M~ I8. (1.13)
p"„=DU&(R ')"„DU&(R)"'„p'"'„. (1.5)

thus the parameters tP are real. From (1.12a) Trp is
found to be equal to the parameter to'. Thus, the condi-
tion Trp=i leads to

By reducing the product of representations (Appendix
A4) and making use of the orthogonality properties of
3-j symbols (A1), one obtains

(2j+1) '&~ Trp'&~1. (1.15)
where L runs on integer values 0&L& 2j.Formula (1.6)
shows that for each value of L, the 2L,+1 quantities To this end let us diagonalize the matrix p. Since

Trp is fixed to unity and the proper values are positive,
Trp' has a maximum when one proper value is equal to
1, the others being null; then the matrix p describes
a pure state of polarization and Trp'= 1.The minimum
of Trp' is reached when all the proper values are equal
to (2j+1) '; then the matrix describes a completely
unpolarized sta, te and Trp'= (2j+1) '.

With formulas (1.9), (1.11), (1.12), (1.13), Trp' can
be expressed as a function of the parameters tML, and
(1.15) becomes:

n L j~IA= (2j+1)1/2 ~~ma (1 7)
mi

transform under rotation like the elements of an
irreducible tensor:

(1.8)t~ *=D' '(R) '~t'~

The quantities tML are called multipole parameters.
Owing to their transformation law (1.8) they are
particularly suited to the study of spin density matrices.

By inversion" of the definition (1.7), one obtains the
multipole expansion of the spin density matrix

(2j+1) '~& (2j+1) ' P (2L+1)
~

4rr
~

'&~1. (1.16)
L,M

For density matrices of spin-~ particles, conditions
(1.15) or (1.16) are the only conditions induced by the
positivity. But for j&~, further conditions are imposed
on the density matrix and on the multipole parameters
by the positivity property. The derivation of these
conditions is performed in the next section.

2j +L
p~„= (2j+1) P P (2L+ 1)&~r*(7'~r )~ (1.9)

L=O M L

with
/3f m j

(T~~)~„=(—)~~(2j+])~&2~ . (1.10)

to' ——Trp= 1. (1.14)
~rl, L j~ p~' L j

D(r&(Rp'
~

&~ ', (16) From Trp=1 and from positivity one can easily derive
&j~ m) k j ~' ~' the conditions

The quantities (T~~) „can be considered as the matrix
elements in the basis

~jets)

of an irreducible tensorial
operator TM . This operator can be explicitly con-
structed" as a function of the angular momentum
operators J+, J, J,. From the definition (1.10) and

'See A. R. Edmonds, Ref. 6. In our formulas the repeated
magnetic-quantum-number indices m are to be summed over
(m= —j, —j+1 ~ ~ ~ +j). See Appendix A.

'OThis inversion is obtained by multiplying each member of
Eq. (1.7) by a suitable 3-j symbol and summing over repeated
indices.

"For an explicit construction of T~~ see C. Henry and E.
de Rafael, Ann. Inst. Henri Poincare 2, 87 (1965); E. de Rafael,
thesis, University de Paris (unpublished).

II. POSITIVITY CONDITIONS FOR
DENSITY MATRICES

In this section we first recall a result of matrix theory
and then we show how the positivity property of the
density matrix leads to conditions on the coeKcients
of the associated characteristic polynomial and on the
traces of the powers of the matrix.

Let p be a Hermitian mme matrix. Its characteristic
polynomial is A(ll, ) =det(X1 —p)

(2 1)
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TABLE I. Relations between the coeKcients c~ of the char-
acteristic polynomial of a matrix p and the traces s&= Trp~ of
the powers of the matrix.

2c2 = —s2+ (S1)'.
6c3——2s3—3s2si+ (s1)'.

24c4= —6s4+Ss3si+3($2) —6s2($1) +($1) .
120c5——24s5 —30s4si+20s3(si) —20S3s2+15 (s2) sl

—10S2(SI)'+ (si) '.
720c6 = —120S6+144S5SI+90S4S2—90s4(si) +40(s3) '

—120s3s2s1+40s3(si) '—15(s2) '
+45(s2) '(s1) '—15s2(si) '+ (si)

(Xq, 4, . &,, X„are the proper values of the matrix).
Newton formulas express the coefficients c~ as sym-
metrical functions of the roots X;:

c,=P X,= Trp,

c2—p
2], '4 2

(2.2)

c =44 X„=det(p).

If we denote by SI, the trace of the matrix p~,

sk—=Trp (2 3)

p positive ~~ c~~& 0. (2 5)

By using result (2.4) (or Table I), the positivity condi-
tions (2.5) can be given as conditions on the traces s~.
Table II gives these conditions" for trace-one matrices
of dimension n &6. An m-dimensional, Hermitian,
positive matrix satisfies the inequalities of the e—1
6rst rows in Table II.'4 The 6rst condition, —s2+1&0,

~2 See, for instance, F. R. Gantmakher, The Theory of Matrices
(Chelsea Publishing Company, New York, 1960), Vol. I, p. 87.

~3 These conditions have also been obtained by D. N. Williams
(unpublished).' An n-dimensional, Hermitian matrix satisfies identically the
relations obtained by replacing the symbol & by the sign = in
the following rows.

a simple result of matrix theory" expresses the coef-
ficients c~ as functions of the traces s~ (k(l):

cE= (—)'+'& '(sl —cist—1+ + (—)' 'cl-lsl) ~ (2 4)

Table I gives the expressions of the coeKcients c1,

c2, ~ c6, obtained by repeated application of the
formula (2.4).

We come now to the positivity property of p. By
definition, a Hermitian matrix is said to be positive if
its proper values are non-negative.

From the above Newton formulas one sees directly
that a necessary and sufficient condition for the matrix

p to be positive is that the coefficients c~ of its char-
acteristic polynomial should be non-negative:

is the well-known condition (1.15) Trp'(1. We see
that for particles of spin j&-,' (i.e., for v=2 j+1&2),
the positivity property implies further conditions. As
we shall see in Sec. V these supplementary conditions
are more restrictive than the first condition.

III. EBERHARD-GOOD THEOREM

TABLE II. Positivity conditions in terms of the traces SA, =Trp~
of the powers of the matrix p (s1 ——1). An n-dimensional matrix
must satisfy the conditions of the n —1 first rows of this table.

n Positivity conditions

2 —s2+2 » 0.
1 3 2s3 —3s2+1 &~ 0.

4 —6s4+Ss3+3 {s2)'—6s2+1 ~&0.

2 5 24s5 —30s4+20s3 —20s3s2+15(s2) '—10s2+1~&0.

6 —120s6+144s5+90s4s2 —90s4+40(s3) ' —120s3s2

+40s3—15(s2) '+45 (s2) '—15s2+1 &~ 0.

'~ P. Kberhard and M. L. Good, Phys. Rev. 120, 1442 (1960);
R. H. Capps, ibid. 122, 929 (1961}.

In Sec. I, we saw that the dynamical state of a sample
S of particles of fixed energy-momentum and spin j
is generally represented by a statistical mixture of pure
states of polarization. The number X of independent
pure states contributing to the state of the system de-

pends on the way the sample is prepared. If this
number X is less than 2j+1, the density matrix which

describes the polarization state of the particles has to
satisfy some conditions. Indeed, the N pure states of
polarization span an X-dimensional subspace of the
(2j+1)-dimensional spin space. Consequently the
density matrix constructed with these E states can be
transformed by a unitary transformation into a matrix
whose only non-null elements are in the S first rows and
columns. Otherwise stated, the rank of this matrix is
at most E; i.e., the matrix has at most E non-null

proper values. This result is an extension of a theorem

by Eberhard and Good. "
With the notation introduced in the preceding sec-

tion we can derive completely the conditions imposed

by the Eberhard-Good theorem on density matrices.
Consider the characteristic polynomial hP, ) of an
e-dimensional density matrix:

g(g) —Pe cga I+c l n—2+. . .—+( )nc

A necessary and sufficient condition for the matrix p
to be of rank E (i.e. for its characteristic polynomial to
have e—X roots equal to 0) is that the e—X last
coefficients should be null:

p i ank E~0= c~=c„1=~ ~ =c~+1.

By using result (2.4) (or Table I), these conditions can
be expressed as conditions on the traces s~.

In the 6rst section we have seen that for a (2j+1)-
dimensional matrix the positivity property and the



SPIN —DF NSI TY —MATRIX ANALYSIS 1309

property Trp=1 lead to the condition Trps&(2j+1) '.
When the rank of the matrix is N (ill'(2 j+1) the mini-
mum of Trp' is reached when the E non-null proper
values are equal to S ', and this minimum is N '; thus

where (T„~) „ is defined by (4.2)." Formula (4.3)
allows one to transform any product of TML into a sum
and to calculate the powers of the matrix p as functions
of the multipole parameters. Indeed, consider p'..

p rank Sm Trp'~&Ã '. (p')" =(2j+1) ' Z (2L+1)(2L'+1)t~'*t~'*
This result was first derived by Peshkin. " It is to be
noticed that in relation (3.2) we do not have the con-
verse (m). Thus, condition (3.2) is less restrictive than
the set of conditions (3.1), and does not express com-
pletely the information contained in the Eberhard-
Good theorem.

IV. CONDITIONS ON MULTIPOLE PARAMETERS

with

p=(2j+1) ' Z (2L+1)tsj'*TTTj',
L,M

(4.1)

Mes j(T~')"-=(—)"(2j+1)"' . (42)
L j e

In Appendix B we derive compact expressions for the
traces sI, directly by calculating the trace of a product
of k TML's. However, the formulas are very intricate
and to obtain explicit expressions one has to expand a
new formula for each power k. We prefer to use a step-
by-step method which has the advantage that explicit
expressions for sI, can be obtained by repeated applica-
tion of a single formula. Furthermore, the latter method
is particularly suited when one does not want a full
algebraic expression for sA, as a function of tML, but only
a way to compute s~ when the numerical values of the
parameters are known.

Let us consider the product of two matrices TML.

In Secs. II and III we have seen that the positivity
property and the Eberhard-Good theorem imposes
conditions on the traces sj, of the powers of the density
matrices. But what is experimentally measured is the
set of multipole parameters tML of the density matrix.
Thus it is interesting to give conditions on the multipole
parameters directly. To this end we must express the
traces sI, as functions of tML. This can be easily done by
application of the Racah calculus to the multipole ex-
pansion of the density matrix.

X (T I,T,1,')m (4 4)

By using (4.3) p' can be put in the form of a, multipole
expansion identical to (4.1)

(p')".=(2j+1) ' Z (2L+1)t(2),"*
L2, M2

X(2',")".. (4.5)

The multipole parameters t(2)sr, ~' of p' are related to
to the tML by the formu]a

t(2) jv '=(—)sj+ '(2j+1) 'j' P (2L+1)(2L'+1)
L,M

L', M'

L L' L2 3E M' L2
X tM 4I' . (4.6)j j j L L' 3E,

Higher powers of the matrix p are obtained by iterating
the preceding calculation. All matrices p" can be put in
the form of a multipole expansion where the multipole
parameters t(e)sr„~" are functions of the multipole
parameters of lower matrices. For instance, performing
the product p"p&, one obtains the eth power of p
(~=p+v):

p"= (2j+1) ' Z (2L.+1)t(~)~P"*&~„P", (4.7)
Ln„M n

with

t(rj)sr„~"= (—)'j+ "(2j+1) 'j' P (2L~+1)(2L,+1)
Lp, Mp
Lq, Mq

L„ L~ L„ L„ L, L„

j j j M„3f~
—M„

Xt(p)sr„'"t(q)w, ". (4.8)

When a matrix is in the form of a multipole expansion,
its trace is equal to tp,' thus

(T T ')" =(2jj1)( )( ) .

By using (A13) we transform the product of 3-j
symbols and obtain

s„=t(n) p',

and formula (4.8) gives directly

s =(—)"(2j+1) 'j' P (2L+1)'
L,M

(4.9)

(T LZ', I')m (2j+.1)l/s g ( )z(2J+1)

"M. Peshkin, Phys. Rev. 123, 637 (1961).

L L 0(L L 0
x t(p)jLr t(q) sr .—m 0

~7 Formula (4.3) is the extension to arbitrary spin of a
well-known formula in the spin-s case: (e nial(e nsl=(n& n2)
+i@ n1&&n2 where e are the Pauli matrices and n1 and n2 are
arbitrary vectors. Formula (4.3) has been given by L. C. Bieden-
harn, Ann. Phys. (N. V.) 4, 104 (1958).
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TABLE III. Positivity condition for the density
InatrIx of spin-j. particles.

—s2+I &~ 0. 2s3—3s~+I &&0.

»8= ~(2)0'~0'+~~(2) 0'~0' —6«(&(2)I'LI')+5~(2) 0'~o'
—10Re(~(2), ~, )+10Re(~(2), L, ).

3'o= ('o')'+3('o')'+6 I' ' I'+5('o')'+1o It~'I'+ 1o
I
t"

I
'.

t(2)00 ——sg

t(2)o'= otopto'+ o(+10)tp'tpo ——,'(+30) Re(t(pt p).
t(2) i' = stook' —

o (+15)t &'too+ p (+30)tp'tP ——',(+10)tg'tpo.

I (2)o = p'o (v'10) (Io')'——'(V'10)
I
t~'

I
'+oto'to' —'p (v'10}(to') '

+o(+10)lt, I' —o{v'10)lt, I.
t(2) ~'= —'o (V'30) to'tr'+-'to'4'+ o (V'15) to'I-i' —o(V'10)4'to'.

t(2)oo =go'o (+15)(tg') o+ootpotoo+ o'(+10)tootoo ——o'(+l5) (tP) o

Using explicit expressions (A9a, Ais) for the 3-j and
6-j symbols, rve obtain

s =(2j+I) ' Z (2L+I)t(P)~'t(V)-~'( —)" (& Io)

Thus to calculate s„as function of t~~ one has 6rst to
calculate t(P)sr, ~o and t({t)ts,~ aos functions of tsr~,
and this can be done by repeated application of the
formula (4.8). Tables III and IV collect the results for
density Hlatrlccs of spin-1 and -z particles. I'or hlghcr
spin values, similar tables can be constructed, but the
algebraic expressions obtained vrhen expanding for-

IIIllla (4.8) al'e SOIIlewllat cumbersome alld will Ilot be
given herc.

The advantage of the step-by-step method set forth
in this section over the global method shovrn in Appen-
dix 8 is that in the former method me have only the
rather simple formula (4.8) to expand, whereas in the
latter eve have an intricate formlua to expand for each
tlacc sy.

A density operator p describes a pure state if it is a
projector to= ~tN)(sot), i.e., if we have ps= p. This
conditloD caD be easily cxprcssed 1D tcrTAs of xQultipole

parameters. To have p'= p, it is necessary and suKcient
that the parameters t(2)sr~ of the multipole expansion
of p' should be equal to the parameters t~~ of the
multipole expansion of p. From formula (4.6), which

gives t(2)sr~ as functions of tst~, we conclude that the
matrix p describes a pure state if its multipole parame-
ters satisfy the sct of conditions"

t„=(—) + (2&+I)- t Q (2L,'+1.)(21-"+I)

I' I." I. M' M"
(4.11)j j j I.' I." 3E)

It is known that a necessary and suKcient condition

TABLE IV. Positlvity condition for the density matrix of spin-~ particles.

—6s4+8ss+3(sg)' —6s2+1 &» 0

4 o=(t(2)")'+3(t(2)o')'+6lt(2) r'I '+5(t(2) o')'+1o It(2) ~'I '+1o It(2)o'I*+7(t(2)o')'+ 14 It(2}o'I'+14 l t(2}o'I'+14lt(2}o'I'
4os=to't(2)p'+3to't{2)o' —6Re(t~'t{2) q'}+Stpot(2)p' —10Re(tpt(2) p)+10Re{toot(2) po}+7tpot(2)po —14Re{tq't(2) P)

+14Re(toot(2) o') —14Re(to't(2} o').

4so= (I,')'+3(tp')'+6lt, 'I +5(t,') +10lt, I +7(t,') + 14lt, 'I'+14It, 'I'+14I»'I'.
t(2)0'= s2

t(2),~ =-'t,pt.'+-'(+5) t,ot,o—-'(v'15) Re(t,~t,o)+ '(+1 0)5t —»po —(2/15) (+210)Re(t ootp)+-'(+21) Re(t ootoo).

t(2)r' ——stp'tr' —-'o (+30)t o'to'+p (+15)to'tg' —
—p,(+5)tg'tp'+o (Q7)I o'to'

——,'(+42)t, &2 +~0(+70)&0 &I ——,', (+35)r, «+1/30(+105)&2 & I .
t(2) oo sotootoo+ (3/25) (45) (tp&) o (3/25) (vrS) I

t&'
I
o+ (3/50) (4105)tp'tpo (3/25) (470)Re—(t rotqo) —(7/25) (+5) (too) o

—21/50(+5) Itrol o+7/10(+5) lto'I'.

t(2),'=;t,ot,'+(3/25)(+15) I,'I, '+(1/25) (+210)t. I,'—' (+42)t, 't, —(3/50) (+35)I,'Io' —(7/10)(+5) t 't .'
+P/10) (V3}toot oo- P/50)(+10) tootpo.

t(2)o'= kto'to*+(3/50) (V'30) (»')' —(3/1o) (v'7) t-r'to'+ p'p(v'21) to'too —(1/5o) (V'105)4'too —(7/10(&toot-2
+P/5) toot op —P/50} (+30)(tP}'.

t(2) o' = (3/70) (+105)to'to'+ (3/35) (435)Re(49 po) —,'(QS) to'to'+so(4—10)Re(toot zo)+2Re(toot o')

t(2) oo = (1/70) (+105)I o'too+ (1/35) (+210)tp'tP+ (3/70) (+70)49po+ o (v2)t ootoo+s (VS)t ootoo (3/10) (QS)tootP-
,', (+10)Into'+-',—(+—30)toot

t(2}oo= (1/14)(+21)tpotoo+(1/14)(+42)tg'tro+so(QS)t Ftoo —so(VS)tpotP+tootp'.

t(2) '= (3/14)(V'7) I 'I"+k(v'5)t"I"--.'(V'5) I 'I '+-'*(~)t 'I '.

' To construct these tables we have used the tables of 3-j and 6-j symbols established by M. Rotenberg, A. Sivins, N.
Metropolis, and J. K. Wooten, Jr., The 3-j owd 6-j Symhots {Crosby Loekwood 8z Son, Ltd. , London, 1959).

» These relations have been obtained by L. C. Biedenharn (ReL 17).
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for a positive density matrix to describe a pure state is
Trp'= Trp=1. Thus, the set of conditions on
expressing the fact that the density matrix is positive,
together with the condition which expresses the re-
striction Trp'=1, are equivalent to the set of condi-
tions (4.11). But of course, the condition Trp'=1
alone, without positivityconditions, is not sufhcient
to insure that we have a pure state.

V. THE POSITIVITY DOMAIN

Let us introduce some vocabulary. A given ~Xe
Hermitian matrix is completely characterized by the
set of its multipole parameters t~~. To each set of
parameters, i.e., to each matrix, we associate a repre
serttative point of an abstract space, which we call the
space of parameters. The Hermitian matrix will be
positive if its multipole parameters satisfy the positivity
conditions derived in the preceding section, i.e., if its
representative point is in a given domain of the space
of parameters. This domain will be called the positivity
domain.

An interesting question to ask is: What is the respec-
tive contribution of each positivity condition to the
determination of the positivity domain'? To answer this
question, we shall erst study a simple example, the one
of spin-1 matrix, and then consider the general case.

In a recent letter, "we have studied the positivity
domain of the density matrix of spin-1 particles. We
recall here the fundamental results. In fact, this simple
example can be completely worked out, and it exhibits
the features of the general case. I'or a spin-1 matrix the
positivity conditions including all multipole parameters
can be explicitly written with Table III. The results
are not too complicated; however, to obtain more com-

FIG. 1. Positivity domain for the density matrix of spin-1
particles described by the parameters Io' and to'. The straight
lines correspond to ca=0; the ellipse E corresponds to @2=0.
The points A, B, C are representatives of pure states.

t~~—=0 for odd M.
Thus the density matrix is

(5.1)

pact expressions one can take advantage of some
restrictions imposed on t~~ by symmetry properties
of the production process. We assume that the spin-1
particle is produced in a parity-conserving two-body
reaction, ' and we choose the axis of quantization
along the normal to the production plane. Then, if
the initial particles are unpolarized and if we average
over the spin of the other produced particles, we have

p=3
1+(3/v2) t ' o+'(+1 )0to'

0
(+15)t2'*

0
1—(+10)to'

0

(+15)t22

0
1—(3/v2) to'+-'(+10) to'

(5.2)

From Table III, the erst positivity condition (c2&0
or Trp'(1) can be written thus:

3(to')'+5(to')'+10' t22i' —2&0. (5.3)

The second positivity condition (c3&0 or 2Trp' —3Trp'
+1&0) can also be obtained from Table III; but it is
most easily derived by noting the ca ——detp. From (5.2),
we obtain directly the condition

L1—(&10)to'j(L1+ l(v'10)to']' —l(to')'
(5 4)

Conditions (5.3) and (5.4) allow one to draw the posi-

'0P. Minnaert, Phys. Rev. Letters 16, 672 (1966). Results
similar to those given in this letter had already been published
by W. Lakin, Phys. Rev. 98, 139 (1955), and displayed graphically
by J. Raynal, Centre d'Etudes Nucleaires de Saclay, Report
No. CEA 2287 (unpublished). We thank Dr. D. Zwanziger for
pointing out these references. See also D. Zwanziger, Phys. Rev.
136, 8558 (1964).

tivity domain in the three-dimensional space of the
parameters to', to, '~ tP ~. (See Fig. 1 of Ref. 20.) How-
ever, we can further simplify the expressions and the
drawings without losing generality, by considering
these conditions when t2' ——0. Then, the space of parame-
ters is reduced to a plane and the density matrix is
diagonaL The second positivity condition (c3=detp&0)
becomes

( 3
I
1+—to'+2(v'&o)to' i(1—(v'10)«')

V2 i
3

x~ 1—to'+-', (+10)t,2 & o. (5.5)
v2

The equation c3=detp=0 is the equation of 3 straight
lines which separate the plane (tv', t02) into several
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domains, in each of which the set of proper values has a
definite signature. "See Fig. 1. The shaded regions, in
this figure, are those which are eliminated by (5.5).
We see that (5.5) allows four regions in the plane (to', to )
but only one region (the one connected with the
origin) has the appropriate signature for the matrix to
be positive. Indeed, the other three regions are elimi-
nated by the 6rst positivity condition,

3(tol)2+5(t 2)2 2 (0
which allows only the region inside the ellipse (E)
circumscribed about the triangle ABC. Thus, the

bonnds of the positivity domain are gieen by the equation
c3——0; the 6rst positivity condition is needed only to
eliminate the region where c3&0 but where the signa-
ture is not (+++). That the points A, 8, C should
be on the ellipse (E) is obvious, for at these points two
proper values of p are null; consequently not only the
coeflicient c3, but also the coeflicient c~ of the char-
acteristic polynomial is null. Since the equation of the
ellipse (E) is em=0, the points A, J3, C are on. this
ellipse.

From the example of the spin-1 matrices, one can see
very well how the positivity conditions work in the
general case. Let us consider the space of parameters
associated with an n)&e Hermitian matrix. The equa-
tion c„=detp=0 is the equation of a surface in this
space. This surface divides the space into several
domains, in each of which the set of proper values has a
definite signature LN~, NO, N ] (No&0 on the surface
c„=0).The positivity condition c„)0 eliminates the
regions where E is odd and allows all the regions
where S is even. However, the matrix will be positive
only if X =0. Now it is obvious that the origin of the
space of parameters (tsr~ 0, I.WO) ——corresponds to a
positive matrix, and it is physically intuitive that the
positivity domain is connected. " Consequently the
density matrix will be positive if its representative point
belongs to the domain connected to the origin limited

by the surface c„=0.
Thus as we have seen in the spin-1 case, the bounds of

the positiriity domain are given by the equation c„=detp=0.
The other positivity conditions c„1&0,c 2&0, ~

c2= —Trp'+1&0 eliminate all the regions where c„&0
but where E /0.

Let us make a few remarks on the geometry of the
surfaces c~= 0 in the space of parameters t~~. Generally
the surface c„=detp=0 has several singularities. The
type of each singularity can be characterized by the
value of the number Xo at this point. On the surface we

21 By the signature of the set of proper values we mean the set of
signs of the proper values. We shall denote this signature either
by the series of signs of the proper values, or by the triplet of
numbers (N+,N0, N ), where N+ (N0,N ) is the number of positive
I,'null, negative) proper values.

~'The set of positive matrices is convex, i.e., if p1 and p2 are
positive, the matrix O,p1+(1—a)p2 (0&m&1) is also positive.
Consequently, the multipole parametrization being linear, the
positivity domain is convex and a fortiori connected.

have To=1; at a "double point singularity" we have
No ——2. Now, we have No ——2 (2 proper values=0)
if c„1——0. Thus the surface c„1——0 intersects the sur-
face c„=0 along the manifold of double point sin-
gularities. Similarly, the surface c„~=0 intersects the
surface c„=0along the manifold of triple point singu-
larities (No ——3) and the surface c..=0 intersects the
surface c„=O along the manifold on which Eo=e—1.
Each of these manifolds corresponds to a matrix of
definite rank. The last manifold (No=n 1)—is the
manifold of pure states. Its equations are explicitly
given by (4.11).

It should be noticed that a given manifold (No ——n)
may not intersect the subspace de6ned by some t~~ ——0.
If this is the case, then a matrix de.ned by only a few

parameters, the others being null, cannot have rank
a. For instance, in the example of a spin-1 particle, the
matrix defined by the single parameter to' cannot have
rank 1, i.e., it cannot describe a pure state (see Fig. 1).
We shall give further examples in Sec. VI.

VI. APPLICATIONS

with

p33

0p=
p3—1

.0
P11
0
P1—3

P3—1

0
P—1—1

0
P1—3

0 (6.2)

4p33 = 1—(9/Q(15)) to'+ (+5)to' —(7/Q(35)) to',

4p33
——1—(3/Q(15))to' —(+5)to' —(21/Q(35))to',

4p i i——1+(3/g(15))to' —(+5)to' (21/g(35))to', —
4t- =1+(9/v'(15))to'+(V'5)to'+(7/v'(35))to'

(6.3a)
and

4o~i=(v'(10))t2' —4/(14))4',
4Pi 3= (v (10))"2 +(—v (14))t2 ~ (6 3b)

Writing explicitlythe characteristic polynomial of p
in terms of the matrix elements p~, 2„one obtains easily
the coeKcients c4, c3, and c2.

A. Positivity Conditions and Eberhard-Good Theorem
for the Density Matrix of Spin-~ Particles

Let us consider the spin-2 particles 8* PN*(1236),
7'*(13&5), *(1530)]produced in reactions of the type

P+N ~8*+P, (6.1)

where P stands for pseudoscalar mesons (E,7r), and N
for the nucleons. The common feature of these reactions
is that the spin state of the 8* produced at a fixed

angle is a statistical mixture of 2 pure polarization
states, corresponding to the 2 states of the initial
nucleon. Consequently the density matrix of the 8*
is of rank 2, i.e., the coefficients c4 and c3 of its char-
acteristic polynomial are null. The density matrix in-

cluding all parameters tss~ (M even) is
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p8= (P33P—1—1 I Pp—1I ') (Pllp-8-3 —
I PI-3I '),

p8 (P83+P—1—1)(pllP—3—3 I pl—3I )
+(p»+ p-8-8)(P33P-I-I —I P8-1I '),

p2 (P38P—I—I I pp I I ')+(p»p —3—3 I pl—3I ')
+(P88+P—1—1)(Pll+P —3—8) ~

The system of equations

(6.4a)

(6.4b)

(6.4c)

the three sets of relations (6.7), (6.9), and (6.11).Which
oneP This is axed by the peculiar structure that must
be exhibited by the density matrix of the 8*produced
at a fixed angle in reaction (6.1). Indeed, Bohr's theo-
rem" [invariance under the operation R—= (space
refiection)X(180' rotation around the normal to the
production plane)] requires the 4X2 transition matrix
in spin space T to have the form

c4——0, ca=0, (6.5)

i.e.,
pq~= —p 3 3=0 and pg 3=0.

(6.8)

In terms of multipole para, meters this solution is

—( /v'( 5))~p' —(V' )4'+( /V'( 5))to'=0,
1+(9/V'(15))tp'+ (V'5) tp'+(7/v'(35)) tpp= 0, (6.9)

(v'(10))~ '+(v'(14))~ '= o

In both solutions (1) and (2) the relations between
the parameters are such that the density matrix can
be parametrized with one real parameter and one com-
plex parameter. It is to be noticed that these two solu-
tions are not basically different, since we go from one
solution to the other by changing the signs of the odd-L
parameters.

(3) pppp 1 I I pp 1I =0 and pllp8 8
—

I pl

(6.10)

In terms of multipole parameters this solution is

L1—(9/v'(15))~ '+ (v'5) 4' —(7/v'(35))~o']
X[1+(3/V (15))tpl—(V'5)tpp (21/V'(3—5))tp3]

—Iv'(10)t88—Q(14)t83I 8=0, (6.11)

[1—(3/V'(15))~o' —(v'5) ~o'+(21/v'(35))«']
X[1+(9/V'(15)) tp'+ (V'5) tpp+(7/V'(35)) tpp]

—
I v'(10) ~,'yv'(14) ~,'I = o.

Moreover in all three solutions, the multipole parame-
ters must satisfy the first positivity condition (c8)0
or Trp'&1)

3(t ')8+5(tpp)8+10I t88I 8+7(tpp)8

+14It 'I' —3&0. (6.12)

Thus, the multipole parameters experimentally meas-
ured in reaction (6.1) must satisfy (6.12) and one of

has 3 types of solutions.

(1) P33P—1—1 I P8—I I

'= 0 and P33+P-1-1=0, (6 6)

i e., p33= —p y y=0 and p3 ~
——0.

In terms of multipole parameters this solution is

1—(9/V (15))tp'+ (v'5) tp' —(7/v'(35))tp' ——0,
1+(3/V'(15))(pl —(v'5)tpp —(21/V'(35))tp8=0, (6.7)

(V'(10))188—(V'(14))t33= 0.

(2) p»p —3—3 I pl—3I
'= «nd p»+'p —3—8=0

au*
0

P—z~~ —
g ca
. 0

0 ac* 0
bb* 0 bd*
0 cc* 0

db* 0 dd*.

i.e., p is the sum of two rank-one submatrices. ' Con-
sequently, only the third solution (6.11), which ex-
presses this peculiar structure of the matrix p, is
physical. The other solutions are unphysical; however,
if i88 additio88 to the relations (6.11), the parameters
satisfy one of the sets (6.7) and (6.9), then one of the
submatrices is null, and the rank of p is 1, i.e., the
matrix p describes a pure state of polarization.

We emphasize that in the study of a production re-
action like (6.1) we can only apply the Eberhard. -Good
theorem to the matrices describing particles 8* pro-
duced with fixed kinematics. This fact reduces the use-
fulness of the conditions in the case of poor statistics.

The results derived in this section can also be applied
to the study of the formation experiments of the type

P+B +B*~P+B. —

The density matrix of the 8* formed must also have
rank 2.

B. Positivity Conditions and the Method of
Lee and Yang

Positivity conditions, in the form which we have
given, can be applied only when one knows the density
matrix completely. However, in 1958, Lee and Yang'4
derived several inequalities, very useful for the deter-
mination of spin of the baryons, whose application
does not require a complete knowledge of the density
matrix. The derivation of these inequalities implicitly
makes use of the positivity property of the density
matrix. As a matter of fact, Lee and Yang discuss the
decay of a sample 5 of baryons, but they do not con-

2' A. Bohr, Nucl. Phys. 10, 486 (1959).
'4 T. D. Lee and C. N. Yang, Phys. Rev. 109, 1755 (1958).This

work was extended by L. Durand, III, L. F. Landovitz, and J.
Leitner, Phys. Rev. 112, 273 (1958) to the study of the polariza-
tion of the product particle.

0 u
b 0
0 c.d 0.

Thus, the density matrix of the 8* produced from an
unpolarized target is
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sider the azimuthal distribution of the decay products.
So the spin state of the sample 8 can be considered as
an incoherent statistical mixture of states

~ jm), i.e.,
the density matrix of the sample is not completely de-
termined; one knows only the diagonal elements.

The inequalities follow from the requirement I &0,
where I is the statistical weight of the state ) jsu)
contributing to the incoherent mixture, In the language
of density matrix, it is equivalent to requiring the diago-
nal matrix elements to be positive. It is very easy to
show explicitly the equivalence of the Lee-Vang in-
equalities and the positivity conditions in the case
j=-,'. The Lee-Yang inequalities are (see their relations
8 and 18)

(6 13)
with

41.~.=1-(9/-)(~.&-5(~.&+(7/3-)(~.),
4Ir(o ——1—(3/n)(Pi)+5(Po& —(7/n)(Po), (6.14)

41-»o=1+(3/n)(~~&+5(~o)+(7/n) 9'o&

4I .„=1+(9/-)(I &-5V.)-(~/3-)V. ),
where (Ez) is the average over the angular distribution
of the Legendre polynomials El, , and o. is the asymmetry
parameter of the decaying baryon.

The positivity conditions are

(~=5,o,—o,—o) (6 15)

with po, o given by (6.3a).
To show the equivalence of the two sets of conditions

(6.13) and (6.15), it suKcies to use the relations

(I' &= (1/V'(»))~",
9")=-(1/&5)~",
(Eo)= —3n(1/Q(35)) too,

obtained from

Z,=[4 /(2L+1)] I I, ,

and from the Byers-Fenster' relations

(Fo )= rlzofo, L even,

(lro')=«zotoz, L odd,
with

t'j
szo = (—)' 'I'[(2j+ 1)/47r]'~'(2L+ 1)'~'~

In Ref. 2 of their paper, Lee and Yang noted that if
the azimuthal d~str~buA'oe is also studied, more ie-
equali6es caN be der& ed. These inequalities are precisely
the positivity' conditions derived in the present paper
for complete density matrices.

Finally, let us make a remark on the use of the Lee
and Vang inequalities. Generally one considers the test
functions T, whose average over the angular distribu-
tion must be less than i. The great advantage of these
test functions is that they can be used without any

knowledge of the asymmetry parameter e. However,
when this asymmetry parameter is known (it is the
case for hyperons) it is more interesting to consider
directly the positivity condition I; ~0 which give
more information than the conditions on the test func-
tions (T; )&1.

For instance) Rn analysis of thc decay of 182
has given'5

0.-. =0.44+0.11,
(2'g) = 1.05+0.33.

This result does not rule out j=-, with a signidcant
probability (12%).Now, it we suppose that the major
contribution to (T, ) arises from (Er) and if we use
the less favorable value of n- (n-. =0.44+(2.5X0.11)
=0.715) we obtain

Ia;———0.47+0.33.

(We suppose that the statistical error is not modi«d )
This value violates the condition Ig~& 0 by 4.40
standard deviations. Thus, with this rough calculation
we ehminate j=-, with 84% probability, improving
thc Rbovc result considerably.

C. An Application of Eberhard-Good Theorem

The determination of the spin of the hyperons has
been an unsolved problem for a, long time. The more
recent analyses of experimental data'~ favor con-
sldclRbly thc spHl-g assignment) but they do not ex-
clude absolutely the possibility that the spin is —,. In
this section we derive a result which can be of some
help in this respect. %C consider the density matrix of

hyperons produced in the parity-conserving reaction

E-+p +E++"—
Ke suppose that we have chosen the axis of qua, ntiza-
tion such that iorz=0 for odd M [see Eq. (5.1)J. The
experimental data are as follows: At each production
angle the parameter to' is non-null (its magnitude,
proportional to the vector polarization, depends on the
K momentum and on the production angle) and all
other parameters tsrz (L)1) are corrlPatibte with zero.
We shall suppose that they are rigorously null

One cannot dram any conclusion from these simple
facts, Indeed, t~~ ——0 for I.&1 is a necessary condition
for the spin to be —,', but me may have the case of a
higher spin (-'„—'„)which by accident has less than
the maximum possible complexity in its spin distribu-
tion. However, we have one more piece of information
on the spin state of the 's produced at a 6xed angle in

"U. Nguyen-Khac, thesis, Ecole Polytechnique, Paris, 1964
{unpublished). %e thank Dr. Louis Jauneau and Dr. Nguyen-
Khac for a discussion of the experimental data.

"D.D. Carmony, G. M. Pjerrou, P. E. Schlein, %. E. Slater,
D. H. Stork, and H. K. Ticho, Phys. Rev. Letters 12, 482 {1964);
J. Button-Shafer and D. %. Merrill, University of California
Radiation Laboratory Report No. UCRL 11884, 1965 {un-
published).
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the reaction (6.16). We know that it is a statistical
mixture of 2 pure polarization states corresponding to
the 2 initial proton states. Thus we know, from the
Eberhard-Good theorem (Sec. III), that the density
matrix of the 's must have rank 2. Now the density
matrix p(j) (for spin j) constructed with the single
Parameter IIO' is diagonal, the diagonal matrix elements
being [see (1.9), (1.10), and (A9b) 1

From this form of the matrix elements, it is obvious
that, whatever the value of to', we can have at most
one null diagonal matrix element. Consequently the
rank of the matrix p(j) reduces at most from 2j+1
to 2j.Thus if the rank of p(j) has to be 2, the dimension
of the matrix is at most 2 or 3; i.e., the spin is —, or 1.
Since in our case we have to decide between half-integer
spins, we eliminate the spin 1 and we remain with the
sole possibility that j=2. This result can be stated'~:

If the polarization of the I'* particles prodgced in the

parity conserving -reaction

K +p ~ 7*+ir(K)
is described by the parameter to' alone, then the spin of the
F*is —,'.

Direct apphcation of this result to hypcrons is
somewhat dificult, for the experimental parameters
tsI~(I.)1) are not rigorously nuK However, if we sup-
pose j)~, the requirement that the rank of the density
matrix should be 2 imposes very strong conditions on
the multipole parameters. These conditions were
derived for j=aa in Eq. (6.11).

The present result is an illustration of the last remark
of Sec. V, namely, when an I-dimensional matrix is
defined by only a few parameters (the others being
null) its rank cannot always take any arbitrary value.
This can be understood in another way. An e-dimen-
sional density matrix is defined by I'—1 rect parame-
ters. Suppose that q of these parameters are null
(i.e., the density matrix is defined by p=(n' —1)—q
parameters) and that we ask that the matrix should
have rank r (i.e., n rproper —values are null); then we
have q+n rrelation—s between n' 1quantit—ies. If
q+n r) n' 1 i.e., i—f—
the system is impossible unless some of the ss —r rela-
tions are equivalent. Moreover, the parameters must
of course satisfy thc conditions pI'cscl lbcd by thc
positivity requirement.

Let us consider another illustration of these facts.
%e consider again the density matrix of I'~ produced
in the reaction

"A similar result has been given by M. Peshkin, Phys. Rev.
129, 1864 (j.963); however, his derivation is much more laborious
than ogrs.

Let us suppose that for a given production angle the
density matrix of the Y* is completely defined by the
real parameter to' and the complex parameter
(p=3), i.e., the particle has only quadrupole polariza-
tion. The Eberhard-Good theorem provides m —r
relations (r= 2) between the three real quantities
to', Ret2', and Imtg. If we suppose j=-,' (n=4), then
n —r—P= —1 ((0), and the system is not completely
determined. The two relations between the parameters
are given by the set (6.11).It is easily seen that in this
case both relations are identical and give

This is compatible with the positivity condition

s(t02)2+10t tp~2 —3&0.

If we suppose j=~s (n=6), then n —r—P=1 ()0).
The system is thus impossible unless some of the four
Kberhard-Good relations are equivalent. Working out
the calculation one shows that the former is effectively
the case. The Eberhard-Good theorem provides only
two relations between the parameters tv' and.

but these eoelieear relations have mo real solution.
Consequently, the hypothesis j= ~5 has to be rejected,
and by the same reasoning all higher spins are elimi-
nated. This result can be stated:

If the particle I'* produced in the parity conserving-
two-body reaction

Z' +p ~ 1'*+v

has only I.=2 tensorial polarisation, then the spin of
I'~ is ~3 md we have the relation

between the parameters.

VII. CONCLUSIONS

The purpose of the present work was twofold. On the
one hand we have shown that besides the well-known
condition Trp'&1, the positive-definiteness imposes
further conditions on the density matrix and on its
multipole parameters. On the other hand, we have seen
that in some physical situations, the Eberhard-Good
theorem imposes strong relations between the elements
of the density matrix.

Both sets of conditions may be of some help in the
problem of determining the spin of the resonant states
and in the study of production or formation processes.

For instance, we have shown how the Eberhard-
Good theorem can be used to study reactions of the
type I'+8 —+8*+I' or I'+8 —+8*~I'+8, and to
determine the spin of hyperons. As for the positivity
conditions, they can be very useful to remove the
ambiguities which remain in the determination of spin
by the method of Byers and Fenster. For instance, in
his review article, Tripp points out that, after an
extensive study, the possibility j=-,' for I'* (1385) was



PI E RRE M I NNAE RT

ruled out by the inequality c2) 0 (Trp2&1). Had the
complete set of positivity conditions (c,&0, c5&0,
c4&0, c2&0, c2&0) been used, the possibility j=-,'
would no doubt have been excluded earlier.

From (A5) one easily deduces the property

(A6)
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The orthogonality of Clebsch-Gordan coefficients leads
to the relations

(
ml m2 m

=(2j+1) '8, ,'8„~, (A7)
ml m2 m jl j2

APPENDIX A

1. 3-j Symbols

The 3-j symbol is defined by the relation

~mlm'1flm2m 2 ~ (A8)

Finally, we give the values of some special 3-j symbols

t' jr

imr m m

= ( )2'™(2j+1)—2/2

m —m 0 (A9a)

j 1
= (—)" '~ (2j+1) '~'( jzm2 j2m2~ j2j 2j m) (A—1) =(—)™m[(2j+1)j(j+1)] 't'. (A9b)—m 0

where (jrmr j2m2~ jr j2j—m) is the Clebsch-Gordan
coefficient of Condon and Shortley. The 3-j symbols are
invariant under any even permutation of the columns.
For any odd permutation we have

Another property of 3-j symbols is

2. 6-j Symbols

Definition (Edmonds 6.2.3):

jl j2 j3 jl j2 j3 ml p2 /3

ll /2 /3 ml m2 m3 j1 /2 p3

ll m2 p3 LM] l2 m3)
X(~.(A10)

pl j2 l3 /l p2 j3)

(
jl j2

m] m2

j j2 j
—m

~ ~ ~ ~

~
—( )22+22+2 (A3)

ml m2 m

The 6-j symbols are invariant under my permutation
of the columns, and they are invariant under. the
following operation:

Wigner has introduced the very convenient concept of
covariant and contravariant 3-j symbols. The metric
tensor which allows one to raise and lower the magnetic-
quantum-number indices is

/2 /3

j2 j3

jl j2 j3

ll /2 l3
(A11)

and we have

g(j )mm' ( )2'—mg

c(j)-=(-)™~---,
Due to the orthogonality propertie~ of 3-j symbols the
following formulas are equivalent to the definition

(A4) (A10)

jl j2 j3 ml m2 m3 ml p2 l3

ll l2 l3 jl j2 j3 jl l2 p3

j
ml (A5)

ml m2 m

Throughout the paper we adopt the convention that
the repeated magnetic quantum number indices are to
be summed over (m = —j, —j+1, , +j). Summa-
tions over j when they occur are always indicated,

ji j2 j3 ml m2 m3
(—)"'Z (2j2+1)

j8 ll /2 /3 jl j2 j3
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or

(mr j32 lp m2 j33 lr)

jp j2 4 jii

j1 j2 j3 m1 m2 jp'l=Z (2jp+1)(-)" " "
j3 /1 /2 l3 j1 j2 mph

ol

(
m' e' L

D(i»(g)m, DU»(g)~„,
j1 j2

fm 33 L
D&L&(R)~'2r. (A22)

&jr j2 M'X, A13

jl j2 j3=Z (2Z +1)(—)" "+"'
23 /1 l2 13

APPENDIX 8
In this Appendix" we derive compact expressions

for the traces s& directly by computing the trace of a
product of k T~L's. From the definition,

(TpjL)m = (—)»(2j+1)»2 j ni
(81)

Finally, we give the value of a special 6-j symbol, and formula (A14), we obtain the very useful relation

j2 = (—)j~+j3+jp[(2jp+ 1)(2j3+.1)]

3. Properties of the Matrices D"'(R)

(A15)

(T~ "T».") -= (i+1)"22 (2I+1)(—)"+"

(T z)m

j j j M1 CV2 —P
(82)

D(j)(g—1)m, [D(j)(g)m,]—1 [D(j)(g) m]t

=D &» (R)"'„*, (A16)

D(j)[g(~p~)]m, —e jmad(j) (p)m, ~jm'r (A1 7)

The matrix elements d&" (P)m ~ are real and have the
properties

By successive application of this formula one can
transform any product of I'&IL into a sum. Since we
know the trace of T„J

Tr(T„~)= (2j+1)3gp8„3,

D(j) (g) m, 3: ( )m
—m'D( j)(g)—m (A20)

d(j)( p)m d(j)(p)m

d(j)(p)m, ( )m—m'd(j)(p)m'

)m
—m gU~(p)

—m . (A19)
thus

it is possible to calculate the trace of any product of
T~L. For instance, by taking the trace of both sides of
(82) and using (A9a), (83), and (A15), we obtain

2j+1
»(T~ "T~")=(—)~' 4,L,T~, , 3r, . (84)

2L1+1

4. Reduction of a, Product of Reyresentations

Edmonds (4.3.2) gives the formula

D(ii)(g) D(i3m)(g)n, — p (2L+1)
L, M', M m e M'

21 j2 L
XD (L)(g)3j'

km' 33' M
which can be transformed into

D (il) (g)m, D (ip) (g)~„,

j1 j2 M
xD'L'(E)~'3j, (A21)

m' e' L

Similarly, to compute the trace of a product of three
T~L's, we first transform

Tr(T3r ' T '3T3r '3)=(2j+1)'j'g (2I+1)(—)'j+~
J

L1 L2 I L1 L2 .T)
X Tr(T„'T~,'3);j j j 351 M2 —j3l

then we use (84) and obtain

Tr(TM1L "T~3"T~3")= (—)"(2j+1)"'

I.1 L2 L3 ( L1 L2 LA
x (85)j j j (M1 M2 jiII3&

"Results similar to those of Sec. II and of this Appendix are
given by M. C. Marinov, Moscow, 1965, unpublished report.
We thank Dr. Marinov for sending us a copy of his work.
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By the same procedure (first reducing with (B2), then using previous results) we obtain

Lg Lg J
Tr(Tsr, ~'T~,~'T~ ~'T~, ~4) =(2j+1)'P (2J+1)(—)s

J j j
L3 L4 J P LI L2) J La L4l

j j j J 3E& M2 p 353 M4

I2 J
Tr(T~ ~'T~ 'T~ ~'T 'T~ ')=(2j+1)'t'(—)"P (—) + '(2J+1)(2J'+1)

JJ' j j j
L3 L4 J J J' Lg Lr L,2 p It L3 Lg p' J J' Lg

X !.(87)j j j j j j M$ MQ J kcV3 M4 J' p p' Mg

With these formulas one easily obtains the traces sI,

s2=(2j+1) ' p (2L+1)!t~~!2
L,M

s3=(—)2&(2j+1) St2 p (2L&+1)(2L&+1)(2LB+1)terr't~ r't~ r'
L1L2L3

M1M2M3

Lg L2 L3 Lj L2 L3

j j j M, M2 M3

4 Lg L2 J L3 L4 J
=(2j+1) ' Q g {(2L,+1)t '}Q (—) (2J+1)

LiMii=l J j j j j

Mg M2 J M3 354 p,

Lj L2 J L3 L4 J'
s =(—)"(2j+1) 't' Q g {(2L,+1)t, '}p (—) +s'(2J+1)(2J'+1)

Li,Mi i=1 JJ' j j j j

Owing to the rather impressive collection of indices to be summed over in these expressions, we cannot hope to
expand each formula and obtain full algebraic expressions for the traces s~ as functions of tML. For practical use we
prefer the step-by-step method set forth in the text.


