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the single-pion production angular distributions. A more
diS.cult test of the model would be a correct description
of the nonresonating phase shifts —our hope and in-
clination is that careful treatment of kinematics and
three-body unitarity would suKce for their description.
Finally, interesting questions can be asked ie the coett,'xt
of this model; for example, what are the effects of varying
the S-wave xx scattering length on a variety of pion
nucleon phenomena)'4 Also one can examine the validity
of Dalitz-type analyses in obtaining widths and positions

'4 For a possible significance of the sign of the mw scattering
length, see G. F. Chew, Phys. Rev. Letters 16, 60 (1966).

of resonances —i.e., do the bumps in the production
cross sections which are due to the presence of S*and

p in the final state resemble the input S* and p? %e
are presently performing such calculations and. at-
tempting to answer such questions as those described
above.
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It is shown that the triangle amplitude can be written as the scalar graph multiplied by a factor which
contains only the characteristics of the external particles. In the case where the spins of the external particles
are summed, their angles averaged, and only one partial-wave set (that is, a set of relative orbital angular
momenta among the final-state particles) retained, this multiplicative factor is just a product of appropriate
3-momenta. The case Z+p —& Its~rrp at 3 BeV/c is considered; and it is demonstrated that the correct in-
clusion of threshold factors does not diminish the effect calculated in our earlier work, where the shape of
the "~enhancement" was successfully described by a triangle graph.

I. INTRODUCTION
" 'T is the primary purpose of this paper to study the
- - inhuence of non-spin-zero particles on triangle
amplitudes insofar as they impose speci6c threshold
behavior upon the amplitudes. By thresholds we simply
mean the various kinematical limits outlined by the
available phase space. Our fundamental assumption is
that, the triangle graph is dominated by two major
effects. First, there is a second-sheet Landau singularity, '
denoted hereafter by LS, which in the cases of interest
here approaches close to the physical region. "This
effect is embodied in the scalar triangle graph. Second,
the spins and parities of the particles involved in the
graph impose upon the amplitude a minimal threshold

behavior; that is, for a given graph, there is a set of

k+R(M )

FIG. 1.The triangle graph. P, Q, and R are external 4-momenta.
3f~, 3E~, Jtd 3 are internal masses. 1, 2, and 3 label the incident, sum,
and diRerence vertices, respectively. k is an arbitrary 4-vector.

*This work was supported by the U. S. Office of Naval Research
under Contract No. 1834(05).

~ L. D. Landau, Nucl. Phys. 13, 181 (1959).
' I.J. R. Aitchison, Phys. Rev. 133, 81257 (1964).
' F.R. Halpern and H. L. Watson, Phys. Rev. 131,2674 (1963),

lowest relative orbital angular momenta among the
final-state particles. Ke will show that if one assumes a
particular partial-wave amplitude (normally the one
with lowest partial waves), then the triangle amplitude
can be written as the product of the scalar graph and 3-
momenta factors determined by the relative orbital
angular momenta in the final state.

D. THE TRIANGLE GRAPH

In Fig. 1 is depicted. the basic triangle mechanism.
The vertices are labeled 1, 2, and 3 for incident, sum,
and difference vertices, respectively. The masses of the
internal particles (ter, Ms, and Ms), as well as the
external 4-momenta (P, Q, and 8) are as designated in
Fig. i.

The scalar graph'4 is given by

1
d4$(L(p+g)s+~ sgp(g —p)s+~ts]

2
)(Ps+~ssj) t. (If.l)

Or, introducing the Feynman parameters O.j, ot2, and

4 C. Fronsdal and R. E. Norton, J. Math. Phys. 5, 100 (1964);
R. E. Cutkosky, ibid. 1, 49 (1960); R. J. Eden, Proc. Roy. Soc.
(London) A210, 338 (1952); R. J. Eden, Brandeis University
Summer Institute in Theoretical Physics, 1960 (unpublished).
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e3, we obtain

1 3

where

J= dn 5(P n,'—1) d4k, (II.2)
p i=1 [k~'+ ~2

dQ =do!].dQ2dQ3 ~

kr, k+—n—iR ngQ—,
8

y =Q n,MP —(n3R—ngQ)'+nER'+n)Q'.

dn 8(Q n; 1) d4k — . (II.6)
p i=1 [kJ'+~ ]'

Since n«0 at LS, then near the singularity, J' (as
well as J) will have the form of I in (II.S).

' V. V. Anisovich and L. G. Dakhno, Phys. Letters 10, 221
(1964).' Y. F. Chang and S. F. Tuan, Phys. Rev. 136, B741 (1964).

Two important properties of the Landau singularity
are'4

k1.=0 at LS; (II.3)

n, WO fori=1, 2, 3, at LS. (11.4)

Various authors" ' have shown how to extract the
"singular behavior" from J. Using in part the work of
Aitchison, ' Halpern and Watson, ' and Anisovich and
Dakhno, ' it is apparent that one can approximate the
total "scalar" amplitude near LS by

I=c+3, , (II.5)

where c is a background constant, and 6 is that part of
the triangle amplitude which is singular near the
physical region.

There are two points which should be emphasized:
(1) We consistently consider the invariant functions at
the triangle vertices to be unity. The justification for
this is that at LS the intermediate particles are all on
their mass shells. Thus, vertex functions are simply
replaced by their mass-shell values. If an external vari-
able is involved, we assume that the dependence of the
invariant form factors on it can be approximated by a
constant. We normalize arbitrarily, and this is incorpor-
ated later on. (2) We use the letter J to stand for a
particular integral function, while the letter I stands
for the scalar amplitude. They differ essentially by a
constant. The point is that the true scalar amplitude,
in general, has contributions from many processes. We
assume, however, the dominance of the triangle ampli-
tude, by which we mean that all other processes con-
tribute by means of an additive constant. The "non-
singular" part of the triangle amplitude can be added to
this constant. Thus we obtain Eq. (II.S).

No statement at this time can be mad. e concerning
either the normalization of I, or the relative strength
of the c and 6 terms. At present these can only be
determined from experiment.

Consider the quantity J' given by

p,'(K)

g(p)

pi «i)

p, (g

pq(K)

p, (p)

FIG. 2. Triangle diagram for E+p —+ E'~xmp. The vertices are
labeled 1, 2, and 3.The bracketed quantities identify the particles:
m, E, E*, and p stand for pion, E meson, E*(890) resonance, and
proton, respectively. The subscripted p's are 4-momenta of the ex-
ternal particles as shown; k is an arbitrary 4-momentum.

7 M. Ferro-Luzzi, R. George, Y. Goldschmidt-Clermont, V. P.
Henri, B.Jongejans, D. W. G. Leith, G. R. Lynch, F. Muller, and
J. M. Perreau, Phys. Letters 12, 255 (1964).

8 M. Month, Phys. Rev. 139, B1093 (1965).

Let us now include the spins and parities of the par-
ticles involved. The triangle amplitude can in general
be approximated by a sum of terms of the form

A p B~pyo ~ o J~pyo ~ ~

where 8 p~. .. is a tensor formed from the 4-momenta
of the external particles as well as tensors related to the
spins of all the particles; while J p7. .. is a tensor formed
as follows: In the integral for J [Eq. (II.2)), replace
the 1 in the numerator of the integrand by a tensor
made up of appropriate 4-momenta of the internal
particles. [In Eq. (II.7) a summation over the indices

n, P, y, is implied. ]
Near the singularity LS, J p~. .. can be evaluated by

making, in the numerator of the integrand, , the replace-
ment (see the Appendix):

k + nBR+nlQ. (II.S)

Since the o.'s are not zero at the singularity, we deduce
that near LS,

J ~~-=C ~v- J (II.9)

where C p~. .. is a tensor formed from the 4-momenta
of the external particles.

Hence the square of the triangle amplitud. e, "summed
over spins" and "averaged over angles" is given by

(II.10)

where we have replaced J by I, the "true" amplitude;
and T is essentially a function of the relative 3-momenta
among the 6nal-state particles. In particular, if one set
of relative orbital angular momenta dominates the
reaction, then T is simply a product of relative
3-momenta.

III. AN EXAMPLE

To exemplify the ideas expressed in the previous
section, we apply the techniques to a particular case.
In the reaction Z+p ~ Emn7rp at 3 BeV/c., .an enhance-
ment is seen in the Em mass spectrum at about 725
MeV. ' It has been suggested' that the mechanism
responsible for this effect is essentially the triangle dia-
gram depicted in Fig. 2. However, in Ref. 8 full ac-
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count of the E* spin was not taken. Our endeavor here
is to remedy this.

First we assume that the xx interaction at the sum
vertex (vertex 2 of Fig. 2) is s wave; and further that the
E2r3 state has spin-parity 1 (the 0+ state is forbidden
at the K~ -+ E2rrr vertex). To complete a description of
the 6nal state, one must specify the relative angular
momenta between, on the one hand, the (2ri2r2) and
(2r3E) StateS and, On the Other hand, the (2rnr22r3E)
and (p) states. In Ref. 8 these were both assumed to
be s wave. Although the latter is both allowed and
suitable, the former angular-momentum assignment
cannot be 0+. We will in fact prove that under the con-
straints that the state (2r42r2) be s wave and the state
(2r3K) be p wave, it follows that the relative angular
momentum between the states (2r&2r2) and (2r3K) must
be at least p wave. This is accomplished simply by
computing the triangle graph.

The couplings are as follows: At vertex 1 there is a
vector coupling X„;at vertex 2 there is a scalar coupling
1; and at vertex 3 there is a pseudovector coupling
5„„pr„p kp X„is .a 4-vector characterizing the incident
vertex. For s-wave production of the E*, X„might for
example be p4„'. The 4-vectors p and r are given by

P=P3+P4

P3 P4 ~

(III.1)

I 3

G= 2„,.2X„r„P. dn 3(P n;—1)
0 i~1

kp
&( d'k , (III.3)

Eke+ 2 l3
where

kr, =k+n3p —nyq,

Pl+P2

42=n3M22'+ (n, +n2)44' —(n,p —n,q)' —n32' —n,s'.

Making the change of variable

k is a 4-vector to be integrated over, while the 4-vectors
Pl P2 P3 P4 P5 Pl P2 are designated in Fig. 2. The
invariant masses V, v, and s are defined by

V'= —(p '+p2' —p5)'

p2 2
7

2'= —(Pi+P2)'.

The masses M~, p, p~, and m stand for the K~, pion,
K meson and proton, respectively. Also, we point out
that hereafter we will refer to the Anal-state particles
by 2r&, 2r2, 2r3, K, P and 1, 2, 3, 4', 5 interchangeably.

Using the above couplings and Eqs. (II.1) and (11.2),
the triangle graph can be written

and using the fact that

f

�kg
d4&I,

Lk '+el'
we obtain

1 3
G= 214p~pX~t'„P~qp dn 8(Q n4'—1)

(III.S)

d kz . (III.6)
Lkz2+2]3

Since n&/0 at LS', then near the singularity

G 5„„pX„r„pqpI. (III.7)

Hence we have that G is a product of the scalar triangle
graph I and a threshold factor (this being the case, of
course, because angular dependence and nucleon spin do
not concern us here). Also, independent of the incident
vertex, G is proportional to both g34 and g(») (34) f34 is
the relative momentum between particles 3 and 4 in
the (34) center-of-mass system; and q(, )&2&34is the
relative momentum between the systems (12) and (34)
in the center-of-mass of particles 1, 2, 3, and 4. This
means that there is a unit of orbital angular momentum
between particles 3 and 4, on the one hand, and between
the systems (12) and (34), on the other hand. We have
thus demonstrated the assertion we set out to prove.

d V ds I I
i 2p+2p„(IV.1)

where 8' is the incident energy in the center-of-mass
system; I is the scalar amplitude given by Eqs. (II.S)
and (II.9) of Ref. 8; p, is a phase-space term given by
Eq. (II.11) of Ref. 8; and the P's are threshold factors.
P; can be written

i 2+~245 2
(IV.2)

where l& is the 3-momentum of the outgoing E meson in
the (2r3K) center-of-mass system; /2 is the 3-momentum
Of the tWO SpeCtatOr piOnS 2r, and 2r2, in the (E2r&2r22r3)

center-of-mass system; and the u's are momentum
cutoffs.

In our calculations, as in Ref. 8, we use an equivalent
form instead of (IV.1) and (IV.2). We finally have

IV. EC~ MASS DISTMBUTION IN
K+p —+ K232323p AT 3 BeV/c

The triangle-amplitude contribution to the cross
section is'

kr, ——k+n3p —n4q, (III.4)
d V ds i I i 2y2y2p„(IV. 3)
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experimental data is almost identical to that in Ref. 8,
where a& had the value unity and p2 was not included.
In other words, the introduction of the threshold factor
y2 has no damping effect on the shape of the theoretical
distribution.

APPENDIX

Consider the quantity

k kpk~. ..
U.p, ...= dn 8(g n, 1)—d'k . (A1)

p i=l fkr, '+ y]'

(See Sec. II of the text for the definitions of these
terms. ) We wish to show that close to LS,

Ugpfo ~ 0 Vgpfo ~ ~ )

IO-

0 I

600 ?00 800 900 IOOO IIO0 I200 I300

V (MeY)

where V is similar to U, the only difference being that
the k vectors in the numerator of the integrand of U
are replaced by —+n+ nQ.

If we make the change of variables

kr, =k+nsR ngQ, —

where
(e—~—u~)

71=
(~—~—uz)+uni'/2

(V—s—tt)
V2—

(V—s—v)+pass/2

(IV.4)

(IV.S)

and X is a normalization constant.
In Fig. 3, we compare our results with those of Ref. 8.

We use the values uI ——1.5 and a2 ——2.5. That is, the form
factors, giving the momentum cutoffs, have a range of
1.5 and 2.5 pion masses, respectively. Our Gt to the

FIG. 3. Comparison with experiment of the E~ mass spectrum in
E+p —+ Exam.p at 3 BeV/c. The experimental data are those of
Ferro-Luzzi et ul. (Ref. 7). All the theoretical curves have a
Breit-Wigner (B.W.) term for the E*(890) included. The solid
curve is 73.7'Po phase space and 26.3'P~ B.W. E*, and contains no
triangle contribution. The almost solid curve contains the triangle
effect but does not have the correct threshold factor. The dashed
curve LEq. iIV.3l] corrects this by having p wave between the s
state (see Ref. 8) and the two spectator pions (mI and m ~ of Fig. 2).
The interference background constant, c in Eq. (II.5), has the
value —0.55 p, '/', as in Ref. 8. e is the E7f mass.

then

~-s7 =V--ti' +&-s-v (A4)

2n

F = dn 8(Q n,—1) d4kr, , (AS)
p i~1 Lkr, '+ y]'

where e is a nonzero positive integer denoting at most
one-half the power of kr, in the integrand of (A1).

Recall now that at LS, k1,=0. It is thus obvious
that the presence of kr, in the numerator of (AS)
dampens the effect of the singularity. In fact, Landau'
has shown that F„is finite at LS for n&1.

where 8' has at least one power of kl. in the numerator
of the integrand. Thus we need only show that 8' is
finite at LS, from which (A2) follows immediately.

We first dispose of terms having odd powers of kL, .
These vanish because in these cases the integrand is odd
over an obviously even interval in kl, . Secondly, each
term with an even power of kl, in the integrand is pro-
portional to


