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Self-Consistent Three-Body Calculation of Pion-Nucleon Scattering
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Using an oR-energy-shell static theory which treats three-particle unitarity exactly, but neglects left-hand
cuts, we describe rather well the low-energy I'-wave Ãx system. We obtain a well-satisfied "bootstrap"
requirement in the {3,3) channel and a possible explanation for the Roper resonance in the (1,1) channel.

I. INTRODUCTION

'N recent years most dynamical calculations in
~ ~ elementary-particle physics have involved the E/D
method in the framework of S-matrix theory. ' The
usual approach in such calculations is to compute left-
hand singularities as well as possible and, at best, to
include inelasticity phenomenologically'; multiparticle
unitarity cuts are neglected completely. We see no
a priori justification for this procedure —for example, in
the charged scalar static model Bronzon and Brown'
conclude that "for strong coupling and particularly at
higher energies, production has a decidedly greater
effect on scattering than does crossing. " Nevertheless,
it is still true that one cannot obtain operational equa-
tions in a relativistic theory which includes spin, isospin
etc., and both a left-hand cut and a three-particle
unitarity cut, so a choice must be made as to which of
the latter two effects to treat most carefully. In this
paper, rather than the traditional one, we choose an
alternative approach and examine the low-energy pion-
nucleon system in a static off-energy-shell theory which
treats three-particle unitarity exactly, but neglects
crossed cuts. We obtain considerable success including a
well-satisfied "bootstrap" requirement in the (3,3)
channel and a possible explanation for the Roper
resonance' in the (1,1) channel. Our calculation suggests
that careful treatment of inelasticity may be important
in low-energy baryon-meson systems, and also should
encourage the use of relativistic oR-energy-shell three-
body equations to describe elementary-particle
processes.

In Sec. II we describe our model, and in Secs. III
and IV display the results of our calculations. In Sec. V
we discuss these results and give conclusions.
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where x= ts or s. The operators p't' ' ' p't' 't' 4', and
a(k') annihilate particles 1V, S*,1P, and s., respectively.

g, &'& is the unrenormalized coupling constant, and

f,(k ) is an arbitrary cutoff function. These quantities
will be discussed in detail below.

The partial-wave amplitudes T,t(7r+N ~ 7r+E) and
T»(rr+1V* ~ s.+E) satisfy coupled one-dimensional
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first suggested by Lovelace. ' The nucleon is taken to be
static and considered as a pion nucleon bound state, and
therefore, the Ez system is a special case corresponding
to bound-state scattering in the E~x system. We use a
second-quantized formalism in which the nucleons are
static. Since the model lacks crossing symmetry, it is
convenient to define two particles with the quantum
numbers of a nucleon, E and Ã', and permit the reaction

1' 1P+s, but not allow E' —+E+m. Our theory
sums the infi.nite set of diagrams shown in Fig. 1.
In the above diagrams the xE'3l and m.g'i7* vertices
are described respectively by interaction terms B~~g

and II3~~ of the form~

II. THE MODEL

We study E~ scattering in an exactly soluble three-

body model proposed by Amado' using an approach

+ ~ ~ ~ +
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N

FM. i. Typical diagrams of our theory.

+ e ~ ~

*National Academy of Sciences —National Research Council
Postdoctoral Resident Research Associateship.

~ G. F. Chew, S-llfatrix Theory of Strong Interactions (W. A.
Benjamin, Inc. , New York, 1961), pp. 48—50.

2 G. Frye and R. Warnock, Phys. Rev. 130, 478 (1963).
3 J. B.Bronzon and R. W. Brown, Ann. Phys. (N.Y.) 39, 335

(1966).
4 L. Roper, Phys. Rev. Letters 12, 340 (1964).' R. D. Amado, Phys. Rev. 132, 485 (1963). We use the term
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"exactly soluble" in the sense that all amplitudes can be obtained
from the solution of one dimensional Fredholm integral equations.' C. Lovelace, Phys. Rev. 135, B1225 (1964).

7 We use the notation of M. E. Rose, Etemeltary Theory o1
Angllar Momentum (John Wiley R Sons, Inc. , New York, 1957),
3rd edition. For the case X=-,', H~ is proportional to the usual
pseudoscalar gradient-couple static interaction.
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Fredholm integral equations which may be written

T,,(k,k'; E)=B;;(k,k'; E)
00

+ — Q dqB; (k,q;E)
(2rr) 1 m-I

&&G.(q,E)r„,(q, k', E), (2)

where E is the total incident energy. A diagrammatic
representation of these equations is shown in Fig. 2.
In the above equation, using units in which A, c, and
the pion mass are unity,

gIf, (k) kk' g,f, (k')
B,;(k,k'; E)=4Iri';, — —, (3)

k +0™k~k~ +k'

where ops
——(k'+1)'I', oIe is the energy of the incident

pion, /= (2i—1)/2, r= (2j—1)/2, and gr(s and gsIs
are renormalized coupling constants (e.g., gIIss
=Z~g~~~( &', where Z~ is the wave-function renormaliza-
tion constant of the X particle).

1/9 8/9 -2/9

g/9 1/9 -2/9X+10

—2/9X+10
)—2/9

(4)
5/9 4/9l

N

111 thc (i)1)~ (1)3) ol (3~1) Rnd (3,3) channels~ Icspcc"
tively. The Green's functions in Eq. (2) have the form

GI(q,E)= (oIe—ro,) '

o"Q frn'(Q) Q'
X 1—((0e—o7e), 5

(2') &o («oIo+se)-

gsI' d'Q f» '(Q)Q'
Gs(q, E)= 1+

(2~)' ~o(~s—~o+se)-

In the expression for G~ we have anticipated and thus
explicitly displayed the nucleon pole. The form of G2

given above is only valid in the separable-potential
limit of the EeE'rr interaction (Za =0) but in the
following calculations we consider only this limiting
ease."

Ke now perform tw'o calculations~ first omitting
~E'E* coupling, and then including it.

III CALCULATION I
Ke set g3/2 ")—=0. Since, as we shall demonstrate in

the next section, our results turn out to be essentially
independent of the functional form of the cuto6 func-
tion& WC llCIC RrbltlRIIly clloose ftie(q )=exp/( —

q—1)/PIIssj, where q is the pion momentum. We first
note that the amplitude for rr+X' —+Ir+1P can be
solved trivially since it is E-0 scattering in a pseudo-
scalar I.ee model. ' There are three parameters in our
theory —the cutoff parameter pries, the renormalized
coupling constant g~~2 and the wave function renormal-
ization constant of the X particle ZIv (recall that
gt~ss= ZIvgIIst'&'). We fIx the parameters by demanding
that our amplitude for ~$' scattering have a discrete
state pole at the physical nucleon mass M with residue
go~2' ——1.48" subject to the condition 0&Z~& 1.Having
determined. the parameters in the two-body sector we
now turn to the three-body sector of our theory.

We examine s.1lr scattering in the (1,3) (3,1), and
(3,3) channels which is the same as studying V-0
scattering in a pseudoscalar Lee model'0 or eguiea/eltly
the Chew-I. ow static model'2 without crossing sym-
IIletly (I.e.~ E War+ I)111 tllC ''tw'o-111CSOI1 Rppl'OXIIlla-
tion. Three-body unitarity is satisfied exactly in our
model. To obtain our xX amplitudes we solve the inte-
gral equations LEq. (2)j numerically by methods dis-
cussed extensively elsewhere. " We ftnd no (3,3) reso-
nance for any value of pr~s such that 0&ZIv(1. The
largest phase shifts are obtained for ZN=O and are
shown together with phase shifts for Z~=0.144 in
Fig. 3 (curves No. 1 and No. 2). The corresponding
(1,3) and (3,1) phase shifts (which are equal in our
model) are shown in Fig. 4. It should be emphasized that
one cannot obtain a resonance in the (3,3) channel for
any allowed value of PI~1(0&Z~&1).

Further discussion is necessary before presenting the
(1,1) results. We should note that in the (1,1) channel
xE scattering is rot equivalent to that in the Chew-Low
model without crossing symmetry, for with the inter-
action Hamiltonian of Eq. (1) we are neglecting single-
nucleon intermediate states (Fig. 5). Including this
eGect, the model can still be solved with a moderate
amount of further computations involving integrals
over off-energy-shell amplitudes already obtained, but

~~= mm+~
pro. 2. Schematic representation of integral equations.

s M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961).

9 The three body problem with separable potentials was 6rst
solved by A. N. Mitra, Nucl. Phys. 32, 529 (1962).

'0T. D. Lee, Phys. Rev. 95, 1329 (1954). The pseudoscalar
Lee model is discussed by H. Chew, jh~fg. 132, 2756 {1963)."In more conventional units this choice of gIp~ corresponds to
gp~ '/4qr=14. 6, where gp~„~ is defined, for example, in P. %'.
Coulter and G. L. Shaw, Phys. Rev. 141, 141.9 (1966)."G. F. Chew and F. E. Low, Phys. Rev. 1Q1, 1570 (1955).
Vfe should like to emphasize that the Chew-Low model gives non-
linear off-energy-shell integral equations to solve, while our model
gives linear equations of the Lippmann-Schwinger type at the
expense of exact crossing symmetry."J.H. Hetherington and L. H. Schick, Phys. Rev. 135, 3935
(1965).R. Aaron and R. D. Amado, ibid. 150, 857 (1966).
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We first choose both fi/~ and f3/2 to be Gaussian.
We treat the E*E'x interaction in the separable
potential limit, ' choosing the two independent param-
eters g3/2 and pa/2 so that mlP scattering has a (3,3)
resonance with approximately correct width and posi-
tion. With gi//=1. 48 and for several values of Pi/2

we once again solve the three-body equations for the
~E scattering amplitude. This time we do obtain a
resonance —in fact, for reasonable (3,3) widths and

positions, the resonance reproduces itself rather well.
An example is shown in Fig. 8. (In this figure and in

the following ones, unless stated otherwise, gi// =1.48.)
We have satisfied ourselves that the results are essen-

tially independent of the functional form of the cutoff
function and we demonstrate this fact in Fig. 9 where

input and output (3,3) resonances are shown for a
cutoff function f(q') =L(P' —1)/(q'+P')]'. All remain-

ing results are for Gaussian cutoffs. It is interesting to
note that in order for there to be a resonance Z~ must
be small. In our model the condition Z~ ——0 is the
integral condition that must be satisfied approximately

so that there can be a resonance in the Chew-I, ow
model. " In Fig. 3 we plot the (3,3) phase shift for two
values of Z/v (curves 3 and 4). Note the extreme sensi-

tivity to this parameter. Roughly Zz measures the
fraction of time the nucleon is not a bound state of a
pion and a nucleon.

We have varied all our parameters including g&~2'.

Typical effects of such variations are shown in Fig. 10
for an input (3,3) resonance with position 1262 MeV
and width 143 Mev. Figure 11 shows a case in which

the input and the output are almost identical.
In Fig. 12 we plot the (3,1)phase shifts and in Fig. 13

the (1,1) phase shifts for the parameters used to obtain
curves 3 and 4 of Fig. 3. In Fig. 14 the inelasticity
factors g are plotted. The above results are all discussed
in the following section.

V. DISCUSSION OF RESULTS
AND CONCLUSIONS

We first rather briefly discuss calculation I. Recall
that the (3,3) phase shift in curves 1 and 2 of Fig. 3
wouM not pass through m./2 for any allowed values of
the parameters. Our Born approximation used as
input in an N/D calculation with elastic unitarity
would of course give a resonance since there would be
no restrictions on pi/~. The lack thereof is a self-con-

sistency requirement associated with inelasticity and

» See, for example, the discussion of G. Salesman, Phys. Rev.
99, 973 (1955).In our model,

~QQ fI/" (Q)
N —

(2 )3 GOQ
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contradicts no previous static calculations. "It is clear
from this calculation that eeeN ie u sta6c theory mhkh

contains only pions and nucleons, either the left-hand

~6 G. Salzman and F. Salzman, Phys. Rev. 108, 1619 (1957).
G. Schwartz, ibid. 137, 3212 (1965). Our conclusions differ from
those of Lovelace (Ref. 2) although we are solving identical
integral equations in the limit Z~=O. The reason for this dis-
agreement is that the approximation which Lovelace uses to
obtain separable integral equations (although valid in certain
energy regions) neglects consistency imposed by three body
unitarity, setting the "sum of bubbles" in Fig. 2 equal to unity.
For example, in order to obtain a resonance he must use values of
the cutoff parameter for which his two-body (1,1) amplitude does
not have a nucleon pole with corlect position and residue. This
difhculty is related to the problem of ghosts (Z@(0) in our
analysis.
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cut or right-hand contributions from multiparticle
states contribute signiftcantly to the (3,3) resonance,
a fact which, if realized, has certainly not received vride
publicity.

The (1,3) and (3,1) phase shifts are small, uninterest-
ing and consistent with previous static calculations.
Our (1,1) phase shifts are small and have the wrong
sign, but this error is to be expected since the sign of
the scattering length is determined by the sign of the
Born term, and by neglecting a direct nucleon pole in
the three-body xÃ channel we have made our Born
term eight times too small with the wrong sign.

We now discuss calculation II. Here we found that

if a (3,3) resonance were included as input in the two
body mS' sector, it could be obtained self-consistently
as output in the three body 7' sector. (Figs. 9, 10, 11.)
Ke may think of the above phenomenon as an un-
orthodox bootstrap calculation in which the input is on
the right-hand cut. Note that including an E*virtually
on the right-hand cut is sufhcient to give self-consist-
ently a reasonable description of the (3,3) resonance.
Calculation I showed that either the presence of the
crossed AS cut or a more careful treatment of inelasticity
was necessary to obtain a resonance. Calculation II
suggests that it is the proper treatment of inetasticity
that is required for obtaining the (3,3) resonance, the
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Fig. 6(b) shows roughly that the effect of »ngie-n«leon
intermediate states is opposite to that of ~E* states
and the competing effects couM conce1vably cancel
We are presently perforDUng a calculation including

these processes. In any case, the evidence seems to
ind. icatc that three-particle intermediate states con-
sistin. g of a pion and a correlated (3,3) pion-nucleon

pair contribute significantly to the (1,1) phase shift at
low cncI'glcs.

Finally, the (1,3) and (3,1) phase shifts (Fig. 12)
are small at low energies, but in contradiction to phase-
shift analyses change sign at higher energies. %e do
not attempt to defend this behavior, but hope that
inclusion of further effects such as those described in
the previous paragraph would improve these phase
shifts.

In conclusion, using an off-energy-she11 static theory
which treats three-particle unitarity exactly, but
neglects left-hand cuts, we have described. rather well

the low-energy E-wave lVm. system. At the expense of
going off the energy shell and neglecting the left-hand
cuts, or amplitudes become solutions of linear Fredholm
integral equations (the Chew-Low equation is non-

linear). Although the theory is not crossing-symmetric,
soDlc crossing can bc included as 1nclast1clty 1n a
reasonable manner. An important asset of this model
is that it can be extended to include other important
effects and still be solved exactly. For example, at the
expense of one further coupled integral equation we can
introduce an I=O, J=Oxm interaction in the form of
a separable potential and. examine its effect on the low-

energy Err system. An I=1, J=Irrrr interaction (p
meson) could be included similarly. "

'9A successful calculation using an approximate version of
a relativistic off-energy-shell three-body theory with p-S inter-

Relativistic off-energy-shell three-body equations
have been proposed recently by several authors. ' In
the xX problem, for practical purposes, these equations
can only be solved by using separable approximations
such as we have used, "although the required calcula-
tions are somewhat more complicated than ours. In the
static limit with separable approximations these equa-
tions are identical to those that we solve. Ke feel that
using such relativistic equations and including
interactions Lo ("ABC"?), and p mesonsj in addition
to those interactions already considered in this calcula-
tion, onc could successfully describe pion nucleon scat-
tering below 1 BCV, obtaining most of the phase shifts
and inelasticity factors for J& ~5 ued production angular
distributions. This possibly extravagant claim is based
upon several factors. First, we note the success of the
present calculation in obtaining a self-consistent de-
scription of the (3,3) resonance and providing a possible
mechanism for the Roper resonance. "Second, we would
include in a very tractable model exactly those mech-
anisms which Cook and Lee and Tcplitz have shown in
relatively crude calculations to be responsible for the
600- and 900-MeV resonances. Third, we would include
exactly with three-body em''arity the isobar mechanism
which Vodh and Olsson23 have shown to give rather weH

mediate states was reported by R. W. I'"inkel and L. Rosenberg,
BuH. Am, Phys. Soc. 11, 382 (1966).

20 V. A. Alessandrini and R. L. Omnes, Phys. Rev. 139, 8167
(1965);R. Blankenbecler and R. Sugar, ibid. 142, 1051 (1966).» J.L.Basdevant and R. E.Kreps, Phys. Rev. 141, 1398 (1966).» Upon completion of this work a paper by D. Atkinson and
M. B.Halpern, Phys. Rev. (to be published) was brought to oui
attention. It is interesting to note that these authors, using a
completely different approach than we do, come to similar con-
clusions concerning the role of mE* and 0$ intermediate states in
the (1,1) channel.

@ M. Olsson and G. B.Yodh, Phys. Rev. Letters 10,333 (1963).
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the single-pion production angular distributions. A more
diS.cult test of the model would be a correct description
of the nonresonating phase shifts —our hope and in-
clination is that careful treatment of kinematics and
three-body unitarity would suKce for their description.
Finally, interesting questions can be asked ie the coett,'xt
of this model; for example, what are the effects of varying
the S-wave xx scattering length on a variety of pion
nucleon phenomena)'4 Also one can examine the validity
of Dalitz-type analyses in obtaining widths and positions

'4 For a possible significance of the sign of the mw scattering
length, see G. F. Chew, Phys. Rev. Letters 16, 60 (1966).

of resonances —i.e., do the bumps in the production
cross sections which are due to the presence of S*and

p in the final state resemble the input S* and p? %e
are presently performing such calculations and. at-
tempting to answer such questions as those described
above.
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Spin Effects on Triangle Graphs*
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It is shown that the triangle amplitude can be written as the scalar graph multiplied by a factor which
contains only the characteristics of the external particles. In the case where the spins of the external particles
are summed, their angles averaged, and only one partial-wave set (that is, a set of relative orbital angular
momenta among the final-state particles) retained, this multiplicative factor is just a product of appropriate
3-momenta. The case Z+p —& Its~rrp at 3 BeV/c is considered; and it is demonstrated that the correct in-
clusion of threshold factors does not diminish the effect calculated in our earlier work, where the shape of
the "~enhancement" was successfully described by a triangle graph.

I. INTRODUCTION
" 'T is the primary purpose of this paper to study the
- - inhuence of non-spin-zero particles on triangle
amplitudes insofar as they impose speci6c threshold
behavior upon the amplitudes. By thresholds we simply
mean the various kinematical limits outlined by the
available phase space. Our fundamental assumption is
that, the triangle graph is dominated by two major
effects. First, there is a second-sheet Landau singularity, '
denoted hereafter by LS, which in the cases of interest
here approaches close to the physical region. "This
effect is embodied in the scalar triangle graph. Second,
the spins and parities of the particles involved in the
graph impose upon the amplitude a minimal threshold

behavior; that is, for a given graph, there is a set of

k+R(M )

FIG. 1.The triangle graph. P, Q, and R are external 4-momenta.
3f~, 3E~, Jtd 3 are internal masses. 1, 2, and 3 label the incident, sum,
and diRerence vertices, respectively. k is an arbitrary 4-vector.
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lowest relative orbital angular momenta among the
final-state particles. Ke will show that if one assumes a
particular partial-wave amplitude (normally the one
with lowest partial waves), then the triangle amplitude
can be written as the product of the scalar graph and 3-
momenta factors determined by the relative orbital
angular momenta in the final state.

D. THE TRIANGLE GRAPH

In Fig. 1 is depicted. the basic triangle mechanism.
The vertices are labeled 1, 2, and 3 for incident, sum,
and difference vertices, respectively. The masses of the
internal particles (ter, Ms, and Ms), as well as the
external 4-momenta (P, Q, and 8) are as designated in
Fig. i.

The scalar graph'4 is given by

1
d4$(L(p+g)s+~ sgp(g —p)s+~ts]

2
)(Ps+~ssj) t. (If.l)

Or, introducing the Feynman parameters O.j, ot2, and

4 C. Fronsdal and R. E. Norton, J. Math. Phys. 5, 100 (1964);
R. E. Cutkosky, ibid. 1, 49 (1960); R. J. Eden, Proc. Roy. Soc.
(London) A210, 338 (1952); R. J. Eden, Brandeis University
Summer Institute in Theoretical Physics, 1960 (unpublished).


