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A low-energy theorem is derived for the weak axial-vector vertex. The theorem enables one to calculate
from strong or electromagnetic processes the two leading terms in the expansion of the axial-vector vertex in
powers of the leptonic four-momentum transfer. Applications to weak pion production, E,4 decay, and
radiative p, capture are discussed. In particular, we express the radiative p-capture matrix element, up to and
including contributions linear in the leptonic four-momentum transfer and the photon four-momentum, in
terms of the elastic weak form factors and pion photoproduction amplitudes.

INTRODUCTION

t T is well known' that the infrared divergent order k '
- ~ term in the matrix element for the radiation of a
photon of four-momentum k in any process (the matrix
element of the electric current) can be expressed solely
in terms of the matrix element for the same process with
no current present. Low' has shown that current con-
servation enables one to calculate the electric-current
matrix element not only to order k ' but also to order
k' in terms of the process without the current. In the
present work, we derive analogous results for the matrix
elements of the axial-vector current. We express each
such matrix element in terms of the matrix element for
the process with no axial-vector current and the matrix
element of the divergence of the axial-vector current.
The relation is exact to orders k ' and k'. Under the

assumption of a partially conserved axial-vector current
(PCAC), ' we can relate the matrix element of the di-
vergence to the corresponding matrix element of the pion
source, which is physically measurable, apart from the
usual small off-mass-shell extrapolation. 4 Thus we
obtain an expression for the axial-vector matrix element
solely in terms of physically measurable quantities.
Clearly, this shows that the essential point in Low's
derivation is not current conservation, but the fact that
the divergence of the current is independently measura-
ble. Results analogous to ours will hold for any current
whose divergence is known.

In Sec. I we state two simple lemmas and rederive
Low's results from them. In Sec. II we derive the
analogous results for the strangeness-conserving weak
axial-vector current. We also show how these results
are modi6ed when two currents are present, instead of
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only one. As an application, we treat in Sec. III the
following processes: Weak pion production, E,4 decay,
and radiative p capture. In particular, we find in the
case of radiative p capture that when terms of order qk
and higher are neglected (g=lepton four momentum
transfer, k=photon four-momentum), the matrix ele-
ment can be expressed solely in terms of the elastic
weak form factors and pion photoproduction ampli-
tudes. This means that structure sects linear in q or
linear in k are determined, giving the leading corrections
to the radiative p capture matrix element previously
calculated by Manacher and Wolfenstein' and by
Op at. '

I. LOW'S RESULTS FOR THE ELECTRO-
MAGNETIC CURRENT

We consider the process u —& b+y, where a and b are
arbitrary hadron states. The matrix element for the
process is given by'

.„g(by j a);„=ie(2s-)'b &'& (p.—ps —k)

X,1Vss +M, (I)
(2s)'~'(2ks)'"

where p„ps, E„a dna& are, respectively, the total
four-momenta and the normalization factors of the par-
ticles in states u and b, e is the polarization of the
photon, and k is its four-momentum. The quantity 3f
is related to the matrix element of the electromagnetic
current J EM by

N.XsM~=.„r,(b
~

J EM
~
a); . (2)

Conservation of the electromagnetic current implies
that

kM =0. (3)

We state two simple mathematical lemmas from
which Low's results are easily derived. LIn the follow-

' G. K. Manacher and L. Wolfenstein, Phys. Rev. 116, 782
(1959).

' G. I. Opat, Phys. Rev. 134, 8428 (1964).
7 Four-vectors have an imaginary fourth component: p = (p,p4)= (p,ipp) and p q =p q+p4q4=y q —ppgp. The quantity p* is de-

Qned by p+=y*, p4+= —p4*, where * denotes the ordinary com-
plex conjugate. The y matrices (y&, y&, y3, y4, y5=y&y&y3y4) are
a]l Hermitian, and satisfy y y p +y py =25 tt.
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»G. 1. The nonradiative process.

ing, O(k") denotes terms of the mth or higher degree in
k.

Lensmu 1: Iet M" be an arbitrary four-vector
function of arbitrary independent variables, which is
independent of the four-vector k . Then k M "=O(k')
implies that M "=0.Proof: Obvious.

Lemma Z: If k M =0 and M =M '+M "+O(k),
where M„" is independent of k and where k M '=0,
then M =M '+O(k). Proof: k M' =k M '=0 imphes
k M "=0(k') so byLemma1. , M "=0.

Note that "independent of k" is not the same as
"zeroth order in k."For example, k /p k is zeroth order
ln k but ls not independent of k.

We now apply the lemmas to the two cases con-
sidered by Low. First we discuss scattering of a charged
scalar particle from a neutral scalar particle (Fig. 1).
We denote the initial and final neutral-particle four-
momenta by rl a,nd r~, and the corresponding charged-
particle four-momenta by p~ and pn. Let T(s=p~

~ rg+pg r2, t= {rg rg)', h—g
——pg'+M/, A2 ——p2'+M2')

be the transition amplitude for the nonradiative process
in Fig. 1. Ke have explicitly indicated the dependence
of T on the amount by which the external charged par-
&ides are o8 the mass shell, since the amplitude for the
process in which the photon is emitted from one of the
external charged particle lines involves the o8-mass-
shell nonradiative amplitude. The physical nonradiative
amplitude is T(s,t,0,0).

The radiative amplitude gets contributions from two
types of terms: terms in which the photon is radiated
from an external charged particle line [Figs. 2(a) and
2(b); we call these terms M ' '] and terms in which the
photon is radiated from an internal line [Fig. 2(c); we
call these terms M '~"]. The infrared divergent terms
come only from M '"', while 3f„' ' is 6nite at k=—0. We
write

M ' '(k) =M ' '(0)+0(k)

»G. 2. Contribu-
tions to the radiative
process.

We can express 3f 'x~ in terms of T,

(2ps+k).
M ' '= T[s+r2.k, f,, 0, (p2+k)'+M'2']

(p2+k)'+M22
(2p&—k).

+T[s—rg k t (pg —k)'+MR 0]- . (5)
(pg —k)'+M/

We expand T with respect to k, giving

(2pg+k) {2pg—k)~ ex4- T[s,~,o,o]—T[s,~,0,0]
(2p,+k) k (2pi —k) k

pea p&~
+ r, k+ rg k —T[s,f,0,0]

p, k pg k Bs

8
+2p2 T[s,t,0,62]

~2=0

8
+2p,. T[s,~,~„o] +O(k) . (6)

hI-0

We are now able to rewrite 3f in the form required by
Lemma 2~

M =M '*'+M '"'= M '+M "+O(k)

(2p, yk). (2pg —k)M'= T[s,),0,0]—T[s,f,0,0]
(2pm+k) k (2pg —k) k

( pma pie
+~ r, k+ rg k rm. rg.—~—

kpn k pg k

8
X—T[s,t,0,0], (7a)

8$
8

M "=(rm +rg )—T[s,t,0,0]
8$

8
+2pm T[s,t,0,lcm]

~~2 52=0

8
+2pg, — -T[s,t, hg, 0] +M ' '(0). (7b)

~~1 Ay=0

From this we conclude that M =M '+O(k). In other
words, the terms in the radiative amplitude of order k'
as well as those of order k ' have been determined.

The procedure required by the lemmas may be re-
duced to a simple recipe: (1) Write down M '"", the sum
of the terms in which the photon is radiated from an
external charged particle line. (2) Drop all terms from
M ' ' which are explicitly independent of k, giving a
truncated amplitude M '*'. (3) Add to M '*"' a 6M
independent of k so as tomake k (M '*'+LCM ) = 0(k').
Then M '*'+~ is the M ' required by the lemma.

Let us apply this recipe to the problem considered
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above. We have computed M 0x" in Eq. (5). In the first
term let us expand T with respect to the oB-mass-shell
variable but not with respect to the energy variable:

T[s+r2 k, 3, 0, (p2+k)'+M0'7

= T[s+r k, f, 0, 0]+[(p2+k)'+M2']

Let us discuss the first term of Eq. (12). Because the
final fermion is off its mass shell, T[s+ri k, i& 0, (p~+k)'
+M2'j contains terms which give a vanishing contri-
bution as k ~ 0 when multiplied on the left by a spinor
u(ps). These terms are not physically measurable in the
nonradiative process. It is therefore convenient to
write T in the form

X T[s+r k, t, 0, 6 ]
83,2

The off-mass-shell derivative term in this expansion,
when substituted into Eq. (5), leads only to terms
which are either explicitly independent of k or are of
first order in k. These terms are dropped in forming the
truncated matrix element. We repeat this procedure for
the second term in Eq. (5). Thus the truncated matrix
element M ' ' is

iy—(pi+k)+W
T~[s+r2 k, t, 0,

28"
X (pe+ k)'+M2'] (13)

where W denotes [—(p2+k)']"'. The term T [s,t,0, ]0

is the amplitude measured in the nonradiative process.
We rearrange Eq. (13) in the form(2p2+k)

ex&I Tgs+r2 k, i, 0, 0]
(2p2+k) k T[s+r2 k i 0, (Ps+k)2+M22]

=T~[s+rg k i 0 0]+[iy (ps+k)+M2]
(2pi —k)—T[s ri k, i—, 0, 0] +0(k). (9)

(2pi —k) k
a

X —~y 2 kThe divergence of M '"' is

k M '"'=T[s+r2 k, t, 0, 0]

+.0(k) (g) Tps+r2 k, t, 0, (p2+k)'+M/]

iy (p2+k)+W
T~[s+r2 k, t, 0, (p2+k)'+M2']

2$"

—T/s ri. k, 3, 0, 0]—+0(k')

8= (&, k+r, k)—T[s,i,o,o]+0(k').
8$

Hence, 63f is determined to be

l9

AM = —(ri+ri) T[s,t,0—,0]
8$

Clearly, M '"'+6M is identical with the M ' of
Eq. (7a) to order k.

As a second illustration of the procedure, we consider
the case when the charged particles have spin —,'. This is
the simplest photon analog of the axial-vector case,
since the axial-vector vertex cannot couple to a spin-
zero particle line. As we shall see, the only difference
from the preceding case is due to slight complications
caused by spin.

We start by writing down 1II '"',

p 1
M '"'=u(p2) (iy +i (T pkp)

2M, iy (p,+k)+M,

XT[s+r2 k, t, 0, (p2+k)'+Mn']

+T[s ri k, i, (pi —k)'+M—i2, 0]

(X ')s +i 0 PkP 14(pl) ~

iy. (pi k)+Milk 2Mi—
(12)

XT~Es+rn k, t, 0, 62] +0(k)
52=0

1 — i7 (pn+k) M2—
1+

2W W+M2

X f,T ps+rn k& t& 0, (p2+k)'+M/]

—T (s+r k, 1, 0, (&+k)'+kk, ']}j. (14)

When substituted back into Eq. (12), the term in bold-
face brackets in Eq. (14) leads to terms either independ-
ent of k or of first order in k. Strictly speaking, we
should have included in Eq. (12) the negative-frequency
terms in the photon —spin--,'—o6-mass-shell spin--,' vertex.
By the same argument, these terms do not contribute
to the truncated matrix element. Hence, the truncated
matrix element is

k&. * =zz(p, ) (z&.+z skz l

2M,

X TP[s+r2 k, t, 0, 0]
iy (ps+k)+My

+T~[s ri k, t, 0, 0]—
iy (pi—k)+Mi

1'

Xl z& +z zkz) sz(& )+O(k), (15)
21Ilg
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which involves only the physically measurable matrix
element. Using the identities

u(p, )i7 k =u(pz),
zy (pz+k)+M,

iy ku(pr) = —u(pz),
iy (pz k)+—Mz

we can calculate& M ' ',

(16)

and M r is M '"'+AM . This is I.ow's result.

II. AXIAL-VECTOR CURRENT

We now consider the matrix element of the strange-
ness-conserving weak axial-vector current J A~ between
hadron states a and b,

N.NbM. '=..b(k I
&."'I a&;.

The superscript j is an isotopic spin index (j=1,2,3).
We no longer have the equation k M ~=0, since the
axial-vector current is not conserved. Let D& be the
matrix element of the divergence of the axial-vector
current,

N,NbD'=N~bk, M =,„b(bI zB,J'—"'~ a); . (20)

Here, as in Section I, k= p, pb The P—CAC. hypothesis
relates matrix elements of the divergence of the axial-
vector current to matrix elements of the pion source,

k M '"'=u(pz)(T~[s+rz k, t, 0, 0]
T~[s—r, k,—t, 0, 0])u(pz)+O(k'). (17)

The expression between the spinors is identical to
Eq. (10) in the spin-zero case. Therefore, hM is

8
(rz+rz)-u(pz) —T [s,t,0,0]u(pl) (1g)

axial-vector current is coupled to external particle lines.
(2) Drop all terms from M &' ' " which are explicitly in-
dependent of k, giving a truncated amplitude M '' '.
(3) Add to M '' ' a DM ' independent of k so as to
make k~(M ""'+AM &)=D&+O(k). Then, M jest'

+AM ' is the M ' required by the lemma. We actually
will not omit all terms of order k, but will consistently
retain terms of order k which explicitly contain a pion
propagator.

As an illustration of the recipe, we will consider the
problem analogous to the second example in Sec. I,
scattering of a spin-zero particle from a spin- —, particle
(which we will take to be a nucleon) with an additional
coupling of the spin-~ particle to the axial-vector
current. The answer will involve the corresponding
matrix element, in which the axial-vector current is re-
placed by the pion source. We write the pion-emission
matrix element in the form

M, =.„,(kt J. ia);„(N.Nb)-'

=u(Pz) zg. (k')r'Vb.
i7 (pz+k)+M~

XT [s+rz k, t, 0, 0]+T [s—rz k, t, 0, 0]

X zg. (k') r'V b+'T-'(0)
zp (pg —k)+M'N

8
+ikb T & (k) +O(k'') u(Pz). (22)Bky, p=o

We have explicitly exhibited the Born terms in the form
given by dispersion theory, where residues are evaluated
at the Born pole and so no nucleon-oB-mass-shell terms
are present. The way we write the Born terms serves as
the definition of the non-Born part T '(k).

We are now ready to write down M & ' ',

MzgA M.""'=u(Pz) Zg~(k')V-Vb —.
,„b($(rI J "~a);„=,„,(k( J ~a);„, (21) 2 iy (P,+k)+MN

g, (0) k'+m '
&(T[s+rz k, t, 0) (pz+k)'+M+']

where M~ and m are the nucleon and pion masses,
J &' is the pion source, g~=—g~(0)=1.18 is the weak
axial-vector coupling constant, and g„(0) is the off-
mass-shell pion-nucleon coupling constant. The [physi-
cal coupling constant is g„—=g„(—m '); g,'/4zr=14. 6.]
We wish to emphasize that the PCAC hypothesis
allows one to measure D&' in purely strong interaction
experiments.

Since the axial-vector current is not conserved, we
will need a slightly modified version of Lemma 2:

Lemma Z'. If k M &=D' and M '=M &'+M '"
+0(k), where M '" is independent of k and where
k M "=D'+0(k'), then M„'=M "+0(k).This lemma
leads to a modification of the recipe stated in Sec. I:
(1) Write down M ' '"", the sum of terms in which the

+T[s—rz k, t, (pz k)'+M~', 0]—
X

i7 (pg —k)+Mbt 2

MÃgA 1'
+ M '. (23)

g„(0) k'+m. '

The term in brackets in Eq. (23) is the direct coupling
of the axial-vector current to the external nucleon lines.
The term proportional to M ' comes from the diagrams
shown in Pig. 3; although this term is formally of first
order in k, it can be important because of the small
mass of the pion.
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As we have seen in Sec. I, the truncated matrix
element is obtained by dropping the negative frequency
part of T and by neglecting off-mass-shell terms. This
gives

M ''"' =u(pz) ig~(k')y yz
2 iy (p,+k)+M)i

XT [s+rz k, t, 0, 0]+T~[s ri k, —t, 0, 0 t

FIG. 3. Pion pole
contributions to the
axial-vector current
matrix element. The
axial-vector coupling
is denoted by &(.

X ig~(k')y yz—u(pi)
zy (P,—k)+MN 2

k (M '-'+AM ')= D with

Using the identities

~NgA ~ zr

Mage zk D+ M ~+0 (k) (24) (0) kzy
g„(0) k'+m, '

X ig„(0)r&y,
iy (pz+k)+M~

u(p, )iy ky,
z7' (pz+k)+Me XT [s+rz k, t,o, o]+T [s ri k, —t, 0, 0]

= u (pz) —vz+2Mzrvz
zy (pz+k)+M))).

iy kudzu(pi)
z7' (pi k)+Mzi—

75+ 2M~hz u(pi),
zy. (pi k)+M)r—

we can calculate k M & ' ',

k M ''"'=u(pz) zggr)~, T [s+—rz k t, 0, 0]

(25)

X ig, (0)r&yz+ iT.&(0)
zy (pi—k)+M))

8
+ikg T &(k) +0(k') u(pi). (27)

k=o

Comparing Eqs. (26) and (27), we see that k DM '
must satisfy

k.aM. =u(p, ) ', g~'r 7,T [s+r,-k, t, O, O]

~NgA
+T~[s ri k, t, 0, 0—],'ger'yz+-

g.(o)

—T~[s—ri k, t, 0, 0]-,'ger'yz

~NgA~m. 1
+ &75

k'+m, ' iy (p,+k)+M)r

X T.& (0)+k ) T.&('k)

Ok),

=u(pz) ,'ger&yzT~[s, -t,o,o]

k=0-
+0(k') u(pi)

(28a)

XT [s+rz k, t, 0, 0]+T [s ri k, t, o, 0]—
1

X 'v +o()."))~(P )
zy (pi —k)+M~

MNgA k'
u(pz) T.'(0)+k),

g„(0) k'+m ' Bk),

XT.'(k) +0(k') u(pi). (26)
Sc 0

In deriving Eq. (26), we have combined the Born terms
in M ' with the divergence of the first term in Eq. (24),
and have expanded the form factors g~(k') and g„(k')
in powers of k'.

Ke determine hM ' by the requirement that

~NgA
+T~[s,t,o,o]-,'g~r'yz+ Z'„&'(0) u(pi)

g.(o)

+k.u(p, ) rz. ', gyre, Tr [s,t,0,0—]—
8$

8
T~[s,t,o,o]-,'g~r'—yz—r i

Bs

MNgA 8
+ T ~ (k) u(p, )+0(k'') . (28b)

gr(0) )'-lk ) =0

As the reader has undoubtedly noted, the nucleon prop-
agator terms have exactly cancelled between Eq. (26)
and Eq. (27), and so do not appear in Eq. (28a). In the
term involving 7.' &, the pion propagator has dropped
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out altogether, since

k'+m ' k'+m ' (29)

This formula, which has been obtained previously, '
expresses the matrix element for the emission of a zero
four-momentum pion in terms of the matrix element of
the process without the pion. Equation (30) can be used
to eliminate T '(0) from the term proportional to M &'

in Eq. (24). Comparing the terms of first order in k, we
find

aM.~'=u(p, ) r,.,'ger&y5 T—~[s,t,0—,0j
8$

T~[s,t,0,—0j—', ger'y(, rg—
8$

~WgA
+ i'.J(k) u(pg) . (31)

g„(0) Bk

Adding this expression to the M &' ' ' of Eq. (24) gives
the analog of I,ow's result for the axial-vector case.

A similar method can be applied to the case in which
more than one current is acting. As an example, we
consider the matrix element'

d'y e""- (f I
T[J-"'(~)~.(y)j I o& - (32a)

In going from Eq. (28a) to Eq. (28b), we have simply
expanded in powers of k and collected together the
terms of zeroth, Grst, and second order in k.

Since k 63f ~' is of 6rst order in k, the zeroth-order
terms on the right-hand side of Eq. (28b) must vanish
identically. This gives

g.(o) .
u(pn)1'. &(0)u(pi) = —u(p2) r'yrT~[s, t,0,0]

2M'

g.(o) .
+T~[s,t,0,0] r&ys u(p)) . (30)

235~

The only difference from the case treated above is that
thc dlvclgcncc lIl addition to having thc term with a
pion vertex substituted for the axial-vector vertex, also
contains an equal-time commutator term. Following
the procedure of this section, we can determine M,&,

apart from terms of order k and higher. If the divergence
of J is also known, we can apply the technique a second
time, determining terms of order k which are independ-
ent of q. This leaves an error which only involves terms
of order qk and higher. "We will consider such a case in
the next section, when we discuss radiative p capture.

ar. WPPLICaT'romS

In this section we apply the results of the previous
section to several concrete examples. We consider first
single-pion production from a nucleon by the axial-
vector current, As an illustration of the use of our
method in the strangeness-changing case, we discuss
E 4 dccRy. Wc finally discuss thc pI'occss of radiative
p capture on a proton, an example in which two currents
are present.

I &'.= I~(p.)&,

..a(f I

=..~(&(p2)~"(q) I,
k=k( k„=pg (p2+—q). —

(34)

In this case, T"[s,t,0,0j is the pion-nucleon vertex
ig„y(;r", which has no s dependence. Hence the 8/Bs
terms in Eq. (31) vanish. Clearly M '", the matrix
element with the pion source substituted for the axial-
vector current, is just the amplitude for pion-nucleon
scattering. We find

1. Weak Pion Production

We consider the process

v(k.)+cV(pg) -+ l(k()+X(p2)+~"(q),

where the four-momentum of each particle is indicated
in parentheses. I.et 3f &" be the axial-vector matrix
element for this process, as defined in Eq. (19), with

Calculating k M,&, we get M~&'" '"'= u(p2) egg(k')y~y(;—
2 iy (p2+k)+M~

~'ye""- (f I

—~(~o—y )[~ "'(*)~.(y)j I o& ~

+ d'ye'& &.„,(b I iT/a. J.~&'(x)J.(y)—j I a&;..

'Y. Nambu and D. Lurie, Phys. Rev. 125, 1429 (1962);
S. L. Adler, ibid. D9, 81638 (1965).' In Eq. (32) we have neglected "seagull" terms, which will be
included in the calculations of Sec. III.

)(zg„)tsr +zgp'rsr
iy (pg —k)+M)r

7'2

&&ig~(k')v«v5 —u(p~)
2

M~gg ik
M '" (35a)

g, (0) k'+m. '

'0 This method has been applied to the case when only vector
currents are present by G. K. Manacher, thesis, Carnegie Institute
of Technology Report NYO 9284, B61 (unpublished).
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Other derivative terms vanish at v=0 because of the
well-known") crossing properties of A ~ and 8 ~,M.&"=u(ps) ig„(k')r'Ys ~g~ ~n

iy (Ps+k)+Mzr
AwN(+)( v . . .) ~ANN(+)(v . . .)
g &v (+) (—v ~ ~ ~ )= ~g &v K) (v, ~ ~ ~ ) .

(39)
+ig„ysr" ig, (k')r&ys'

zy. (pi —k)+M&r

(35b)
gg(o)From Eq. (30), we find that

zi (ps)i'I'. '"(0)u (pi)

(4o)g xN (+)

v=vg=k =02

Since —k' is the (mass) of the initial pion, Eq. (38)
8 involves the pion-nucleon scattering amplitude ex-

+z2'~'"(0)+zk& 2'~'"(k) +0(k') u(pi) trapolated slightly off mass shell. Note that Eq. (36)
ok' ik 0 is just the consistency condition on mS scattering, "

From Eq. (31), we have

AM j"=~NgA
u(ps)

g„(0) c&k

8
2'.'"(k)

k=0

g.(o) .= —zu(pz) r'yszg, ysr"
2M~

g.(0) .
+ig„ysr" r'7s

231~
g g (o)

=u(ps) P' u(pi).
Mg

Equations (35), (37), and (38) give the two leading
terms in an expansion of M j" in powers of k,

M '"=M '" e"'+AM '"+0(k) .
Alternatively, we can use the analog of Eq. (30) to

6nd the leading term in an expansion in powers of q
(36) (the soft pion limit). In this case, one would take Tv in

Eq. (30) to be the axial-vector vertex. There will be an
additional term in Eq. (30) arising from the equal-time
commutator of the two axial-vector currents involved.
Assuming the commutation relations postulated by

u(pi) . (37) Gell-Mann, "we find"

M„'"=M '" ' '+AM '"'+0(q) (42)
From the usual expression for the pion-nucleon scatter-
ing amplitude, " we find (remembering that —k is the
incoming pion four-momentum),

8
u(Ps) &-'"(k) u(Pi)

Bk k=0

8 k (pi+ps)=i u(ps) —A "(+& v=
Bk 2M'

qk
, k'

~
iy. kB~"(+)(v&v—r&)k') 6"&

2M&v )

+[ A~" ( ) (v)v—»,k') iy kB~"( )—(v, v», k') j—

X '[r",r'] u(pi) ~s=-o

g xN (,+) g'a
gnj

~&B v=vg=k =02~%-

8
=zu(pz)

-gg vrX(—) (pl+ ps) a

v=vg=k =0 2~N

+z grN( —)

v=vg=k =—0-2

,'[r",r&j u(pi). (38-)

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957). Note that, according to Eq. (34),—k is the ingoing pion four-momentum.

.g.(o) u' (Pi+Ps)-
hM '"'=i u(ps)

'—
2M~ gg 2M~

1 p~
+z'y. g~ —'[—r" r'ju(Pi)-

ga ga-
&(zv =3.70. (43)

Clearly, at the point q=k=0 we must have hM j"
=6M i"'. At this point pi ——ps and thus iy and

(pi+ps) /(2M&v) are equal between spinors. Hence,
consistency between Eq. (42) and Eq. (41) demands

(—)1 2M'~-BA~N
1—

g.(o)'-
(44)+gw&v( —)

v=vg=k =q =02 2

which is the sum rule for the axial-vector coupling
constant. "
"S. L. Adler, Phys. Rev. 137, 81022 (1965)."M. Gell-Mann, Physics 1, 63 (1964)."Y. Nambu and E. Shrauner, Phys. Rev. 128, 862 (1962);

S.L. Adler (to be published); G. Furlan, R.Jengo, and E.Remiddi,
Nuovo Cimento 44, 427 (1966). The diligent reader will actually
find that in Eq. (42), and also in Eq. (45), we have dropped certain
terms proportional to k which are not singular at k~= —m '. These
terms are, of course, determined by our procedure, but they are
numerically insignificant in weak pion production because k,
contracted with the lepton current, becomes proportional to the
lepton mass. We have also in Eq. (45) neglected a very small
extra term, proportional to S"i,which appears in Eq. (41}when the
pion four-momentum g is taken off mass shell /see W. I. Weis-
berger, Phys. Rev. 143, 1302 (1966},Eq. (II.1ia}7."W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965);
S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).



j.274 S. L. ADLER AND Y. DOTHAN

1 t9
Ii1 =Cx T—»rr[x, y, (k )']

~K z=y=(k ) 2=0
(45)M '"=M»'" '"'+AM &""+'O(qk q' k')

~NgA
635 '""=i -u(P0)

g.(0)

-gg ~N (+) g~
gnj

v=vg=jc2=q2 02~N

8
Fo =Cx—T.xtg, y, (k )']

= =( )'=0 ~3

Comparing Eqs. (43) and (38), we may determine we find that
the terms linear in either q or k. Our final result is then

s=y=(k ) 0

(52)

e=y=(k ) =0

-g.(0)') 1 ~ (p +p )-

gAoj
&aPg P

Z B~N(—)

2MN

g„(0)'io ok'
+

p=pg=k~=q~=0 2~ N 2'N

1 u)q
I lL ", '] u(P1) (46)

gA gA)—

~= (p++p )'= —mz',

t = (k-+p+)'= —m.',
u= (k —p )'= —m.'.

(53)

Hence, the E,4 decay amplitudes at a point on the
boundary of the Dalitz plot are related to the m.E ampli-
tude, with one K meson off mass shell. In terms of the
conventional Mandelstam variables, the point
x=y= (k )'=0 is

Unfortunately, it is doubtful if Eq. (46) will be of
practical use, since there is a strong final-state inter-
action leading to the (3,3) resonance, which is located
only one pion mass away from threshold in energy.
This makes it unlikely that k and q will be good expan-
sion parameters. However, we will use the same method
of comparing expansions in q and k in dealing with
radiative p, capture, where the Anal-state interaction is
negligible and so the expansion may be physically
interesting.

2. X,4 Decay

Here we consider the process

E+(k+) -+ s+(p+)+n. (p-)+ e(k,)+v(k, ) . (47)

Again the four-momentum of each particle is indicated
in parentheses. Let the four-momentum carried away
by the lepton pair be k,

3. Radiative p Capture

In this subsection we discuss the process of radiative
p, capture by a proton. This is an example of the situa-
tion, discussed briefly at the end of Sec. II, in which
more than one current is acting. Consider then.-(k.)+p(p )- (k.)+v(k)+ (p.),
and let

(55)

be the lepton four-momentum transfer. The matrix
element for this process is given by

G
T=——(ul~- IP)u.V-(1+so)

V2

X MPg E-),*N
p,

iy (k„—k)+m„(2ko)'"
k,+k„=k (4g) +(uy I J.~ IP)u.y.(1+go)u„, (56)

The most general form of the axial-vector contribution
to the decay matrix element is

3f = (2ko+2po+2po )'Io, (1r+7r
—

I
J»A A =' IK+)

I ~1(p++p )-+I".(p+ p)-+~ok=]—

with e), the polarization vector of the photon and G the
Fermi constant. The two contributions to T correspond,
respectively, to radiation by the muon (which is nega-

(49) tively charged) and to radiation by the hadrons. The
matrix element (e I

J ~
I p) is given by

=iu(po) [F1v ((q k)')p F—ov ((q k—)')0,p(q
—k)p—

P10P20
The form factors 1" are functions of the arguments (10IJ» IP)
x=(p++p ) k y=(p+ p) k and (k )'—. We defin
the matrix element for sr+a ~E+E by writing

(2ko+2po+2po )'" ~ 0(1r+1r
I
~xl&+);.

ill x,y, ( k)']. (50)

Then if we assume PCAC in the strangeness-changing
case '6

g J A, BS=1 C yg 2y

'6 R. P. Feynman, in Symmetries irI, Elementary Particle Physics
(Academic Press Inc., New York, 1965), p. 158. The constant C~

+gA((q —k)')v-vo —ikA((q —k)')vo(q —k)-]u(P1) .

(57)

is given by Cz= (Mz+JI&)gA~ /g+++(0), with gA+N the A. beta-
decay coupling constant and g~~~ the KNh. coupling. For appli-
cations of partial conservation of the strangeness-conserving axial-
vector current to X,4 decays, see C. G. Callan and S. B.Treiman,
Phys. Rev. Letters 16, 153 (1966) and M. Suzuki, iNd. 16, 212
(1966).
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2M~g~Lg /g. (o)j
k&(~) = +r(~),

3+m 2
(58a)

1 m.'g „(t)+tg,
r(&)=- 2Mprg~(&) 2M'—~

g, (0) (1+m.2) (58b)

r(0) =2M»)g~'(0),

Here, Flv(t) and F2v(t) are the isovector Dirac and
Pauli electromagnetic form factors LFlv(0) = 1,
F2v(0)=p"/(2Mpr)g, gg(I) is the axial-vector form
factor, and k~()I) is the induced pseudoscalar form
factor. Applying PCAC to the one-nucleon vertex of
the axial-vector current, we find that k&(f) may be
written in the form

(
P10P20

&plv I
~-'I P&= «»+2'-'».

M'g
(63)

Replacing 0»* by k» in Eq. (62), and multiplying
Eq. (60) by q„, we get

Pi +m~ fPloP20»

(pt
—k)2+m. 2& M2pr /

f2+m '
v224(p2) iy0g, ((pf—k)')I (pl) .

(q
—k)'+m. '

From Kqs. (60) and (62), we can deduce the gauge
condition satisfied by

which explicitly exhibits the one-pion pole part and the
remainder r (t).

We write &nv I
J w

I P) in the following form:

(2kop op o/M' )"'& v I
J-

I p&= ~ *M .. (59)

Ke wish to use our knowledge of the divergences of the
vector and axial-vector currents to calculate M~, up to
and including terms linear in q and in k. In order to do
this, we have to know the quantities k),M), and q M& .
The 6rst of these may be determined by conservation of
the electromagnetic current. %hen e),+ is replaced by
k» in Kq. (56), the resulting expression must vanish.
This tells us that

k M -= (p-p-/M'--)"'&.
I
~-

I p& (60)

When q2= —m ', Eq. (64) becomes k»T~»=0, the usual

gauge condition for on-mass-shell pion photoproduction.
Before stating the results for radiative p capture, we

will discuss the significance of Eqs. (60) and (62). A
more conventional way to proceed in calculating
k),Mq and q M), would be to contract the photon in
Kq. (59), giving

PlGP20))
eM),„—— i d4x e "*(—Cl,)

M2pp i

X&~ITI:A»(x)~- (0)lip&
(65)

P10P20
d'4g e—ik x

M'~
In order to calculate q M), , we made use of our knowl-
edge of the divergences of the vector and the axial-
vector parts of the weak current, " with

&«&rp I 2'L~»™(x)I- (0)l I p&+~».

8 J~=ieA J~,
ll J "=ieA J "+(v2M»m. 2gg/g„(0))y. +,

where A is the electromagnetic vector potential and

@ + is the 6eld which annihilates a positive pion. Equa-
tions (61b) follow from the assumption of minimal
electromagnetic coupling and from the divergence equa-
tions in. the absence of electromagnetism. (The factor
V2 in the axial-vector equation comes from the defini-
tions of J~" and y +: J'„~=J~"'—iJ„"2 and
= (pk

' iltp 2)/v2—)Using . Kqs. (61b) to evaluate
&plylG).J IP), we find

P10P20
0"(~l~» I p)

M'~

42ppnp m '
p p )'"+i 2ko

g, (0) q2+m ' M2pl

&«-'&~v
I
~-"

I p) (62)

"S.L. Adler, Phys. Rev. 139, 81638 {1965}.

5» = d'x e "'8(x0)

&« II:» (*)/~*.,~«-(0nl p&,

where we have assumed that A), and J ~ commute at
equal times. The equal time commutator term 5) in
Eq. (65), sometimes called a "seagull" or "cata-
strophic" term, describes the coupling of the weak and
electromagnetic currents at the same point (see Fig. 4).
It is a reQection of the extent to which A~ appears in
J ~. Calculating k&,M), , we now get

P10P20)
k»M». =

I
dxGe'""l) (x0)

M2pr 2

X e 4'x e '"'JD (x)J.~(G) p)
P10P20 l+ I

e 'ik»S» (67).
M'N p

FIG. 4. A "seagull" diagram.
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The commutator of the currents is

l)(x())[JsEM(x),J ~(0)1
=—I)(4) (x)J„~(0)+[possible gradient terms

proportional to c) 6"){x)j. (68)

The 6rst term in Eq. (68) is the one conjectured by
GeH-Mann"; the possible presence of the gradient terms
was pointed out by Schwinger. "We see that Eq. (60)
implies that the Schwinger terms exactly cancel the di-
vergence of the "seaguH" terms. This cancellation has
been proved by Feynman in a Yang-Mills theory and
has been conjectured by him to be a general result. "In
other words, when calculating the divergence of quanti-
ties like M), , if one neglects both the "seaguH" terms
and the Schwinger terms, one gets the right result. Note
that the "seaguH" terms cannot be dropped when cal-
culating the matrix element Mq itself.

In order to state our answer for radiative p capture,
we have to define the amplitudes for pion photoproduc-
tion with the pion OG-mass-sheH. This process is re-
lated by crossing symmetry to the matrix element
(tsv

~
J~

~ p) in Eq. (62). We write the photoproduction
amplitude in the following form, '0

(
plOP20

2k() (1V [J [Xv)
3Pg

where )P; is the isospin wave function of the pion, xr and
X~ are the nucleon isospinors, k is the ingoing photon
four-momentums and g ls the outgoing pion four-
momentum. The isoscalar nucleon anomalous magnetic
moment has been denoted by )rs[2M)ass(0) =Ir
= —0.12j.The four-vectors 0,)„which satisfy k),0.),

——0,
are given by

Or), = sivs(vt v k . v—kvt)

Os), =ivs[(pr+Ps)) q k —(pr+ps) kq) j,
Osx vs(vxq'k v'kqx) yi

«) =vs[v~(pr+ps) k—v k(pr+Ps)) 3
—iM)vvs(vt, v k —v kv~).

The amplitudes V, are functions of the invariants

g ) le(l
~ P) and Pgq with

v= —k (pr+ps)/2M)v, vr) qk/2M——)v. (71)

The bar on top of the t/, is a reminder that the Born
term has been separated OQ. The numbers g, specify the
crossing properties" of the amplitudes V„

V (+ ')(—v )=-t) (+1 1)V (+ s)(v ) (72)

The terms explicitly proportional to (1+qs/f)s ') in

Eq. (69) are necessary to satisfy Eq. (64), the gauge-
invariance requirement when the pion is OR-mass-sheH.

Since
=4 *xs*l(P.) ig. (q') r'vs

iv (ps+q)+M)v
g, (—r)s,s) —g, (0) r)s.s

g.'(0)+ = -g."(0)
m2 2

(73)

0'y~t(,'g

&&si v~(1+r') — ( ')+~" ')r
2M~

fT),gk(
+si v) (1+r')— () '+f 'r')

M~

the gauge-invariance term is numericaHy very small.
The matrix element (vts~ J~~p), which is the one

needed in Eq. (62), is obtained from Eq. (69) by the
replacements

X ig, {q')r&V s
iv. (Pr—q)+M)v

s(2q —k).
pig, (—m.')[r;r'jVs

'
(q—k)'+m„s

+Q O ),[fl (+)r6Js+f' ( )1[re rsj-+f7 (o)rrjj
s I

g.(—~-') —g.(0)-—i V[sr', r ]s),
q~

1+ g„'(0)+
r)s.s ns '

+I 1+, lO(q') .{P)x"., (69)

"J.Schwinger, Phys. Rev. Letters 3, 296 (1959) anti Phys.
Rev. 130, 406 (j.963)."R.P. Feynman (private communication).

"G. F. Chew, M. l. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (195/). The amphtudes (V1,V2, V3, V4)&+0),
as de6ned in Eq. (69), are respectively dolbtf, the corresponding
amplitudes (A,B,C,D)(+') of Col.N. )The isospin matrix elements
in Eq. (69) are one-half those of CGLN. j

Since the 6nal nucleon is a neutron and the initial one

is a proton, we have

o
x,= [, x,=/

&oi

Ke can now state the result for radiative p capture:

M)„=M)++M)g~n+M), ~~~

q qk
+W.n+O~, , , (76)

&r)r)rs ms'

The mass nag, which characterizes the terms neglected
in our calculation, wiH typically be several pion masses
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or greater in magnitude, since we have explicitly in-

cluded all pion propagator terms. "In Eq. (76), we have

Mla 24(p2) fzgA(q )ra Y5+kA(q )roqa
/ "X

(0)

/'i
p (b)

n

+iFl"(q2)p iF2v—(q2)0 pqp]

1 a),]k]-
X i yl+V"

iy (P2—q)+M~ 2M~

0-),)k]-
Z p

2MN i7 (pl+q)+Mar

XLigA (q')y.go+ kA(q') yoq.

V!"
(c)

/'4
p (d) n

iverI
I
I

+iF2'(q')v- —iF2'(q')~. ~qo] ~(pl), (77)

2MNgA 24(pohoN(pl)
RPD

g
g„(0) (q- k)'+225.2

2q) qa
+ol.+(qlk. qko), )S—, (78)

q2+m '

(e) (f) (g}

p

(i)

FIG. 5. Contributions to radiative p capture.

qN

Ml = igA — 24(p2)
q'+225.2

p M~
X yooloko + qp052 N(Pl),

2M5 g, (0)

M&aB i24(p2)( —o' &(pv/2M~)

+2gA'(0)(qadi +k y&,
—8l y k)yo

—ir(0)bl.75y2F lv'(0) (qlp. +k.yl)
—2F2v'(0)(qlo. 5qp

—k olrkr)

+LM5 gA/g, (0)]05.)24(pl),
with

(80)
g. (o) g.(0)~'

Vl(o)
i 5

— Fos(0) =
3fg 23P~

(83)

virtual pion decay. The qzq, bz, and S terms corre-
spond, respectively, to Figs. 5(e)—5(g). The nontrivial
structure term S cmseot be determined by the procedure

(79) of this paper, because it is of order qk compared with
the B)I, term. The term M), ~ describes the structure
part of virtual pion photoproduction. The Born part of
virtual photoproduction has already been included in
M&, N and Ml " /see Figs. 5(c)—5(e)]. In writing
M&PP, we have eliminated Vll l

i o by using Eq. (30),
which implies

and with

p, &= 1.79, p,
"=—1.9i,

"The terms of order q' are determined by our procedure, but
we have omitted them in writing the answer because they are as
small numerically as the undetermined terms of order qk.

V, ~o& k ilVl( ' (pl+ p2).R.=V5~5.5kr +
8v~ p 2M~ Bv p 23II~

+2Y5$(pl+ p2)lka (pl+ p2) ' ko 5 ]V2 i 0

+V5LVlk —
V k4a]V5' 'io

+k.ol .,V,V4"'
i o. (82)

In Eq. (82), i o means evaluation of the V; at the point
V = V& = q2 = k2 =0.

Let us now discuss the various terms in Eq. (76). The
nucleon Born term M~ ~ corresponds to the diagrams
of Figs. 5(a)—(d). The term Ml apn describes radiative

Equation (83) is one of the photoproduction sum rules
derived by Fubini, Furlan, and Rossetti. "

The remainder term Mz ~ is necessary to satisfy the
divergence equations, Eq. (60) and Eq. (62). The first
term, proportional to p"/2M5, has been included in
previous calculations. It corresponds to the "seagull"
diagram of Fig. 5(h). The remaining terms, linear in q
or k, are new. They are represented diagrammatically
by Fig. 5(i). We thus see that our procedure has allowed
us to determine the leading nontrivial structure effects
in radiative p capture.
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