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Strong Vertex According to SL(6,C)
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The baryon-meson vertex is calculated to lowest nonvanishing order in momentum transfer, in a rela-
tivistic SU(6) theory in which the particles are assigned to unitary (infinite-dimensional) representations of
SL(6,C). The coupling 56,56,35 contains no arbitrary parameters except for the over-all universal coupling
strength. All the results are in excellent agreement with experiment.

1. INTRODUCTION

A S soon as Gursey and Radicati, and Sakita, '
presented their SU(6) proposal, it was realized.

that "pure SU(6)" was a theory that needed to be
generalized. To some the need to reconcile the theory
with relativity was paramount; others insisted on its
essentially nonrelativistic nature. But all agreed that
the field of application of SU(6) must be extended be-

yond the purely static domain. The Grst attempt was
made by Gursey and Radicati. ' They noticed that a
strong Yukawa vertex, invariant under static SU(6)
and under space reQections, does not exist. Any satis-
factory vertex is therefore a step beyond static SU(6).
The proposal of Gursey and Radicati was'

P' /+A&cf&, &c(q~ +~ q)AA' (1.1)

Here P~~c is the tensor basis for the 56-dimensional
representation of SU(6) associated with baryons,
m g~ is the tensor basis associated with the 35-dimen-
sional meson representation, and q~~ is the "kinetic
spurion" Bg~b. P

QA = Oa Q'+a ~

[We use indices A, 8= 1, , 6 for SU(6); a, b = 1, ,3
for SU(3); n, P=1, 2, for spin. $ The three-vector q is
the momentum of the meson.

The appearance of the kin. etic spurion in (1.1) con-
stitutes, of course, breaking of SU(6) invariance. Once
we admit this kind of vertex, we might as well write
down the most general "invariant" involving one
kinetic spurion, namely,

&x4*" 4~ sc(qs. +~ q)~"'

+C2$ pA'B'cqA 'Jr B

+CD'"'9 ~ac(q~ )n (1 2)

with three arbitrary coeKcients.
Although the ansatz (1.2) can be made to fit experi-

ments by a suitable choice of the three undetermined
parameters, it does not have aesthetic appeal; nor
does it have a theoretical justihcation. It was natural,
therefore, to attempt to justify it, and if possible to
determine the three parameters, by regarding it as
invariant under a larger symmetry group. Since mo-

*On leave of absence from University of California, Los Angeles,
California.

'F. Giirsey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964); B. Sakita, Phys. Rev. 137, B1756 (1964).

menta are involved, and since the kinematics are
typically relativistic, it is tempting to assume that
relativity is relevant. Thus was born an era of intense
activity directed towards a reconciliation of SU(6)
with invariance under the transformations of the Poin-
care group. Many early attempts were less than com-
pletely successful, which led to a widespread dis-
illusionment and a feeling that "relativistic SU(6)"
was an idle dream. Nevertheless, the desirability Qf

enlarging the 6eld of application of SU(6) remains,
and the impossibility of a meaningful relativistic SU(6)
remains unproven.

We present here the erst calculation of experimenta].
consequences of the symmetry SI (6,C), described
previously by one of the authors. '-' In Sec. 2 we give
a review of the basic features of the theory. Sections 3
and 4 consist of the calculation of the strong baryon-
baryon-meson vertex to lowest order in the momenta
of the particles involved, and its expression in terms of
the usual SU(6) states. In Sec. 5 we present the numeri-
cal results of the calculation. Finally, Sec. 6 is concerned
with the problem of crossing symmetry.

BrieQy, the numerical results are: (1) D/F=1.8 for
pseudoscalar mesons. (2) D/F=1.5 for magnetic in-
teraction of vector mesons. (3) Almost pure F for elec-
tric interaction of vector mesons. (4) An improved value
for the width of the S*. (5) Almost pure M1 for the
S*1Vp interaction.

2. REVIEW OF RELATIVISTIC SU(6)

A model world, in which both SU(6) and the Poincare
group are exact symmetries, has a very large invariance
group, namely, '

G=F)&S (semidirect product), (2.1)

where I' is the Poincare group and S is a noncompact
~ C. Fronsdal, J. Math. Phys. (to be published. )' P. Budini and C. Fronsdal, Phys. Rev. Letters 14, 968 (1965).
4 For a very detailed application of this technique to SL(2,C),

see G. Bisiacchi and C. Fronsdal, Nuovo Cimento 41, 35 (1966).
A more complete discussion of the representations of SL(n,C),
including a comparison of our methods with those of Gel'fand and
Naimark and Harish-Chandra, may be found in Ref. 2.' For more details, see C. Fronsdal, in Proceedings of the Seminar
on High-Energy Physics and Elementary Particles, Trieste, 1/65
(International Atomic Energy Agency, Vienna, 1965), p. 585.' For more details, see C. Fronsdal (Ref. 5), p. 665. The parity
operator P must satisfy PM& =Sz~p; when E= —g we have
P=~(—)', so that the successive multiplets are 56, 700+,
4592 ,
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(2 3)

group that contains SL(6,C) as a subgroup. We con-
sider the simplest case, when

S=SL(6,C) .
This group contains a subgroup SU(3)N)SL(2, C).
The second factor is isomorphic to the (homogeneous)
Lorentz group; let s„„bethe generators of this subgroup
and let L„„bethe generators of I orentz transformations.
Then the precise meaning of (2.1) may be expressed

by the statement that

L Ilp= Lpp slav

commute with all the generators of S. Thus

PXS=I'xS,
where P is isomorphic, but not identical, to P. The
generators of P' are the same as those of P, except that
L„„are replaced by L'„„.

Representations of the group (1.1) may be con-
structed most easily from a representation of P and a
representation of S.A theory of the SU(6) type can re-
sult only if we choose a representation of P' with real
mass and zero spin. 3 A basis for a represeDtation of
this type will have the form

P.(x), o = 1,2,

where the transformations of P act on the argument x
and those of S act on the index 0. only.

It is necessary to take a unitary representation for S,
and since S is noncompact this implies that the index 0.

runs over an in6nite set. Nevertheless, it is convenient
to start with a family of Gnite representations, and pass
to a unitary representation by analytic continuation. '
The simplest finite representations of SI.(6,C) have the
tensor basis BI ~ ~ B~ (~2 2&AI A „+fs J

symmetric in upper indices and symmetric in lower
indices. The generators of SL(6,C) are a set 3EArr of
operators that act on the undotted indices" and satisfy
the commutation relations of SU(6), and a set XA~ of
operators that act on the dotted indices and satisfy the
same commutation relations. ' A maximal compact
subgroup is generated by the subset

2XAB DAB +It/AB.

this subgroup is the static SU(6) introduced by Gursey
and Radicati and Sakita.

The reduction of (2.2) into irreducible representations
of SU(6) is, for positive integral S and k'

g] ~ ~ o gg&x" Ar+a

(2l+k+n 1)—!1V!(E+k)!=SP
~-el!(t+k)!(E—t)!(1V+t+k+n 1)—!

X4,. ..A,+, ' '4„„, ' 4„„") (2.4)

where S stands for symmetrization with respect to
upper indices and symmetrization of the lower indices,
m=6, and

t!A,...A,+,
r'" &=(traceless projection of)

At+A+I. . . $~ AN++A A
Bl ~ Brr (2 5)

The sum over 1 in (2.4) is finite, because the coeflicient
vanishes when N —t is a negative integer. The smallest
SU(6) representation that appears in (II,4) is the sym-
metric t!A, ...A„, application to physical baryons requires
that one take k=3.

The matrix elements of 3f~ and ¹ between the
basis vectors (2.5) can easily be calculated' ' (we give
the result below for the relevant value of E), and these
are simple analytic functions of the parameter N. The
requirement that

(MA~)t =XriA,

as must be true in a unitary representation, ' yieMs the
condition Jt/= ,+ip—, p—real. In addition one has to
require that there exist an operator that can be inter-
preted as intrinsic parity, ' and this Axes N at N= —2.
For this value of E the reduction (2.4) simplifies to

(2t+k+n —1)!
PAr" AN F' ' =S 2 (—)'

i=o t!(/+k)!
X4r" Ai, s

'" '4, .,~,r
' 4~,. (26)

Unlike the case of positive integer N, the reduction now
contains an inGv3te number of terms. In spite of their
formal nature, (2.5) and (2.6) provide useful shortcuts
to correct results in practical calculations.

The main results that are needed to evaluate the
invariant vertex are the following ~:

(
. k. g+k t

2!tj+ 5 jpA A . Bl' Bt—P 4 JkA .
A

Br' ~ Bt Q 5 BsPA A
Br'''i'''B. i

g 8=1 s=l
(2.7)

Br ~ Bi (~.j +'~)4'A ~ ~ ~ A
Br ~ B&

t(1+k)
(2t+k+n)f;A, . .A„&n—&"'»—.

(2t+k+ n 1)(2t+k+ n —2)—
XS V4 't!'A," A,

'" '+(&—1)&;»4 't!A,...A, »'"»+(t+k —1)4'5A»PA

(t—1)(&+k—1)
4, '4, 'g'A, . . .A„„'n'"~' (2t+k+n 2)5 ~4,~—pA, ...A, „» "—i

2t+k+n —3
' For typographical reasons "dotted" indices have bars instead of the more conventional dots.

~ /t, Salatn and J. Strathdee, Trieste, Report IC/65/79, 1965 (unpublished).
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PQA A
Bl' ~ Bf ( )(PA A

Bl Bt.
C&—12.

The operator representing intrinsic parity may be up to arbitrary phases by the requirement that the cur-
de6ned for this representation by' rent representation be unitary. This turns out to be

possible only if

It commutes with LAB and anticommutes with 'A'AB.

We could develop the meson representation in a
similar fashion, but we prefer the more direct approach
of the following section.

V=~&+~ AB& DA+ J+AB—~+BA+. . . (3.1)

where J and J+AB are baryon-baryon currents, linear

in/ and linear in f*.Since' is an SU(6) scalar, ™'"
necessarily couple SU(6) multiplets with the same
dimension and therefore with the same parity; hence
J and K have positive parity. The set of all currents in

(3.1) must transform contragrediently to the mesons,
hence according to a unitary, irreducible representation
of SL(6,C). In particular this requires that

MADMDAJ=NADX "1=CJ -(3.2)

where C is a pure number that characterizes the current
representation, and thus also the meson representation.
Equation (3.2) has been used to calculate J the cur-

rents J+AB were calculated as follows. First we note that
) 'A J has the same transformation properties with

respect to SU(6) and pa, rity as J AD, and that the
traceless part of X'AcJ p has the same transformation
properties as J+AB. There follows that

AB~~ ABJ

j+AD (traceless part of) X'AcJ cs.

The constants of proportionality are next determined

The implication is clear for finite representations. For infinite
unitary representations self-conjugacy of a representation means
that it is. equivalent to its contragredient. In fact, W. Ruhl,
CERN report TH 649 (unpublished), assigns the mesons to a
self-conjugate representation that has no singlet and only one 3S.

9 In fact it turns out that the meson representation is precisely
as was conjectured in Ref. 6.

3. THE VERTEX IN TERMS OF STATIC
SU(6) MULTIPLETS

About the meson representation we know that its
reduction according to SU(6) must contain a 35-
dimensional SU(6) multiplet with negative parity. In
addition, the meson representation must be self-

conjugate, because the mo is the same as its antiparticle;
at Erst sight this seems to require that an SU(6)
singlet meson exist, but in fact it does not. ' For the pre-
sent we assume that the reduction according to SU(6)
gives a singlet (K), a 35 with negative parity (~ A ),
possibly a 35 with positive parity (sr+AD), and a num-

ber of others that we need not name. We can prove
that no more than two 35-dimensional representations
can occur, and that these have opposite parities. '

Ao invariant baryon-baryon-meson vertex will then
have the form

Finally, the phases are determined by requiring that
the current representation be self-conjugate. "

The final result for the static currents J and J+AB,
to the extent that it is needed here, is"

I-
7( ]—1 sI-PADS, y . . .]
PACDZ +PA QCDE+ '''y

J'A'= —I:—4(C+12)] "'Lv*'"@CD+ "].
(3.3)

With this normalization the currents transform ex-
actly as the mesons:

C —1/2

ZA, 'A K=Y B—
35

A

Q —1/2

g"'AD~ cD= ——— (bc SAD —g~bcD4D)~
35

3- C-1/2
—1—— I-~+AD'CD+&+CD4D

g 12

A ~c S~ C ~ ]+'''
3 — C —1/2

'AD~+CD ———1——— (~ AD'CD+~ CD4D
12

's& A-D)cD s'~ C-D) D]

The unwritten terms indicated by+, involve higher
SU(6) multiplets represented by tensors with four
indices (189+, 189, 405+, and 405-) ~

Our results for the vertex function are given by
(3.1) and (3.3). Now we have to express this in terms of
physical states, i.e., states that transform according to
irreducible representations of the Poincare group P.

4. THE PHYSICAL BASIS

So far we have used a basis adapted to the decomposi-
tion of the group G=PXS as the direct product P'QxS.
However, before confronting the results with real
physics we have to take account of the fact that P,
and not E, is the physical Poincare group. It is in-
teresting to note that the distinguished role of E is
entirely due to symmetry-breaking eBects. Because
physical masses are nondegenerate we cannot prepare
arbitrary one-particle states, but only eigenstates of
mass; and with the help of weak and electromagnetic

"In Ref. 6 the meson representation was described by means of
the tensor qg&. ..g~~&. ..~~ &" ~~~&" ~~. The relationship be-
tween C and M is C=2M(3f+5). Previously we have thought that
self-conjugacy requires that M be real (and hence —3&M & —2),
but that is not correct.

"See Ref. 2 for the complete results.
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interactions we 6nd out that eigenstates of mass trans-
form irreducibly under I' rather than under I' .

The generators s„„which generate a subgroup of
SL(6,C) isomorphic to the Lorentz group, are linear
combinations of the SU(3)-invariant operators M„~&

d 1V at' namely

1
s„„= [(o„—„)A MB"+(o„„)A ¹ ).

2l
(4.1)

In particular, a pure Lorentz transformation L;0 is the
sum of I.*;0, which in momentum space transforms the
momentum only, and s;0' thus

8 8 )L'o=t' P. +Po I+(c;)BA&'AB.
8po Opt'

(4.2)

L(p))A=[2m(po+m)] ' '(mttA +pA )&B,

L(p)t=k~m(po+.-)] '"(m~ '+P ')~-
L(p)p= [2m(po+m)] 't'(m8BA+pBA) p t

I.(p)p= I 2m(po+m)]-"'(m4A+ PBA)P,
where

P =P (tT )A. PA P (&tt)A

(4.3)

From this we see that the "covariant trace"

(1/m) pAB&Bp

of the tensor $Bp is Lorentz-invariant. Let us replace

B~ (1/m)p B tlAB & (1/m)PAB (4 4)

in the reduction formula (2.6) writing

(2t+!t+ tt—1)!
PAt" AN, a" '"=SR (—)' m' —~

t!(t+k)!5=0

Xit'At ~ ~ A t+o (P)PA t+t+t™ PAN+&

(0. )~z (&~)&c(0' ) & & (0'„)A (0'&)g, and (~tt.}A4. »
defined similarly, with (0„)z~——(1, —p') and (0.„)A = (1, +e).

The Gnite Lorentz transformation which connects the
rest system to the system in which the momentum is p,
without rotation, is P', IPI

L(p) =expLi8 tL, ]o, 0'= — tanh-'
IPI Po

Consider first the quark representation $A. In this case

2zLto4=2zs okAt=( i)BoMc 4=(&i)A $c

a,nd thus

L(p) =e"*'=I2m(po+m)) '"(m+po+p e).

Similar expressions are obtained for the action of L(p)
on )At pt and p. The result may be written

where

it'A, "At+/' "B'(p)= (covariant traceless part of)
XM t Np

— A—t+o+t. . .p- AN+Its Bt ~ ~ ~ BN (4 6)

and "covariant traceless" means that

pB AttpA '''A Bl" Bt(p) O

The terms of the expansion (4.5) are not mixed by the
Lorentz generators L„„=I'„„+s„„,although they are
mixed by L „„andby s„„.Under Lorentz transformations
the tensor ptA. t. . ,A ,+t' "B'(p) transforms exactly like

4
The formula (4.5) is not a reduction according to

static SU(6), but a reduction according to another sub-
group of SL(6,C). In fact, define

XA (p) = (1/2m)(MACpCB+PACNCB) (4.7)

Comparing with (2.3) we see that LAB(p) agrees with
the SU(6) generator XAB when p=o. But the set (4.7)
is covariant and satisdes covariant commutation rela-
tions; hence it spans an. algebra that is isomorphic to
SU(6). We shall use the symbol SU(6)„ to denote
either the algebra or the group defined by (4.7). The
tensor tPA, ".At++'"Bt(P) transforms irreducibly under
SU(6)t„ in exactly the same way as pA, ...A, ,B'"Bt
transforms under SU(6). The physical meaning of
SU(6)t, becomes clear when we notice that the subset

Bt Bt eto sitL(p) i/A ''A Bl ~ Bt(p—) (4 8)

For the purpose of evaluating the matrix elements of
the current J A~ between the 56 physical baryon states,
to the lowest nonvanishing order of momentum transfer,
we put t = 1 in (4.8) and retain terms of order 8=p only:

BI—,7, 131(a
Ag ~ ~ Ah+1 FA1 ' Ah+1

We now use (2.8) and retain the terms involving the 56-

1
(~ )B"!A'(P) = P"L(c..)A'Mc"+(~,)B'&c']

2tn

are the generators of Wigner's little group. Hence
SU(6)„ is the Giirsey-Radicati-Sakita synthesis of the
little group with SU(3).Reducing each SU(6)~ multiplet
according to the little group completes the reduction of
the baryon representation into irreducible representa-
tions of the Poincare group.

Finally we have to express it. .."' in terms of tp. .."'(p) .
Both sets of tensors refer to states with momentum p;
only the bases are di6'erent. Since they agree at y=0,
one has

e ""'&""'=L(p) V" "'(p)
or



dimensional multiplet only, thus

(y ~)~"
2~ (~+~+1)(a+I)

X&[k4iS4cSVAAc. ..A„,(P)

(~+'lb)11A ~A1 !4c "Ab+z(P) 1 (4 9)

There is another, and more direct way of obtaining this
result, by substitution of (4.5) into (2.5).

Substltutlng (4.9) lrlto (33) we obtain

~ A'=(2/15)[2(4*" v '4A" +0*' v4' ")
8*"—v 4"+8*"tt" vA'

+ (1P
"'W 1' CP "WA'1P''')j+''' (4.10)

S. NUMEMCAL RESULTS, BARYON-
BARYON-MESON VERTEX

For mesons at rest, the vertex is obtained by sub-
stituting (3.3) and (4.10) into (3.1).The result is

(0"0" )~
7C

where dummy indices are abbreviated by dots, and

v= —y'/m' —y/m, w= y'/m' —y/w, . (4.11)

In (4.10) the unwritten terms indicated by +
contain no 56, 56 matrix elements in the lowest order
of porp.

The pseudoscalar octet I,', the vector octet V
and the vector singlet V t' are deined by

cr-As= —V 'e ~+8 PI '+—5 'V- e S

v2 &3

The baryon octet g, b and the resonance decuplet
1P s~,b. are defined by

PABC 1Pabcasy+ P&abd&aS1Pyc
3&2

+&acd&ayg'Pb +&bccÃPy1Paa j ~

VVe normalize the vertex such that the pion-nucleon
interaction occurs with the normalization pv en~+.
The result is (to lowest order in the momenta):

(Z,8,8 1). The baryon-octet coupling to the pseudo-
scalar octet is

«Lkv oI 4j+(2/&) «LVv WF 3

This means that the D/F ratio is 1.8, which is consistent
with the experimental data on strong interactions. Ac-
cording to the partially conserved axial-vector current
hypothesis, this should agree with the D/F ratio of
weak interactions. From that point of view the value
1.8 is an excellent one. In certain models'3 this allows
one to calculate gA/gv= b(D+F)/(—D F)= —1.1—7,
also in agreement with experiment.

(&0,$,$ 1). The decay of the decuplet of resonances is
represented by

+(2/15) {-,g*s "(vm +1r v)sAiPA. .

:(P"vA'~ —sW~n )+aQ*"'0".)«(v~ )

++b "(wx —n w)s g'A. .)

(5.1)

(9/&)I:"Abf'"V. 'v'

As we mentioned above, there is a considerable theoreti-
cal uncertainty in comparing the strength of this coupl-
ing with that of (8,8,8-1). If we follow the procedure of
Gursey and Radicati, ' then the result is an E*width of
80 MeV, a small improvement of their value of 60 MeV.

Lorentz invariance (or Galilei invariance, to be precise)
allows us to generalize this to any slow frame by re-
placing the expressions (4.11) for v and w by the
following:

v= 2q/p —y'/yg' —y/m, w= y'/m' —y/m, (5.2)

where q and p, are the meson momentum and mass.
The result (5.1), (5.2) is immediately applicable to

the decay of a baryon into a baryon plus a meson. Ke
shall also apply it to the perturbation theory vertex in
which the meson momentum is spacelike. In this case it
is not possible to transform the meson to rest, and it is
not clear what meson mass should enter the formulae;
for this reason we hestitate to compare the strength of
%*Em and SEx. The annihilation vertex, the baryon-
antibaryon-meson coupling, is discussed in the next
section.

(8,8,h b). The baryon-octet coupling to the vector octet
ls

(11/21) tr[ttv V-|Pj——; t [Atv V,—j
—(25/42) tr[ybwXV; ~]—(5/42) trg~. &wXV;].

The electric part (6rst line) has an F/D ratio of 25/3,
not very much unlike models that take this coupling to
be pure F.The magnetic part (second line) has D/F =2;
if the p-meson mediates the electromagnetic inter-
actions, then this value gives bb„/p„= —~a.

(8,8,i b) and to the vector singlet:

(40//V3) v Vl tr[g 1—(15/14%3)iwX Vl tr[1pmp].
—

These results should be confronted with baryon-
baryon scattering data.

» R. Gatto, L. Maiani, and G. Preparata, Phys. Rev. Letters
16, 377 (1966).
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(N, S,8 3) T.he production of resonances by the ex-
change of a vector meson in nucleon-nucleon or meson-
nucleon scattering depends on the terms

y-. c) (y ad v.e. gP 5) (vga- c) .) @)(y adeP. b)7"''1
terms of the asymmetry parameter R, the value vie
predict is 8TH= Q. 'E. This value may be modified by the
inclusion of higher order terms in the vertex, and by
taking account of the large S* and p-meson vridths.

SU(6) siriglet tnt*,sow coupling. The coupling of the
~-meson in 8 vrave:

(—9o/&) E—&o/&&j"'(8)'

The process of E~ decay into NY can be calculated by
assuming dominance of an intermediate vector meson.
The nature of this interaction has been measured
indirectly through photoproduction of xo mesons using
a polarized bremsstrahlung source. '4 The production is
dominated by the exchange of the E* at the resonant
energy, 1236 MeV. The physically measured quantity
E. is the asymmetry of the differential cross section
perpendicular and parallel to the electric 6eld vector

j /2

(lO/») -l—
12

+tr(feiP V8++Sge. V8+g)+43Vg+ trgeP) j
and the (10,8) part is

10i
+ (wX~ ') «~(P'"V ')

Positiue parity 35. This is also 8 wave; the octet-octet
part is

O'Z —0'fr

0'&+ 0'i i

The asymmetry has been measured at energies of
Ey= 235, 285, and 335 MeV. Interpolating to the reson-
ant energy, 300 MeV, vie 6nd E=0.5&0.1.Ke 6nd that
the E*Ey vertex is predominantly Mj. , and that the
E2 contribution occurs with the correct phase. '5 In

"D.J. Drickey and R. F. Mozley, Phys. Rev. Letters 8, 291
(I962).

"For the nature of the assumptions made in this model cal-
culation, see, for example, M. Gourdin and Ph. Salin, Nuovo
Cimento 27, 193 (j.963).

The most important conclusion that can be dravrn
from these expressions is that the value C of the meson
Casimir operator cannot be very close to the upper
limit —12 set by unitarity. '
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