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Necessary Dependence of Currents on Fields They Generate*
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It is shown that in local (proper) Lorentz-invariant theories involving axial-vector, or tensor currents
(conserved or not), the latter must vanish, if they commute at equal times with the fields they generate.
The need for explicit field dependence of currents is demonstrated for gradient-coupled spinless and massive
spin-one fields, as well as for electrodynamics with minimal or nonminimal coupling. The field-dependence
requirement is distinct from that (already needed for free fields) of "spreading points" to make the current
operators well-defined. The relation between the two, however, essentially fixes the form of this dependence.
Applications are made to partially conserved currents, B„j&=o.q,. if j' commutes with q, the latter vanishes.

I. INTRODUCTION

'HK recent successes of current-algebra methods
have revived interest in consistency problems"

of current commutation relations. As was first empha-
sized in Ref. 1, vanishing of the equal-time commutator
[js,js] of a conserved current implies vanishing of the
current operator itself. Since straightforward evaluation
of [js,j"]in terms of the canonical relations for a spin- —,

field, for example, yields zero, this difhculty is ascribed
to the singular nature of the current as a product of two
field operators at a common point. It is indeed removed
by redeGning the current to be the limit of a nonlocal
two-point operator,

j&(a)= lim-', g (x+a), yg(a)]

pendent of any boson variables since there are no
constraints on the Fermi fields, and these commute at
equal times with the (kinematically independent) Bose
variables. We denote by canonical variables those com-
ponents (e.g., p, ys for spin 0; 3", Est for spin 1) which
are the independent dynamical variables of the Bose
field in question, whether or not they obey canonical
commutation relations.

One of our main results will be that nontrivial
interaction requires that the current densities be made
explicitly dependent on (fail to commute with) the
Gelds they generate. Otherwise, e.g. , if the simple free-
field definition of the type

j (x) =11m-', [P(Ã+e), yy(x)]

("spreading the points"); the commutator then no
longer vanishes. Actually, both the above "disease, "and
its cure, are not limited to electric currents, but are
characteristic of any vector (or tensor) density, irre-
spective of whether it is conserved' or even coupled to
any other field. This will be shown in Sec. II. The non-
local red.efinition of a current is adequate in the free-
Geld case; when there is coupling, however, the situation
must be re-examined. In particular, one must investi-
gate whether the current may be regarded as kine-
matically independent of the fields with which it
interacts, as is the case for the above nonlocal form. (An
operator is independent of a particular canonical vari-
able if, and only if, it commutes, at equal times, with the
canonically conjugate variable. ) Then, sources com-
posed of spin- —,'Gelds are usually assumed to be inde-

*Supported in part by the U. S. Atomic Energy Commission
under RLO-1388B and by the U. S. Air Force, OfBce of Aerospace
Research, OSR grant AF 368-65.' J. Schwinger, Phys. Rev. Letters 3, 296 (1959); Phys. Rev.
130, 406 (1963).' K. Johnson, Nucl. Phys. 25, 431 (1961).

3 This fact has also been noted recently by S. Okubo, Inter-
national Conference for Theoretical Physics, Trieste, Report No.
IC/66/10 (unpublished). An earlier demonstration was given by
L. S. Brown (private communication, and to be published).
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is kept, there is in fact no interaction. That such
additional current-Geld d,ependence might be required
was Grst noticed" 4 in electrodynamics, from considera-
tions of gauge invariance. Recently, Okubo' obtained a
no-interaction result in gradient-coupled scalar-meson
theory of the ps(pv) type. Here, the current was spread,
but no explicit meson, field. dependence introduced, there
being, of course, no gauge-like argument for it in this
case.

We shall show (Secs. III—V) that for spinless bosons
with gradient coupling to a vector current, massive
spin-one fieMs coupled to vector or tensor sources, and
for electrodynamics with current and also magnetic
tensor coupling, it will be necessary (quite independ-
ently of gauge arguments) to introduce field dependence
in the sources. On the other hand, for scalar sources [as
in direct ps (ps) coupling], no such requirement arises, in
general, unless the bosons are massless. It seems likely
that similar results hold for higher spin fields as well. '

4 D. G. Boulware, Phys. Rev. (to be published).' One higher spin result is that the stress energy tensor T» of
any (proper) Lorentz-covariant field theory must depend on the
metric g" not only in the classical way, but also in the "explicit"
fashion discussed here. The properties of T&" commutators will be
presented elsewhere.
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We assume that the theory is local (proper) f.orentz-
invariant, has positive Hilbert-space metric, and pos-
sesses spectral representations at least for the renor-
malized fieMs. No assumptions are made concerning
reQection properties, ' internal. symmetries, or Rny de-
tails of the currents' structures; nor is it necessary to use
canonical commutation relations in establishing the
general results. We shall also see explicitly how the
introduction of field dependence will restore the inter-
action. In general, we will see that the form of this
dependence is essentially fixed in terms of the original
current-spreading prescription.

Analogous considerations apply to theories involving
partlaHy conscI'vcd currents. IIl Scc. VI) wc show that
the equation B„jj"=ep alone implies y dependence of
j if q is not to va, nish. In the conclusion, we comment on
the significance and uniqueness of our prescriptions
within the framework of Lagrangian held theory.

OI'v ~p~ g
—

1lIIIpg v) ~p p is thc Lol cntz metr Ic

(—1, 1, 1, 1) and A(x,s) is the commutator function,
whose Fourier transform is e(p')5(ps+s). ft has the

property that, for x0=0

Z(x,s) =0, ass(x, s) =sr(r).

The spectral functions p1, and p0 are necessarily non-

negative, being, respectively, the spin-1 and spin-0
lntermed1ate-state contribution of iliass Qs fl'oiii

j"(x) ~0&. Note that the spin-1 part is identically con-

served, the spin-0 contribution representing the non-
conserved part. From Eq. (4), we learn that the only
ilonvRn1shlng equal-tlmc coQIQlutatoI' ls

&Ol I-js(x) js(0)hl 0

d» 'br(~)+ps(~)1~ "&(r) (6)

II. GENERAL CURRENT NONCOMMUTATION
REQUIREMENTS

Since the necessary nonvaIIishing of current-chargc-
density commutators will be our starting poin, t, we
summarize the basis for it (quite independently of
coupling), before proceeding to interacting fields. This
will also introduce our notation and techniques. As was
first pointed out by Schwinger, ' a conserved vector
current j"(x) which satisfies the equal-time vacuum
expectation relation

must vanish. For a conserved current,

V 1(r)= —a,jo(r) =sIjo(r),aj, (2)

and hence by Eq. (2), and the fact tha, t H
~

0&= 0,

t&0 I 3j'(r),&.j(r') j10&
=&01j'( )ffj'( ')+j'( ')&j'( ) Io& (3)

For the Hermitian opera, tor j', Eq. (1) means that
j'(x) ~0&=oor, bycovariance, that js(x) ~0&=0. But the
Federbush-Johnson theoremr then implies that j"{x)
itself vanishes. While conservation seems to have played
a strong role in the derivation, it is in fact irrelevant, as
we now see.' Proper Lorentz invariance fixes the spectral
form of the vacuum commutator of a vector operator
to be'

&oiLj {*),~ (0)~io&

ds{pi {s)gs"—ps(s) Os' "s—' j h(x, s) . (4)
0

' In particular, we need not distinguish between axial and vector
currents or scalar and pseudoscalar 6elds.

7 P. Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960).
SHere and throughout any internal-symmetry indices are

suppressed because they are irrelevant to our considerations. All
equations may be read as matrix equations in the internal-
symmetry space (positive definiteness here being de6ned in the

In view of the non-negative value of p~ and p0, it follows
that the commutator of Eq. (6) vanishes if and only if

pr(s) =0=ps(s). However, the Wightman product corre-
sponding to (4) is determined by the same weight
functions:

&ol j"(*)j"(0) Io&

ds{pt(s)8"" po(&)s f)"f}"j~+ (x)x) ~

where LU+'(x, s) is the positive frequency function whose
Fourier transform is 8(p")5(p'+s). Thus, whether or not
js is conserved (i.e., whether or not ps vanishes), if Eq.
(1) holds, (0~ js(x)j"(0)

~
0)=0 which, of course, implies

that js(x)=0. Similar results hold for higher spin
currents as well. An illustration which will prove rele-
vant is furnished by an antisymmetric tensor density
S~" such Rs a Pauli ITloIIlcIlt tcI'1Tl. Thc gcncI'Rl forlYl fox'

the commutator here is

&olLs" (x),s" (0)) lo&

ds{o i(s)$g"'8 "8" ri"'8"8"—+r}"i8"8' ri""8"8']—

+~s(s) I
e»»e'«—,a,a„jjA(x, s)

ds{~,(s)8,s"~~+os(s)ass"" j5{x,s). (7a)
0

The weights OI, Rnd 0.2 are non-negative, corresponding

sense of a matrix). Equations of the type (4) are the commutator
forms of the Lehmann-Kallen representations. See H. Lehmann,
Nuovo Cimento 11, 342 (1954), and G. Kallen, Helv. Phys. Acta
25, 417 (1952).

9 This may most readily be seen by considering the zero-spatial
momentum term in the sum over states. The spin-1 states are
coupled only to j~, and yield b~', which Lorentz transforms to
g&"+(p&p"jS). The spin-0 states, on the other hand, couple only
to jo, which Lorentz transforms to (p&p"/S).
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to the intermediate vector and pseudovector states' 0

linked to the vacuum by 50~ and S~'. The only equal-
time commutator in Eq. (7a) which does not vanish
automatica11y ls thc onc with an odd nulTlbcr of temporR1
indices, namely,

ds(or(s)+o, (s)}(8'"8™—8""8")5(r). (7b)

Hence, it must be non-null to avoid the Oi=o=o~
catastrophe which (for the same reasons as in the j"
discussion), would lead to the vanishing of the 5""
operator. It is easy to see that the spin-s S""=go""P
coIltl adicts this 1equircmcnt lf evaluated without
making the nonlocal rcdehnition.

Since naive application of the equa1-time canonical
commutation relations (Pt(r, xo),P(r', xo) ) =8(r—r') to the
commutator of spin--', currents, gyop(r, x'),py "p(r', x')j
implies the vanishing of the latter, one must first
redefine j& to make it less singular before cva1uating the
commutator. The points are to be "split" in j~ ac-
cording to the definition

j"(x) = lim&(x+ e)y'tt (x) .

In this de6rgtion, the limit is to be taken symmetrical1y
(averaged over all directions of the spatial vector a at
tile lilstaIlt lri qucstloll) aftcl' co111IIliitlIlg. Tllc usc of a
spatial limit avoids introduction of time nonlocality in,

the theory. It is easily seen that the prescription (8)
(whether or not j' is also de6ned nonlocally") does lead
to a commutator (6) with a nonzero (but divergent)
coeKcient of 8"ii(r) and hence to nonzero j&. Further, in
electrodynamics, the general form (6) is consistent with
the physical requirement that LQ, js(r)j=0, namely,
that Q generate constant phase transformations. For

We have assumed parity conservation, for simplicity. Other-
wise, the 6nal conditions are unchanged, though there are morc
terms in the equations. An alternative form of this equation is
obtained by noting that

8p""'a (x,s}= (g»rg"' —g&'q"")sa (x,s)+0I&'~'b, (x,s).
However, the form used here directly shows the origin of the
spectral functions in the two types of intermediate states. The
additional terms which result from parity nonconservation may
yield nonvanishing &CSos go'3& and i'"',S~"3 commntators but
do not affect the terms with which we are concerned. The struc-
ture, as in the case of the vector function, is most readily derived
by considering the zero-spatial momentum term in the sum over
states and Lorentz transforming. Here there are two states of
opposite parity, the vector state coupled to P~ and thc axial-
vector state to S~' at zero momentum.

"In electrodynamics j' is essentially the generator of local-
gauge transformations and is closely related to the time-derivative
terms of the Lagrangian. A nonlocal j0 (which is unnecessary to
avoid the paradox) would necessitate a nonlocal time-derivative
term, thus changing the commutation relations of the P 6eld and
negating the whole motivation of the point spreading. In general,
however, there is no reason not to spread the points of all of a
current's components and, in some cases, it may be necessary.
If j' is nevertheless taken to be non-local, the resultant commuta-
tors and 6eld dependence remain unchanged.

this requirement is, of course, compatible with a general
form (jo(r),j s(r')$= —sx(r')ash(r —r') for the density
commutator. It is precisely the splitting (8), needed for
kinematical reasons, which will permit (but does not of
itself require) the introduction of expUcit 6eld. depend-
ence in the coupled case. In electrodynamics, gauge
arguments werc invoked, ' to introduce A ~ dependence in

j .For, if j is to remain gauge-in, variant in the 1imiting
process, the phase expL —se(X(x+ e) —) (x))] arising in

Eq. (8) under a local-gauge transformation may be
cancelled by introducing an exponential factor into j'.

js(x)-+Umph(x+a)exp se dy A(x+y) ysit(x). (»)4~

This depend. ence on A clearly implies noncommutation
of j and the electric field (conjugate to A) at a given
time. As @re shall see in Sec. V, the Doncommutation is in
fact forced directly by d,emanding a nonvanishing
electrodynamic coupling. Gauge invariance alone

(though not Lorentz invariance) could equally well have
been restored by the term

exp so dy Az(x+y)
0

wllel'c A Is tile longitudInal (gauge) pRlt of A i lmw

ever, the interaction vrould vanish in this case. Having
noted. the basis for a nonlocal definition of the type (8),
we shall henceforth assume it has been performed and
concentrate on the question of whether and. how to
introduce field dependence into such a limiting definition
for the various cases to be discussed. %C shall scc that
the gauge-like prescription is actually correct also for
other than e1ectromagnetic interactions.

III. THE SPIN-ZERO FIELD

We consid. er a spinless meson field oo(x) coupled
cUrectly to a scalar source, k(x), and with gradient
coupling to a vector current j&(x). The field equations
have the form"

q»(x) = BI'q (x) —j&(x), B„p&(x) soy (x)—=k(x) (10).
The required vacuum products may be expressed in
terms of the weight functions of the following three
quRntltlCS

(Oi Ip(x) p(0) i 0)= ds p(s)h&+& (x,s), (11R)

(0)j (x) Ip(0) (0)=— ds pt(s)8"d '+I(x,s), (1&b)

"As is well known, there are essentially two ways to introduce
gradient coupling. The one chosen here corresponds to a "minimal"
interaction Py„ in the Lagrangian. The other, as obtamed from a
j&B„q form, leads to equations in which only B„jI' appears; it is
then eGectively a "direct" coupling theory with A= B„j&.

"We have assumed here, and throughout, that the spectra
unction for the renormalized operators exists.



&ol j (*)j (o)l 0&

dsfrrt(s)P" o—p(s)s '8"8"7ht+I(pp, s), (11c)

by means of Eqs. (10). The functions pt, o, and op are
non-negative; (p is manifestly so, and o I, o p are just the
spin 1 and 0 weights of Sec. II.); pt is only known to be
real. The latter property follows from the requirement
that the various operators have local commutation
relations. Since the equal-time commutator corre-
sponding 'to tllc WlghtIIlan product (11b) Is ploportlonal
to p~8~6(+& —p~*8~6( ), it will be local only if pq ——p~*.
The additional products we need are, by Kqs. (10),

ds{oI(s)es"

ds(s 'L«(s)+~I(s)7+PI(s)}=0 (13b)

Taken together, Eqs. (13) imply that if js is inde-
pendent of both y and q', then both 0~ and 0-0 vanish. "
But Eq. (11c) then also leads to the vanishing of js
itself (and also of pt). If, further, there were no k cur-
rent, the only remaining weight function p would have
the free form po:ii(s —sp). Turning next to k(x) and
Eqs. (12b) and (12c), we see that k and p automatically
have vanishing equal time commutators by Eq. (12c)
and D(1=0)=0. The commutation of k and ys, on the
other hand, does yield a sum rule,

&OIL&(r), p '(0)71o&=o ~
—

I «(g)+spt(s)7s —Ias8")a(a,s), (12a)

&Ol L p "(*),u(0) 710&

dstsI p(~)+2p (s')+s ' (s)7

—oLp()+p ()7&=0

ds((~ —~p) I:p(~)+PI(s)7

(o I L&(~), p (0)71o&
1spt(s)+o p(s) & Os' (x,s), (12b)

but the latter is not strong enough to annihilate )'I (x) on
the basis of the spectral form (12d), basically because
(s—sp) p is not positive-deftnite. However, for the special
case of vanishing bare mass (so=0), k must formally
depend on q,

(0 IL&(*),&(0)71o)

dsL(s —sp) p(s)+spI(s)76(x, s), (12c)

ds s(p(s)+2pt(s)+s 'o p(s)) =0. (14b)

dsL(s —sp)sp(s)

+2s(s—sp)pt(s)+so p(s) 76(a,s) . (12d)

Xo assumption has bccn made concerning canonical
commutation relations for L&p, ppp7; these wouM lead to a
sum rule~

dsLp(~)+ pt(~) 7=1,

which we will not need. Also, we have used no properties
of jl" and k other than their Lorentz-transformation
character.

The held dependence of j& and k may be separately
examined. For, Kq. (11b) determines &I js(r), q (0)7),
while Eq. (12a) involves" &Lj"(r) pp'(0) 7&. Thus we have
the implications

&o I I:j'(r),p (0)71o)=o ~ d~ PI(s) =o, (1»)

'4 Equations (12) also govern ([ys, js]), but we emphasize the
other form, as qP (unlike y~) is a canonical variable.

On the other hand, Eq. (12d) implies that (for sp=0),
s'Lp(s)+2pI(s)+s 'op(s)7&0 and so also that sLp(s)
+2pt(&)+s '«(s)7&0. But Eq. (14a) then forces the
latter form, and hence &kk) to vanish. INote ths. t the
possibility that sLp+2pr+s '«7~1)(s) is excluded by
(14b)1.

We now illustrate the way in which the j& current
may be redehned to include 6eld dependence, thereby
allowing the relevant weight functions to be nonzero.
Consider the charge-independent ps(ps) theory with
g~"=sgplp'r 'r"T~f Wc redefin .J&g" as tllc llmlt, at. Rny
instant,

j s(g) = limigpit (x+e)ysysr

X p goy' dy ~, (pp+y) tt'( )' (15)

clearly p still commutes with jl", but qo no longer does.

"S.Okubo's derivation (Ref. 3) of a no-interaction theorem for
the ps(plr)) theory is closely related to this result. For, by Kq. (10),j is just q' —8'q. Hence if j~ commutes with y' and cPq, it will
commute with j0 and hence vanish.
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To compute the lack of commutation introduced by
Eq. (15), we assume canonical commutation relations

Cq p(r, xp), qs(r', x')]=i8 s5(r —r') and obtain

and

8,P~"+S+~=j~, (18b)

Here S(—s) is the interacting propagator for the f field:

S(x)=~(olr(4(x)y(0)) lo&.

Note that &Cqp, j']& still vanishes in the limit (since
tryPS( —s) does) even though j' has also been made
ostensibly p-dependent. This is of course demanded for
consistency with the equal-time vanishing of Eq. (12a).
We may evaluate the trace if P obeys canonical anti-
commutation relations and obtain

&0I Lv -'( ),js"(o)] I o&

=Q s(4/3prP)g Pp Prtig-(r)

=i8 p dss 'Cpi(s)+op(s)]Ops(r). (17)
0

a nonvanishing (if divergent) result for Jp" ds s 'Co i(s)
+op(s)]. The current then no longer vanishes. The
prescription (15), which was introduced. in analogy to
the electromagnetic definition (9a), is not of course
determined by any gauge arguments, and its uniqueness
must be investigated. If we compare the equal-time
commutators of (0 I Cj', pp]

I 0& and (0 I Cj",j']
I 0&, we see

from Eqs. (11c) and (13b) that these are equal if we
assume j commutes with pp (i.e., is independent of the
momentum happ); both are proportional to Jp" ds s 'Co i(s)
+op(s)]. However, the leading term in the explicit
evaluation of (Cjp,j']) comes from the part of Eq. (15)
independent of the exponential. Hence the y depend-
ence of j~ must be so dehned as to agree with the free
result. If one assumes canonical commutation rules for
C&p, pp], this requirement forces precisely the form (15)
for the exponential. "Of course, if j' is made dependent
on y', one wouM not expect the exponential form to
hold; another (definite) field dependence would then
follow. This argument is actually a general one for Axing
the vacuum expectation value of the linear term of the
field dependence. The exponential form, while necessary
where a gauge argument applies, is not dictated by our
considerations since we only treat the linear dependence
on q.

IV. MASSIVE VECTOR FIELD

The general massive spin-1 field equations, in the
presence of both vector (ji') and antisymmetric tensor
(Si'") sources, are

F~"=8~A —8 A~ —S~", (18a)

&oI Cp -'( ),jp"(0)]I0&

=lim25 sigpP tryPS( —s)e Vb(r). (16)
&~0

where j& need not be conserved. Proceeding along the
same lines as for spin 0, we take as independent com-
mutators the following:

(olCa (*)a (0)]lo&

0

(oil S"(*)w"(0)]lo)

dsCri(s)6"" rp—(s)s '8"8"]h(x,s), (19a)

ds pi(s) fql"'8" g
"i—B"]2(x,s), (19b)

&0 I
Ls""(*),s"(0)]I 0&

ds(o i(s)gi""i'+op(s)9p""i'}6(x,s) . (19c)

(oICj"( ),~'(0)]l0&
+r (s)e ""i'}A(x,s), (20a)

ds (C (s—sp) r 1(s)+sp i (s)]0

+ rp (s)sps ' B&B"}6 (x,s), (20b)

(o
I Cj"(x)P'" (0)] I 0&

dsC(s —sp) (ri(s)+ pi(s) )+s(pi(s)+ p i(s) )]
XCrl&'ii" gi'"8']6 (x,s—), (20c)

(0I C& ( ),j"(0)]I0&

ds( C(s—sp)'r, (s)+2s(s—s,)pi(s)+ s'~i(s)]0""

rp(s)sp s 'il"8"}A(x,s) . (20d)

Turning first to the spin current, we note the conse-
quences of its commutation with the dynamical vari-
ables A' and J0~

Here the weight functions 7&, and 70 are the non-
negative intermediate spin-1 and -0 contributions; while

&ri and 0'p are the (likewise non-negative) intermediate
vector and pseudovector weights of Eq. (7a); pi is real,
but need not be positive. The remaining spectral forms
we need follow from (19) and the 6eld equations (18);

(OI LS"(x)g'(0)] I 0&

One of us (S.D.) thanI|;s R. Arnowitt for a discussion of this
question.

(0I I:S"(r),~'(0)]I0&=o~ ds pi(s) =o, (21a)
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ds p(s) (8,& B&V—,V ')-

&ol[A (x),s&.(0)]l o)

X (q'i —V'8"V ')h(x, s), (24a)

ds p, (s) (q~"—8~V "V-')
0

X (Bib„' 8'5P—)h(x,s), (24b)
&o I

Ls"(x) si (o)ll o&

ds{e i(s)8i'""'+a 2(s)82'"" }A(x, s) . (24c)

The spectral functions p, a.~, and 0.2 are non-negative,
and p~ is real. The remaining forms will then follow from
these and the Maxwell equations, as in the massive case.

(o I
Ls"(*)p'. (o)]Io&

ds{[o i(s)+pi(s)]ei&""

+~2(s)82~""'}h(x,s), (25a)
(oI Lj"(x),A"(o)]Io&

of the field mix, so that one expects [F'",j'] not to
vanish either. Thus the constraint equation 8~Ii'~= j'
(whose existence is of course connected with that of a
gauge group) already implies that j" depends on A'.

To verify these expectations, we turn to the relevant
spectral forms. In the presence of both a current jl" and
a magnetic-tensor source 5&", the Geld equations are
just Eqs. (18) of Sec. IV, with so ——0. The lack of
manifest covariance implicit in use of the radiation
gauge (V A=o) is reflected in the appearance of the
differential operator V"= (O,V), and of the inverse
Laplacian V' ', in place of 8~ and the invariant mass s ',
respectively, in the spectral representations. As in Sec.
IV, we start with the three functions"

&ol[A (x),Ai(0)]lo)

Turning Gxst to the nonminimal source, we have the two
relevant conditions from (24b) and (25a):

&OI Ls'"(r),A'(o)] I
o&=o ~ ds pi(s) =0, (26a)

&oILs"( ) Fo™(0)]lo&=o~

ds[o i(s)+o q(s)+ pi(s)]= 0. (26b)

Together, these would imply the vanishing of t7~ and 0.2

and so of S""itself. For the current, Eq. (25c) yields the
implication

&o I [j'(r),Fo»(o)]
I o) =o m

dss[p(s)+2pi(s)+oi(s)]=0, (27)

which is precisely the requirement that (0I [j',j"]I0&
vanish; j" is thus necessarily A-dependent. Note also
that since Eqs. (25b) and. (25c) assure us that ([j',F'"]&
=0= &[j',A ~]& at equal times, no effective field depend-
ence can be built into j' in agreement with the fact that
j' need not be spread in the absence of interaction. "
[Conditions (26) and (27) together also imply, of course,
that only free photons survive. For then, 0.~=0=02= pi
and Jo" ds sp(s) =0. Hence j&=0 and p must have the
form Z8 (s)].

When the charged fields are Bose fields, the constraint
equations automatically produce field dependence of the
type we have just found. As an example, we consider a
charged spin-1 field interacting nonminimally with the
electromagnetic Geld; both j& and Sf""already depend on
the electromagnetic Geld through the A' terms in the
Lagrangian. Calling the charged Geld, amplitudes
(y', G""), the Lagrangian is

@=Z +Zii+ieA„G""qq. +-'i7F„„q"qq", (28)

d»Lpi(s)+ p(s)]

X(g "—V BiV s)h(x, s), (25b)

where 2 and Z~ are the free-photon and boson parts, q
is the 2X 2 charge matrix, and X measures the anomalous
magnetic-moment coupling. The associated. current and.

magnetic sources are

d»Lp(s)+2pi(s)+~i(s)]
j"=ieG""gy» S""=9p"g y". (29)

&0ILj"( ),j"(o)]Io&

Since the variable y' is constrain, ed to be
X (q~'8"—q~"8 )h(x,s), (25c)

y'= (1/p') [i

XF'"qadi,

(8 i, ieqA g)G'~], ——(30)

ds s'[p(s)+2pi(s)+oi(s)]8""h(x, s). (25d)

'0 See for example Ref. 4, or K. A. Johnson 1N4 Brandeis
Lectlre bootes (Prentice-Hall Inc. , Englewood CliBs, New Jersey,
1965).

both j~ and S'k are 6'.d-dependent already at the
"classical" level. Im,deed, if we compute the commutators
in (26a) and (27), we find, in terms of the canonical
relations

[F'"(r),A '(0)]=i5~' (r)=i[5"'5(r)—V~V'1/4m
I
r I],
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that

[j~(r),Poi(0)7=ie'{Go"Goi/p'
+gol+m+ +o+l}g(r) (3la)

structure of j& or of p. Starting from

(olj (x)~ (o)lo)

[S'"(r)2 '(0)7= i(A'/p') y'(r) p"(r)5~'(r) (31b)
ds{pi(s)8I'" po(—s)s '8&8")6&+&(x,s), (34)

so that by taking vacuum expectation values, we have,
in the notation of Sec. III, it follows by successive differentiation that

ds s(p(s)+2pi(s)+o. i(s) 7

eo(GomG o/po+2 +m+ ) (32a)
and

(ol j"(x)p(0) I
0&=a i -ds p, (s)a~a&+&(x,s), (33)

(ol v (*)o (o) I o) =~-o ds sp, (s)~'+'(x, s). (36)

ds p (s)= —0'/ ')l( -). (32b)

We thus find that the classical dependence is of the form
required by our theorem.

It may be thought that these considerations would
indicate that the new field dependences we have dis-
cussed are only needed for spin--,'- field currents, where
there is no classical field dependence to start with.
However, this is not always the case; additional field
dependence may also be needed when classical field
terms are present. One may also spread the points in ji'
and 5&" to insert field dependence, and this may be
necessary for consistency; that is, a nonclassical term
may be required in any case, even when classical de-
pendence is already present. If such dependence is
inserted, it yields additional dependence on 2 in the
same way as for the spin-2 currents. Since the constants
are all divergent, it is impossible to draw any firm
conclusions concerning the necessity of such dependence
by considering the Lehmann forms, except to observe
that if the points are spread in j~, then nonclassical
dependence must follow and conversely. A first-order
calculation for the spin-0 field coupled to an external A
indicates that it is possible to define the singular inte-
grals so that such nonclassical dependence is not needed,
but that, in general, current conservation and gauge
invariance are most readily insured by inserting such
dependence. In the case of electrodynamics, it is im-
possible to maintain any unnecessary A ~ dependence in
a I.orentz covarim, t limit, since the additional terms
simply act to project out the gauge-invariant current
conserving parts and, if the theory already has these
properties, the additional dependence will disappear.

VI. PARTIALLY CONSERVED CONSTANTS

As might be expected, the techniques of the previous
sections have application to theories possessing partially
conserved currents (e.g. PCAC), namely, to systems in
which the relation

holds. There is one general condition, irrespective of the

By Eq. (35), the nonvanishing equal-time commutation
ls

(Ol[j'(r), y(0)7l0)=i+F8(r)=i' ' ds po(s)8(r), (37)
0

whose vanishing implies that the (non-negative) func-
tion po vanishes. Thus, by Eq. (36), if j commutes with

y at equal times, q vanishes agd the current is in fact
totally conserved, . This result is not surprising, since y
just represents the nonconserved part of j& and as was
seen in Sec. II, the [jo,jo7 noncornmutation require-
ment holds for the two parts of j& separately. If p is
a dynamical field, then by Eq. (36), the function
[n 'spo(s)7 is by definition the spectral function p for
(0 l oo (x) oo (0) l 0), and we have a sum rule for the vacuum
commutator E in terms of p: E=Jo" ds s 'p(s).

VII. CONCLUSIONS

We have seen in some detail the necessity of explicit
Geld dependence in currents if their interaction is not to
vanish. This meant, in particular, that fermion currents,
ostensibly built up from spinor fieMs alone, must be
redehned not only to be limits of spatially nonlocal
forms but also they contain 6eld-dependent factors. The
only requirements involved were locality and that the
currents transform as vectors or tensors uo,der the
proper Lorentz group. The nonlocal definition, needed
to prevent j& from vanishing, then provides a natural
and essentially unique way of inserting such field
dependence, in agreement with gauge-invariance argu-
ments where these apply.

The need for introducing explicit nonclassical terms
is not restricted to fermion currents; for even if a boson
current does carry explicit field dependence in a given
case, this will not necessarily yield the required 8"8(r)
form. Similar considerations might be expected to apply
to direct current-current couplings Jzj~ even in the
absence of elementary boson fields. However, the
present technique does not, at least superficially, yield
any corresponding requirements for sources of Fermi
fields. This problem is especially relevant to a pure
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quark framework, in which only fermions are supposed
to appear as fundamental fields. %hat is the relation of
the new deGnitions to the usually assumed completeness
of Lagrangian Geld theory? Because of the singular
nature of products of Geld operators at a point, a formal
Lagrangian involving interactions is actually not well-
defined except in terms of a limiting process similar to
that performed on the currents. In the same sense, it
must now be supplemented with Geld dependence as
well (at least if it is to lead to nonvanishing interactions).
Of course, both these prescriptions can be successfully
neglected (in practice) in obtaining the Lagrange equa-
tions, just as they can be neglected in, many applications
of the latter. They become manifest only when detailed
local current properties are probed, through the 8"8(r)
terms in vacuum-expectation values. "Possible physical
consequences of these prescriptions should bear further
investigation. In the one case which has been pursued in
some detail, " electrodynamics, the exponential factor
removes the quadratic photon self-energy divergence as
mell as a finite current nonconserving term in the
photon-photon "box" diagram. It is not yet clear what
role the corresponding factor plays for other theories.

Finally, one ma.y ask whether the Geld dependence
discussed here is not just a reRection of the necessity of
counter terms in the Lagrangian. Except in the example
of the scalar source coupled to a zero-mass and zero-
spinfield, this is definitely not the case. First, we can
apply the considerations to the renormalized fields and
currents directly, yielding the same results. In order to

~' For the stress-tensor commutators, the corresponding terms
are of the type 8"8'8~5(r).

see this more clearly, we consider the spin-0 case. If we
attempt to say that j~ dependence on y is through y~

and that j~—Xy~ has a vanishing commutator with y',
then we must use as the time component of the current
j'—Xy', and we have renormalized y& which now
interacts with jI"=j&—A. +I'. Now, we apply our con-
siderations to j&. By construction, j~ is independent of
q. If, in addition, j' is independent of p', then j~
vanishes. Hence we can see that the dependence cannot
be of such a trivial nature, and that in the process of
removing y dependence, we must introduce y' depend-
ence. This is avoidable only if j& is simply proportional
to q», in which case there is no interaction associated
with j~. We are forced to the conclusion that, for an
interacting theory, the dependence must be non-
covariant in the sense that different components display
different dependences. The above argument breaks
down in the case of the (one component) scalar source.
On the other hand, there is no theorem either for this
model, unless the bare mass is zero, when k must depend
on y. We could then consider k+Xy independent of q,
but then the equation becomes (—8'+X)q =&+Ay
instead of —8'y=k, and a mass term is introduced,
nullifying the theorem.

Eofe added ie proof The co. nsiderations of this work
deal exclusively with the vacuum expectation values
of the commutators and shed no light on their operator
properties. This question can only be dealt with by
more detailed dynamical considerations beyond the
scope of this paper; however, in the case of Fermion
QED, there is apparently no operator dependence, 4 but
in other theories there may be (and in general is) such
operator dependence.


