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Using an off-energy-shell static theory which treats three-particle unitarity exactly, but neglects left-hand
cuts, we describe rather well the low-energy P-wave Nx system. We obtain a well-satisfied ‘“bootstrap”
requirement in the (3,3) channel and a possible explanation for the Roper resonance in the (1,1) channel.

I. INTRODUCTION

N recent years most dynamical calculations in
elementary-particle physics have involved the N/D
method in the framework of S-matrix theory.! The
usual approach in such calculations is to compute left-
hand singularities as well as possible and, at best, to
include inelasticity phenomenologically?; multiparticle
unitarity cuts are neglected completely. We see no
a priort justification for this procedure—for example, in
the charged scalar static model Bronzon and Brown?
conclude that “for strong coupling and particularly at
higher energies, production has a decidedly greater
effect on scattering than does crossing.” Nevertheless,
it is still true that one cannot obtain operational equa-
tions in a relativistic theory which includes spin, isospin
etc., and both a left-hand cut and a three-particle
unitarity cut, so a choice must be made as to which of
the latter two effects to treat most carefully. In this
paper, rather than the traditional one, we choose an
alternative approach and examine the low-energy pion-
nucleon system in a static off-energy-shell theory which
treats three-particle unitarity exactly, but neglects
crossed cuts. We obtain considerable success including a
well-satisfied ‘“bootstrap” requirement in the (3,3)
channel and a possible explanation for the Roper
resonance? in the (1,1) channel. Our calculation suggests
that careful treatment of inelasticity may be important
in low-energy baryon-meson systems, and also should
encourage the use of relativistic off-energy-shell three-
body equations to describe elementary-particle
processes.
In Sec. IT we describe our model, and in Secs. IIT
and IV display the results of our calculations. In Sec. V
we discuss these results and give conclusions.

II. THE MODEL

We study N scattering in an exactly soluble three-
body model proposed by Amado’ using an approach
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first suggested by Lovelace.® The nucleon is taken to be
static and considered as a pion nucleon bound state, and
therefore, the N system is a special case corresponding
to bound-state scattering in the Nrx system. We use a
second-quantized formalism in which the nucleons are
static. Since the model lacks crossing symmetry, it is
convenient to define two particles with the quantum
numbers of a nucleon, N and N’, and permit the reaction
N — N'4m, but not allow N'— N+=. Our theory
sums the infinite set of diagrams shown in Fig. 1.
In the above diagrams the #N’N and =N’N* vertices
are described respectively by interaction terms Hije
and Hjjs of the form?
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where =% or %. The operators ¢!/2 V2, ¢3/28/2 W and
a(%?) annihilate particles N, N*, N’, and =, respectively.
2. is the unrenormalized coupling constant, and
f=(k?) is an arbitrary cutoff function. These quantities
will be discussed in detail below.

The partial-wave amplitudes 7'y, (w+N — 7+N) and
To(r+N*— n+4N) satisfy coupled one-dimensional
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Fi1c. 1. Typical diagrams of our theory.

““exactly soluble” in the sense that all amplitudes can be obtained
from the solution of one dimensional Fredholm integral equations.

6 C. Lovelace, Phys. Rev. 135, B1225 (1964).

"We use the notation of M. E. Rose, Elementary Theory of
Angular Momentum (John Wiley & Sons, Inc., New York, 1957),
3rd edition. For the case X=4%, Hx is proportional to the usual

pseudoscalar gradient-couple static interaction.
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Fredholm integral equations which may be written
Tii(kk'; E)=Bi(k,}'; E)

1 2 o0
+— dqBin(k,q; E)
(21r 3 m=1 0

xGm (q;E) ij (%k, 3 E) ) (2)

where E is the total incident energy. A diagrammatic
representation of these equations is shown in Fig. 2.
In the above equation, using units in which #, ¢, and
the pion mass are unity,
ngz(k) kR grfr(k’)
Bij(k,k'; E)=4xT; , (3

wk”“ Wo— Wr— Wy O)kllM

where wp= (F2+1)!/2, w, is the energy of the incident
pion, I=(2i—1)/2, r=(2j—1)/2, and g2 and g
are renormalized coupling constants (e.g., gi/2
=Zyg12"?, where Zy is the wave-function renormaliza-
tion constant of the V particle).

(o 1) (oo - )
G 4 ©@

in the (1,1), (1,3) or (3,1) and (3,3) channels, respec-
tively. The Green’s functions in Eq. (2) have the form

G1(g,E) = (wo—w,)™!

gy [ @Q f12Q)Q° T
X[l—(wo—-wq) - , (3)
(2m)? J @ (wo—wot1e)
2379 /d3Q J322(Q)Q? ]—1
(2m)
In the expression for G; we have anticipated and thus
explicitly displayed the nucleon pole. The form of G,
given above is only valid in the separable-potential
limit of the N*N’'m interaction (Zy*=0) but in the
following calculations we consider only this limiting
case.®?

(6)

G:(q,E)= |:1+

wq(wo—wotie)

D = ms + = Em 4o

F1G. 2. Schematic representation of integral equations.

8 M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961). ) .

9 The three body problem with separable potentials was first
solved by A. N. Mitra, Nucl. Phys. 32, 529 (1962).
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We now perform two calculations, first omitting
wN'N* coupling, and then including it.

III. CALCULATION I

We set g2 ®=0. Since, as we shall demonstrate in
the next section, our results turn out to be essentially
independent of the functional form of the cutoff func-
tion, we here arbitrarily choose f1/2(¢%)=exp[(—¢?
—1)/B1/2*], where g is the pion momentum. We first
note that the amplitude for #+N’— 7+N’ can be
solved trivially since it is N-6 scattering in a pseudo-
scalar Lee model.!® There are three parameters in our
theory—the cutoff parameter (i3, the renormalized
coupling constant g1/2 and the wave function renormal-
ization constant of the N particle Zy (recall that
g122=2Zng12®"). We fix the parameters by demanding
that our amplitude for V' scattering have a discrete
state pole at the physical nucleon mass M with residue
g1/2"=1.48 ! subject to the condition 0<Zy<1.Having
determined the parameters in the two-body sector we
now turn to the three-body sector of our theory.

We examine wN scattering in the (1,3) (3,1), and
(3,3) channels which is the same as studying V-8
scattering in a pseudoscalar Lee model' or equivalently
the Chew-Low static model'? without crossing sym-
metry (i.e., N'HN-+r) in the two-meson approxima-
tion. Three-body unitarity is satisfied exactly in our
model. To obtain our 7NV amplitudes we solve the inte-
gral equations [Eq. (2)] numerically by methods dis-
cussed extensively elsewhere.’* We find no (3,3) reso-
nance for any value of 81,2 such that 0<Zy<1. The
largest phase shifts are obtained for Zy=0 and are
shown together with phase shifts for Zy=0.144 in
Fig. 3 (curves No. 1 and No. 2). The corresponding
(1,3) and (3,1) phase shifts (which are equal in our
model) are shown in Fig. 4. It should be emphasized that
one cannot obtain a resonance in the (3,3) channel for
any allowed value of 81,,(0<Zx<1).

Further discussion is necessary before presenting the
(1,1) results. We should note that in the (1,1) channel
IV scattering is not equivalent to that in the Chew-Low
model without crossing symmetry, for with the inter-
action Hamiltonian of Eq. (1) we are neglecting single-
nucleon intermediate states (Fig. S5). Including this
effect, the model can still be solved with a moderate
amount of further computations involving integrals
over off-energy-shell amplitudes already obtained, but

©T, D. Lee, Phys. Rev. 95, 1329 (1954). The pseudoscalar
Lee model is discussed by H. Chew, ibid. 132, 2756 (1963).

11Tn more conventional units this choice of g/s? corresponds to
gN N7 /4w =14.6, where gyn,? is defined, for example, in P. W.
Coulter and G. L. Shaw, Phys. Rev. 141, 1419 (1966).

2G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1955).
We should like to emphasize that the Chew-Low model gives non-
linear off-energy-shell integral equations to solve, while our model
gives linear equations of the Lippmann-Schwinger type at the
expense of exact crossing symmetry.

1s T, H. Hetherington and L. H. Schick, Phys. Rev. 135, B935
(1965). R. Aaron and R. D. Amado, sbid. 150, 857 (1966).
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no further matrix inversions.* In view of their defi-
ciencies, nevertheless, we present (1,1) 7NV phase shifts
as calculated in our model, without the above modifica-
tions, in Fig. 6(a).

Some idea of the influence of single particle inter-
mediate states is obtained by examining the behavior of
the wN’ phase shift 6;,° [see Fig. 6(b)]. All the &’s
of Fig. 6(b) pass through —x/2 in the vicinity of
1780 MeV as a consequence of Levinson’s theorem
which requires that for Zy=0 the phase shift is —
at infinite energy, while for Zy>0 it is O at infinite
energy.® It is interesting to note that &;; is a more
sensitive function of Zy than 8.

Inelasticity is very small in all channels, 533, 71,
731, 711 being almost unity.

1 This point was explained to us by R. D. Amado (private

communication). For a similar problem in the Lee model see J. B.
Bronzan, Phys. Rev. 139, B751 (1965).

1300 1400

E ¢, (MeV)

The significance of the above results for the various
channels will be discussed in Sec. V.

IV. CALCULATION II

We now permit N*N'w coupling in our Hamiltonian,
part of the rationale being that we are phenomeno-
logically including more crossing symmetry in our
model. For example, by introducing an elementary N*
field we include diagrams of the form shown in Fig. 7(a).
The diagram of Fig. 7(b) is included in Chew-Low
theory because of crossing symmetry, but was not
present in our calculation I. It is clear, however, that
the circled part of Fig. 7(b) is contained in some sense
in the N* bubble of Fig. 7(a). Note, however, that the
diagram of Fig. 7(a) does not contribute a left-hand
cut to our N amplitude, so we are still neglecting the
crossed =N cut.
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We first choose both fi/» and f32 to be Gaussian.
We treat the N*N’'r interaction in the separable
potential limit,® choosing the two independent param-
eters gs;2 and B2 so that #N’ scattering has a (3,3)
resonance with approximately correct width and posi-
tion. With g1,2=1.48 and for several values of i/
we once again solve the three-body equations for the
N scattering amplitude. This time we do obtain a
resonance—in fact, for reasonable (3,3) widths and
positions, the resonance reproduces itself rather well.
An example is shown in Fig. 8. (In this figure and in
the following ones, unless stated otherwise, gi/2=1.48.)
We have satisfied ourselves that the results are essen-
tially independent of the functional form of the cutoff
function and we demonstrate this fact in Fig. 9 where
input and output (3,3) resonances are shown for a
cutoff function f(¢®)=[(8*—1)/(+6>T. All remain-
ing results are for Gaussian cutoffs. It is interesting to
note that in order for there to be a resonance Zy must
be small. In our model the condition Zy=0 is the
integral condition that must be satisfied approximately

/
AN /
N W .
\ / +-
A /

5 A N N F1G. 5. Some dia-
grams neglected in
our present model
but included in the

\ / Chew-Low theory.
/
\ /
PN // 4ooeo

so that there can be a resonance in the Chew-Low
model.’® In Fig. 3 we plot the (3,3) phase shift for two
values of Zy (curves 3 and 4). Note the extreme sensi-
tivity to this parameter. Roughly Zy measures the
fraction of time the nucleon is not a bound state of a
pion and a nucleon.

We have varied all our parameters including gi/9%
Typical effects of such variations are shown in Fig. 10
for an input (3,3) resonance with position 1262 MeV
and width 143 MeV. Figure 11 shows a case in which
the input and the output are almost identical.

In Fig. 12 we plot the (3,1) phase shifts and in Fig. 13
the (1,1) phase shifts for the parameters used to obtain
curves 3 and 4 of Fig. 3. In Fig. 14 the inelasticity
factors g are plotted. The above results are all discussed
in the following section.

V. DISCUSSION OF RESULTS
AND CONCLUSIONS

We first rather briefly discuss calculation I. Recall
that the (3,3) phase shift in curves 1 and 2 of Fig. 3
would not pass through 7/2 for any allowed values of
the parameters. Our Born approximation used as
input in an N/D calculation with elastic unitarity
would of course give a resonance since there would be
no restrictions on B12. The lack thereof is a self-con-
sistency requirement associated with inelasticity and

16 See, for example, the discussion of G. Salzman, Phys. Rev.
99, 973 (1955). In our model,

sz=1—?g2%§ [d”QQ f::a(Q).
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contradicts no previous static calculations.’® It is clear
from this calculation that even in a static theory which
contains only pions and nucleons, either the left-hand

16 G, Salzman and F. Salzman, Phys. Rev. 108, 1619 (1957).
G. Schwartz, sbid. 137, B212 (1965). Our conclusions differ from
those of Lovelace (Ref. 2) although we are solving identical
integral equations in the limit Zy=0. The reason for this dis-
agreement is that the approximation which Lovelace uses to
obtain separable integral equations (although valid in certain
energy regions) neglects consistency imposed by three body
unitarity, setting the “sum of bubbles” in Fig. 2 equal to unity.
For example, in order to obtain a resonance he must use values of
the cutoff parameter for which his two-body (1,1) amplitude does
not have a nucleon pole with correct position and residue. This
difficulty is related to the problem of ghosts (Zy<0) in our
analysis.

F1c. 7. Phenome-
nological inclusion of ~ s
crossing symmetry. \\ ® -
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cut or right-hand contributions from multiparticle
states contribute significantly to the (3,3) resonance,
a fact which, if realized, has certainly not received wide
publicity.

The (1,3) and (3,1) phase shifts are small, uninterest-
ing and consistent with previous static calculations.
Our (1,1) phase shifts are small and have the wrong
sign, but this error is to be expected since the sign of
the scattering length is determined by the sign of the
Born term, and by neglecting a direct nucleon pole in
the three-body =N channel we have made our Born
term eight times too small with the wrong sign.

We now discuss calculation II. Here we found that

RONALD AARON
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if a (3,3) resonance were included as input in the two
body 7N’ sector, it could be obtained self-consistently
as output in the three body =N sector. (Figs. 9, 10, 11.)
We may think of the above phenomenon as an un-
orthodox bootstrap calculation in which the input is on
the right-hand cut. Note that including an N* virtually
on the right-hand cut is sufficient to give self-consist-
ently a reasonable description of the (3,3) resonance.
Calculation I showed that either the presence of the
crossed 7lV cut or a more careful treatment of inelasticity
was necessary to obtain a resonance. Calculation II
suggests that it is the proper treatment of inelasticity
that is required for oblaining the (3,3) resonance, the

7 Fic. 8. Input and output (3,3)
amplitudes in units of inverse pion
masses (u7?) plotted against the
total c.m. energy E,m. for the
case B1/2=5.255 and B3/2=>5.625,
gs/2=0.1559.
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Fic. 9. For f(g®)a(s?+B%)~2 we
plot input and output (3,3) ampli-
tudes versus total c.m. energy
E.m. for the case f1/2=9.238
(Zx=0.118) and B3/2=9.747, g3/2®
=0.1457.
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effect of the crossed =N cut and other unknown factors
being described by the single parameter Zy.

The behavior of the (1,1) 7V channel with the inclu-
sion of =V* intermediate states is quite dramatic (the
phase shift once again has the wrong sign at low energies
because we have not included a direct nucleon pole)—
for example, with Zy=0.144 the (1,1) phase shift rises
rapidly through =/2 at 1310 MeV (Fig. 13). We
speculate that the Roper resonance? is a manifestation
of this behavior, although in contradiction to phase-
shift analyses!” 511 is almost unity. We would hope that

171, Roper and R. Wright, Phys. Rev. 138, B921 (1965)
P. Auvil, C. Lovelace, A. Donnachie, and A. Lea, Phys. Letters,
12, 76 (1964).

the inclusion of recoil, single nucleon intermediate
states and an I =0, J=0rr interaction (all three effects
can be included exactly in this model, the latter as a
separable potential) would give the resonance at correct
energy with correct inelasticity.’® On the other hand

18 The above speculation, assuming that one mechanism gives
the resonance while another is largely responsible for the inelastic-
ity is not without precedent. For example, Cook and Lee [L. F.
Cook and B. W. Lee, Phys. Rev. 127, 297 (1962)] obtained the
600- and 900-MeV «N resonances assuming a mechanism of
virtual p production by single = exchange. This mechanism,
however, gave poor inelastic cross sections. V. Teplitz [thesis,
University of Maryland, 1962 (unpublished)] showed that by
including coupling to wIV* states in addition to the above men-
tioned p mechanism, one obtained much better inelastic cross
sections while maintaining the resonances without much change
in width or position.
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Fig. 6(b) shows roughly that the effect of single-nucleon
intermediate states is opposite to that of wN* states
and the competing effects could conceivably canc;el.
We are presently performing a calculation including
these processes. In any case, the evidence seems to
indicate that three-particle intermediate states con-
sisting of a pion and a correlated (3,3) pion—nu.cleon
pair contribute significantly to the (1,1) phase shift at
low energies.

Finally, the (1,3) and (3,1) phase shifts (Fig. 12)
are small at low energies, but in contradiction to phase-
shift analyses change sign at higher energies. We do
not attempt to defend this behavior, but hope that
inclusion of further effects such as those described in
the previous paragraph would improve these phase
shifts.

In conclusion, using an off-energy-shell static theory
which treats three-particle unitarity exactly, but
neglects left-hand cuts, we have described rather well
the low-energy P-wave Nw system. At the expense of
going off the energy shell and neglecting the left-hand
cuts, or amplitudes become solutions of linear Fredholm
integral equations (the Chew-Low equation is non-
linear). Although the theory is not crossing-symmetric,
some crossing can be included as inelasticity in a
reasonable manner. An important asset of this model
is that it can be extended to include other important
effects and still be solved exactly. For example, at the
expense of one further coupled integral equation we can
introduce an I=0, J=0rr interaction in the form of
a separable potential and examine its effect on the low-
energy Nm system. An I=1, J=Izr interaction (p
meson) could be included similarly.?

1 A successful calculation using an approximate version of
a relativistic off-energy-shell three-body theory with p-N inter-

60 80 1400 20 40 60 80 1500

Ec,m,"“w

Relativistic off-energy-shell three-body equations
have been proposed recently by several authors2® In
the 7V problem, for practical purposes, these equations
can only be solved by using separable approximations
such as we have used,” although the required calcula-
tions are somewhat more complicated than ours. In the
static limit with separable approximations these equa-
tions are identical to those that we solve. We feel that
using such relativistic equations and including =
interactions [¢ (“ABC”?), and p mesons] in addition
to those interactions already considered in this calcula-
tion, one could successfully describe pion nucleon scat-
tering below 1 BeV, obtaining most of the phase shifts
and inelasticity factors for J <§ and production angular
distributions. This possibly extravagant claim is based
upon several factors. First, we note the success of the
present calculation in obtaining a self-consistent de-
scription of the (3,3) resonance and providing a possible
mechanism for the Roper resonance.?? Second, we would
include in a very tractable model exactly those mech-
anisms which Cook and Lee and Teplitz have shown in
relatively crude calculations to be responsible for the
600- and 900-MeV resonances. Third, we would include
exactly with three-body unitarity the isobar mechanism
which Yodh and Olsson® have shown to give rather well

mediate states was reported by R. W. Finkel and L. Rosenberg,
Bull. Am. Phys. Soc. 11, 382 (1966).

2V, A. Alessandrini and R. L. Omnes, Phys. Rev. 139, B167
(1965) ; R. Blankenbecler and R. Sugar, ibid. 142, 1051 (1966).

2 7. L. Basdevant and R. E. Kreps, Phys. Rev. 141, 1398 (1966).

22 Upon completion of this work a paper by D. Atkinson and
M. B. Halpern, Phys. Rev. (to be published) was brought to our
attention. It is interesting to note that these authors, using a
completely different approach than we do, come to similar con-
clusions concerning the role of #N* and ¢V intermediate states in
the (1,1) channel.

% M. Olsson and G. B. Yodh, Phys. Rev. Letters 10, 353 (1963).
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the single-pion production angular distributions. A more
difficult test of the model would be a correct description
of the nonresonating phase shifts—our hope and in-
clination is that careful treatment of kinematics and
three-body unitarity would suffice for their description.
Finally, interesting questions can be asked i the context
of this model ; for example, what are the effects of varying
the S-wave =r scattering length on a variety of pion
nucleon phenomena?? Also one can examine the validity
of Dalitz-type analyses in obtaining widths and positions

2 For a possible significance of the sign of the 7 scattering
length, see G. F. Chew, Phys. Rev. Letters 16, 60 (1966).
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of resonances—i.e., do the bumps in the production
cross sections which are due to the presence of N* and
p in the final state resemble the input N* and p? We
are presently performing such calculations and at-
tempting to answer such questions as those described
above.
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It is shown that the triangle amplitude can be written as the scalar graph multiplied by a factor which
contains only the characteristics of the external particles. In the case where the spins of the external particles
are summed, their angles averaged, and only one partial-wave set (that is, a set of relative orbital angular
momenta among the final-state particles) retained, this multiplicative factor is just a product of appropriate
3-momenta. The case K*p — Krxrrp at 3 BeV/c is considered; and it is demonstrated that the correct in-
clusion of threshold factors does not diminish the effect calculated in our earlier work, where the shape of
the “x enhancement” was successfully described by a triangle graph.

I. INTRODUCTION

IT is the primary purpose of this paper to study the
influence of non-spin-zero particles on triangle
amplitudes insofar as they impose specific threshold
behavior upon the amplitudes. By thresholds we simply
mean the various kinematical limits outlined by the
available phase space. Our fundamental assumption is
that the triangle graph is dominated by two major
effects. First, thereis a second-sheet Landau singularity,!
denoted hereafter by LS, which in the cases of interest
here approaches close to the physical region.23 This
effect is embodied in the scalar triangle graph. Second,
the spins and parities of the particles involved in the
graph impose upon the amplitude a minimal threshold
behavior; that is, for a given graph, there is a set of

Q-k (M)

P k+R(My)

Fic. 1. The triangle graph. P, Q, and R are external 4-momenta.
M1, Mo, M are internal masses. 1, 2, and 3 label the incident, sum,
and difference vertices, respectively.  is an arbitrary 4-vector.

* This work was supported by the U. S. Office of Naval Research
under Contract No. 1834(05).

11, D. Landau, Nucl. Phys. 13, 181 (1959).

21. J. R. Aitchison, Phys. Rev. 133, B1257 (1964).

3 F.R. Halpern and H. L. Watson, Phys. Rev. 131, 2674 (1963).

lowest relative orbital angular momenta among the
final-state particles. We will show that if one assumes a
particular partial-wave amplitude (normally the one
with lowest partial waves), then the triangle amplitude
can be written as the product of the scalar graph and 3-
momenta factors determined by the relative orbital
angular momenta in the final state.

II. THE TRIANGLE GRAPH

In Fig. 1 is depicted the basic triangle mechanism.
The vertices are labeled 1, 2, and 3 for incident, sum,
and difference vertices, respectively. The masses of the
internal particles (M, Ms, and Mj), as well as the
external 4-momenta (P, Q, and R) are as designated in
Fig. 1.

The scalar graph!* is given by

1
= / R (- R+ M T Q= BT
B+ M AT,

Or, introducing the Feynman parameters ai, as, and

(IL.1)

4 C. Fronsdal and R. E. Norton, J. Math. Phys. 5, 100 (1964);
R. E. Cutkosky, 7bid. 1, 49 (1960); R. J. Eden, Proc. Roy. Soc.
(London) A210, 338 (1952); R. J. Eden, Brandeis University
Summer Institute in Theoretical Physics, 1960 (unpublished).



