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tantamount to the irreducibility of the direct-product
multiplet, which was to have been proven.

CONCLUSION

A study of the physically apparent transformation
properties of the single-particle states has led us to two
conclusions about the structure of a group that includes
both internal and Poincare symmetries. It has first been
shown that only a group with an infinite number of
generators can have single-particle lnultiplets with
several different masses. Even if one is willing to accept
such a group, it is not possible to construct a physically
satisfactory theory. The second theorem shows that no
two-particle states are reducible. This implies, for
example, that in octet-octet scattering the familiar

«A special case of the second theorem has been previously
discussed. See N, M. Kroll, Phys. Letters 20, 531 (1966).

formula 8X8= 1+8+8+10+10+27 would. no longer
be valid and only a single scattering amplitude wouM
be required to describe all 64 reactions. The present
results are to be contrasted with previous theorems of a
similar character. "The earlier results are obtained by
making assumptions about the structure of the Lie
algebra of the combined Poincare and internal groups.
These results are confined to groups with a finite number
of generators. Sy treating the states and their trans-
formation properties rather than the operators, we have
shown that only groups with an infinity of generators
can have an intrinsic mass formula but that these
groups are subject to very serious objection. ~

'%. D. McGlinn, Phys. Rev. Letters 12, 467 (1964).' F. Coester, M. Hamermesh, and W. D. McGlinn, Phys. Rev.
135, 8451 (1964).

7 An example of this type of group has been proposed recently
by J. Formhuek, Nuovo Cimento 43, 741 (1966).
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An integral representation for the renormalization function, Zg(s) =A~(s)/AJ'(s), and hence for the
composite eigenvalue conditions Z3(~) =0, lim. „sZg(s) =0 as well, is derived. The representation allows
for the possible emergence onto the physical sheet of Castillejo-Dalitz-Dyson (CDD) poles, as the coupling
strength increases, by satisfying the requirements of analytic continuation in that parameter. The com-
posite conditions are obtained in a relativistic scalar model (in the elastic approximation) and in a one-pole
nonrelativistic model; in conarmation of a surmise due to Ida, these conditions are found manifestly inde-
pendent of the position of the CDD poles. Applications of the representation to some limit problems in the
theory of noncomposite particles, to the Zachariasen model, and to a multichannel generalization of that
model are made. The extension of the representation to the nucleon is the basis for a brief numerical an-
alysis of Zz(zv) and related quantities in the one-branch approximation.

I. IÃTROQUCTION
'N a succession of papers' ' dealing with the Green's-

- t function approach to some problems in the theory of
strong interactions, Ida' has been able to show, by
paying special attention to propagator zeros, the
equivalence of that approach to the ordinary E/D
method. 4 Central to his demonstration is the observa-
tion that the renormalization function, defined by'

Zs(s) —=d, p (s)/hp'(s),

*Research supported in part by the National Science Founda-
tion and by the Rutgers Research Council.

' M. Ida, Phys. Rev. 135, 8499 (1964); 136, 31767 (1964).' M. Ida, Progr. Theoret. Phys. (Kyoto) 34, 92 (1965).We wish
to thank Dr. Ida for a report of this work prior to publication.' M. Ida, Progr. Theoret. Phys. (Kyoto) 34, 990 (1965);
35, 692 (1966).

4 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960);
G. F. Chew, in Dispersion Relations, edited by G. R. Screaton
(Interscience Publishers, Inc. , New York, 1961),p. 167.

5 our discussion is limited to the relativistic scalar model con-

is a Herglotz function. It follows that Zs(s) can be ex-
pressed as

s-
Zs(s) = 1+

p(s') g'ds'

s—p,
2

+Q c. , (2)

sidered by Ida (Ref. 2): S-wave scattering (in the elastic approxi-
mation) of a scalar baryon (M) and antibaryon with a (scalar)
one-meson (p) intermediate state. For simplicity, we have taken
over the notation of Ref. 2 wherever possible.

6 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

where the sum on the right-hand side of Eq. (2) repre-
sents the Castillejo-Dalitz-Dyson (CDD) terms'; the
s„'s are the zeros of the meson propagator Ap'(s). It
is assumed that the propagator hp'(s) satisfies the



Lehmann representation in its unsubtracted form

ikey'(s) =
p2—S

p(s') g'ds'

~ .~ I
Z3(")&(s')I'("—~')'("—s—i )

or in its once-subtracted form

iA s'( s)= +d
p —S

u(")g'~s'
(4)

~*
I Z, (s')r)(s')

I
'(s'-p')'(s'-s- ie)

At about the same time, Jin and MacDowelP provided a
dynamical basis for the appearance on the physical
sheet of propagator zeros (as well as for vertex poles) by
assuming the possibility of analytically continuing the
propagator (as well as related quantities) as a function
of the coupling constant. To summarize what in their
discussion, ' is relevant to our present considerations:
Jrn and MacDowell take for their starting point the
Lehmann representation of (2) with the coupling, say
g', sufficiently weak so that there are no physical propa-
gator zeros, i.e., no CDD poles in Z3(s). As the coupling
is increased, a pole of Z3(s) on the second sheet moves
around the threshold s=43f', onto the reaj axis of the
physical sheet, below threshoM and above the physical
pole (of As' ), p', pushing the contour of integration
(say C) ahead of it.' The pole of Zq(s) then moves from
the right to the left of p2 as g' passes its critical value. ~

Thus one now Ands an additional term in the expression
for Z3(s), on returning to the "original" Lehmann form, '
which is just the CDD pole term. s

Now Ida" has shown very simply how to determine
the constants c at these poles s„in Z~(s). Because of the
division of the scattering amplitude T(s) into its one-
meson reducible term' and one-meson irreducible term, '
L'( )=&( )/&( )

g2 %(s)
T(s)=

{p,
'—s)Z3(s)P)(s))' X)(s)

poles in Zq(s) become necessary for the removal of the
unwanted. poles in U(s), which are, in turn, produced by
zeros of X)(s) Lvertex poles' of the proper vertex
r(s) =g/2(s) j.Thus we must have

7 V. S. Sin and S. W. MacDowell, Phys. Rev. 137, 8688 (1965}.
8 See Pig. j. in Ref. '7.
9 A return to the original (undeformed} contour running from

4%2 to ~ is implied.

Adopting Ida's "principle of minimal singularity, "' one
6nds that when Za(~) =0,

1 1 " p(s)ds

g' s. 4sr (s—p')'g)(s)
I

'

-Z .. . ; (&)
~ (s-—~')'&'(s.)&(s-)

also, if the propagator requires one subtraction as in
Eq. (4), one has in addition

1 " p(s)ds

m 4sr~ (s—p') IZ(s) I
'

(g)" (s —u')&'(s )&(s )

An apparent problem, noted by Ida, ' remains. In the
case of a single pole, say n = 1, we see that Eqs. P) and
(8) " involve sq as a "free" parameter. Since sq is in a
sense a "hidden variable" in the theory, it would be
desirable to show explicitly that Eqs. (7) and (8) are, in
fact, independent of it. I Our expectation of such a
possibility stems from the equivalence of (7) and (8)
to their analogs in the X/D method, Eqs. (3.10) and
(3.12) of Ref. 2.] It is our purpose in this note to pre-
sent an alternative integral representation for Za(s),
suggested by the result (6), which is, indeed, independent
of sr. We will see that the arguments of Jin and
MacDowell~ are more easily illustrated by means of it.
Moreover, this representation yields considerable ana-
lytic simplicity in calculations based on the Green's-
function approach. In Sec. II we derive the integral
representation and discuss in terms of it the problem of
analytic continuation in coupling strength; the accom-
panying derivation of the composite eigenvalue condi-
tions is also treated in some detail. In Sec. III we apply
the representation to a soluble nonrelativistic model
which %'as eRlllel scrutinized by IdR. In Sec. IV RppllcR-
tions are made to some limit problems in the theory of
noncomposite particles, to the Zachariasen model, and
to a multichannel generalization of that model. The ex-
tension of the representation to the nucleon and a
brief numerical analysis of Z~(w) and related quantities
in a "one-branch" approximation are given in Sec. V.

11. INTEGRAL REPRESENTATION OF g, {s)
Ke assume the coupling g' too weak to produce R

zero of X)(s) on the real axis of the physical sheet belo~

I0 In the composite case, these are residue and mass equations,
respectIvely.
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where we have used'

which follows from'
&(p') =1,

s—p2
X)(s)=1—

p(s')9l(s')ds'
(21)

4~2 (s' —p2) (s' —s—io)

If one utilizes Kq. (18) to simplify Eq. (17), without
necessarily taking Z3=0, one Ands

g2

Zo(s) =Zo+
(s—p)'-&( )&( ) &(p')&(&')-

Without further simplification of (26), we note its
close resemblance 'to thc cori csponding condition ln
5-matrix theory'4; expression (26) may have some
utility in the case of small binding energy. '4

In the case that the numerator function, %(s), is
approximated by a sum of poles, as, for example, in a
Salazs-type representation of the left-hand cut, the
utility of the representation under consideration is im-
mediate; the eigenvalue conditions (15) and (16) then
reduce to algebraic eqla3Iiaes.

HI. A SOLUBLE NONRELATIVISTIC MODEL

22r2,~ (s'—p2) R(s')Z(s') (s' —s—ic)

with the resulting asymptotic behavior for Z2(s), '

zo(s) — - Ls&(s)&(s)?'* (-'3)
ImT(s) = a2ro(s+—K ') a& 0 (27)

with s= k'. One has for %(s),

Ke consider here brieQy the soluble nonrelativistic
model used by Ida' to illustrate the si independence of
Eqs. (7) and (8), but now from the standpoint of our
Eqs. (15) and (16).The model is defined by'

for particles of intermediate' and composite types. (In
the case of the pseudoscalar model of Ref. 2, where

p(s) =s(1 4&V—2/s)'~2 this behavior is given by

Z.() Ã ()&o()3 '
&

fNo'te that siilce

(1/22)I %(s+i0)—g(s—20)j=ImT(s)7)(s),

&(s)=&.+a&(—K.')/(s+K. ')

Z)(s) = 1 %„(Ks—+ik)

aI 1+%„(K.—Kii) g

1 (a/2K. )[(K—. Kii)/(K. +—Ki2)]

(28)

on the left-hand cut, one also has the further

simplification

(ICIi+2k)
X (29)

(E.+Kii)(E. '2k)—
sr ds'ImT(s')

after making use of

—.&(")I&(")I'22ri .~~ P(S')%(S')Z(S')
1+%„(K. Eii)—

P(—K', ') = . (30)
1—(a/2K, )p(K, KIi)//(K +Kii)j—

Then
g2

Z3 ——0= I—
(K,'—K,')%'(—Ko')Z( —Ko')

where E(s) is a real polynomial in s.)
The eigenvalue condition (18) may be carried some-

what further. For example, parametrically differentiat-
ing the condition (19) with respect to the eigenvalue p,

'
one finds

dp'&(p') 2~' ..(s—p')'&(s)&(s)
go+'( —Ei22) Z'( Ki22)—

+g2 , (»)
(9$(—Kiio) ) 2 2(—Kao)

+ L&(s)&(s)j ' (25)
22ri „(s—p2) F2

1 1 " p(s')%(s')ds'

g' ~&(p') 4~* ("—p')'

where the second term on the right-hand»de of (31)
stems from the zero in %(s) at s= Ko'= —L9l„Ka'—
+ag( —E,')J/g„. Similarly the "mass" equation (19)
yields

0= + . (32)
%(—Kso) (K so—Koo)%'(—Koo)'2( —Ko')

+contribution from the left-hand cut.

"We have used the result,

@(,) & p(s) &(s)&s
(s—p')'

(26)
It is useful to parametrize the functions g and Q in
terms of the zero k=oK2 of E(s); then as Ida has

'4 M. Nauenberg, Phys. Rev. 124, 2011 (196j.).
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shown, ' the correct E~-independent results

E~ Egg
(33)

then,
s+Kts)

i]t(—Kts) Pt(s) —aQ'( —Kts)
s+K,si

(42)

(34)

may be conveniently obtained by carefully taking the
limit E&—+ K . It is interesting to note that contrary to
an assertion of Ida, "we can still use the nonrelativistic
version of Eq. (6) to determine ct, although in the
limiting process the propagator zero at s= —E~' coin-
cides with the pole in T(s) at s= E,' w—hen Kr K,. ——
Ida gives"the expression appropriate to this situation":

%(s)=—(K. Kzs) ', —

g(s) = (K,+z74)/(K, Kls) . —
(36)

(37)

Instead, let us focus our attention on the nonrelativis-
tic version of (6),'r

g2
Cy=-

(E 2 KB2)2Z) ( Kls)%( Kls)

g2

(KB2 E 2)sp ( K 2)cl

+R(—K.), (35)
X)'(—K,')

where, for Ei=E,

s+Ktz)
=m(.)—.Z'(- .) ~. (43)

s+K,sI

Holding s fixed, we take the limit Kq —+ E on the right-
hand side of (43) [9t(s) is now independent of sj; it
follows that

lim ~]t(—K ts) =g(—E.')—a2'( —K.'), (44)
X1 -+X,

where on the right-hand side of (44), Q(—K,') is given

by (36). Thus,
g2

(K.'—KB')'XY(—E.') [~]t(—E'.') —any( —K.')j
(45)

which is, of course, identical with expression (35).

IV. DIVERS APPLICATIONS

In this section we sketch briefly three elementary
applications of the representation (12) which serve to
illustrate the ease with which results earlier derived by
more cumbersome manipulations may now be recovered.
As a first example, ' we show how the transition from
intermediate [Zs(~) =0j to composite [Zs(eo) =0 and
lim, „sZs(s)=0) particle type may be observed in the
scalar theory without explicit reference to the scattering
amplitude T(s).'One substitutes the representation" "

1 1 (s—zs') ds'

we see that the difficulty appears to be with z(s) x) p,
'

limzr, zr,%(—Kt'). Observe that since

&(s)=&(~)+a&(—K.')/(s+K. '), (39)

we may eliminate Pt(~ ), writing,

7 (s'-Z ')&(s') (s'-s-ze)
s—zzs " ds'p(s') U*(s')

4sr ~ (s'—Zssp)(s') (s'—s—ze)

1 1 1
+ ,

-—
I

(46)
&'(z.') z.'-z' z.'-»

(s+Kts)'
4 The representation for [&(s)] t results from the alteration

(in the sense of an analytic continuation) in the usual Cauchy
representation of the vertex function,

~(s) =r.LR(p')/2 (s)j
S—

I{I, r(s')ds'
2m' peiastje (s' —y ) (s' —s—ie)

4~g (s' —p, ') (s' —s—je) '

to allow for the emergence of a zero of &(s) at s=p, 2 onto the
physical sheet.

» Note that

For Kt=K„we approximate Z)(—K,') by

X)(—K.') = (Kt' —K.')2'( —Kts); (41)

"See the closing remarks of the Appendix to Ref. 2.
'6 We surmise Eq. (35) was obtained by comparing T(s) in the

neighborhood of s= —IC,2 with its equivalent form,

i]t(s) =%(—Kts)+at)( —K.') . (40)
(s+E ') (Kts E,')—

U(s) —r (s) r(s),
(s+Z~2)Z, (s)

in the same neighborhood; thus, taking expressions (36) and (37)
for Q(s) and P(s), respectively, we have

s+E,2

g2 g(—E' ')
(+~2 g 2)2Q (g 2+s) {Q ( g 2)) 2 (+O2+s)Q ( g 2)

'7 Note that g(s), P(s) are the parametrized functions (in terms
of E1).

lim„& „,&p(a')=0 and lim„n „2[p(s)] r=[(s—
44 &)@'(p &)]

—
&

so that lim„& „,&r(s)=0 for st@2, whereas lim„2 „,2r(p2) =r,.
{Incidental&y, we note from (46) that if [g)(~)] ' is finite then
lim„2 „,2 [g)(~)] ' is also. ) Clearly, for s, 44'=p, ', the vertex
function F(s) =F,(p' —Is,')/(s —44,'). This singular behavior has
led to a continuing misapprehension in the literature. For example,
Broido and Taylor remark [M. Broido and J. G. Taylor, Phys.
Rev. 147, 993 (1966)]that "the. . . vertex function F(P) vanishes
except at the bound-state energy 8, when it takes a finite value.
Evidently such a function cannot be treated in a consistent
fashion without vanishing effectively everywhere. "
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into the representation for Z3,

1 ' I',2[7)(p2)]2ds
Z3=0= 1—

2?rz, (s—p') 291(s)Z(s)

transform

s—p' " ds'rt(s') 9(s') I'(s') s—p'
Zz(s) =1+ +{. , (56).zh (s'—p')'(s' —s—ze) p, '—s

[&( ')]'
=1+I','

(p 2 p2)2+(p2g)&(p 2)

where

with
r(s) = —'(s)X)(„')g

ImZ)(s) = —R(s) y(s) (58)
+terms which vanish as p' —+ p, ', (47) and

and recovers the relation' into
r(s)tg(s)r(s)=Imgrkr(p, z)gt —?rr(s) (59)

ds
(48) Z ()

2~i

lim Z2 ——1+I',2@'(p,2)/g(p, 2) =0.
p2~~2

Similarly, one finds that Zi= lim„~ „,~Z(p')/'7)(~) =0
together with Z3 ——0 ensure that

lim (lim sZ2(s)) =0.
lt?2~Pc2 g~o{)

On the other hand, if Z3/0, then the pole term in
P)(s)] ' [(s—pP)X)'(p, 2)] ' furnishes the only non-
vanishing contribution to Z2(s) in the limit p2~ p„',
and in the neighborhood s= p, '= p, ,', one finds'

(s' p'—) '(s' s —i4—)

X gal&'(p2) ft ?rF(s'), (60)
and finally, to obtain

Z2(s) =Z2+(1/(s —p'))g'+ (p')
X9t-"[I( )—I'(p')], (61)

with

Zz ——1—g pr(p )g ([(d/ds)[p i detp]]{4 g2)

—& ?(I ')L(d/ds) det(s)]{. ="))

S—p
Z2(s) = 1+(Z2—1)

s—p,

where

(63)

The solution of Zachariasen's model" is too well
known to warrant more than brief mention here. We ob-
serve merely that in the absence of a left-hand cut, one
has

%(s)=R(~)=&, (50)

where X is the four-point coupling, so that the repre-
sentation [Eq. (47)] yields

g2[Q(p2)]'- 1
Zz(s) =Z2+

(s—p2) l{ Z(s) 2(p,2)

V. PROPERTIES OF THE NUCLEON
RENORMALIZATION FUNCTION

In this section the integral representation for the re-
normalization function is extended to the nucleon and is
the basis for a brief numerical analysis of Z&(w) and re-
lated quantities. The usefulness of the representation is
readily apparent in the facility with which such an
analysis may be carried out. 2' To make life simpler, we
con6ne ourselves to a "one-branch" approximation to
the pion-nucleon vertex function. "Thus we take

with

and

=Z2(Z2 —X[s—p' —(g'/X)]I(s, p') )

Z2=1 —g'I(p', p') =&(p'),

1 " p(s') ds'
I(s,p, ') =

zr 4242 (s' —p') (s'—s—ie)

l{ Z(p2) ' 1
T(s)= +g'

Z(s) X)(s) Z (s)(„'—s)

I'(w)=gD-'(w), (64)

(52) p? (w)N(w)
ImI'(w) =g w&m+p

[D(w) ['
(65)

(54) w —m

27ri

and by steps similar to those of Sec. 2 arrive at an
53

approximate expression for ZN (w), 24

~+g/("- )

Z2 —l [s—p' —(g'/~)]I(s, p )
' (55) dw'3g2(plm)'X,(66), 16?r(w' —m) 21V(w') D(w') (w' —w —ie)

It is no more dificult to obtain a closed form for
Z2(s) in the case of the generalization of the above model
to I two-particle channels. '" Thus we are able to

"F.Zachariasen, Phys. Rev. 121, 1851 (1961).
~' Such a closed form is lacking in the lengthy considerations

of the latter of Refs. 3.

"This subject was studied rather closely by Ida in the second
of Refs. 1; we use his notation wherever possible.

"This is rather like the approximation made in an 5-matrix
study of the nucleon as a bound state by L. A. P. Bald, zs, Phys.
Rev. 128, 1933 (1962).

24 We have dropped the contribution from negative-energy states
which Ida (Ref. 1) estimates as about 10% of the contribution to
Z~ from pion-nucleon intermediate states.
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with and, in the "one-branch" approximation,

Zar =Zan(~ )
1 ' dw'3g'(p/m)'

(67)
2n-i, 16m-(w' —m) 'N(w') D(w') dw'3g'(p/m)'

X
p 16m'(w —m)N(w )D(w )(w —w zp)

Then, in the approximation'

f+~
N(w) =- +— D(wg)

3m —m 9m —mg
(68)

=lim 3 '
(w —m)N(w)D(w)

+terms which are asymptotically

with f = (p/m)P(gP/16~), fP&=3f&/2 D(w&)~1.56
m~ ——0.68m, we find

3
Z~ ——1—3f' +—,(69)

(wp —m)'N'(wp)D(wp) f'

constant, (74)

so that 8m&" diverges like lim„„(w/lnw). "Recently
Fried and Truong'~ proposed to determine the sign of
the proton-neutron mass difference through considera-
tions based on the relation'8

where wp is the zero of the numerator function N(w) at

1+0.68/SD(wg)
f0=m 0.97m.

1+1/SD(wg)
(7o) dwL(w —m) r~(w) —(w+m) r (w) j; (75)

It is easy to satisfy the requirement Z& ——0 even in this
crude approximation, as one finds that Z~ ——0 implies
that

D(wp) =1.125[1+1/SD(wg) j—' 1.04. (71)

Since' ReD(m+2. 1p)~0 and D(m)=1, a linear 6t to
ReD(w) would yield

wp —(m +2.1g)
D(wp) =

m —(m+2. 1p)
(72)

8m=m mp= lim Z~—'—(w —m)LZz(w) —Z~j, (73)

"What is most surprising is the relative lack of dependence on
P of this result.

which is reasonably consistent with some curvature. "
After some formal manipulation of exact relations' one
6nds that

however, their assumption that the vertex functions

~F+~ are damped out beyond a tew nucleon masses
would appear to make the nucleonic self-mass finite,
otherwise their "more accurate" expression" (which in-

cludes "implicit e' variation of Z~ '") for hm =Sm„—8m„
contains a divergent integral, I(m), and is not well de-
fined. Furthermore, the limit Z~ —+ 0 is not a "bootstrap
limit" as they say but merely takes an "elementary"
nucleon to one of "intermediate" type. ' Finally, we

wish to remark that if one takes the nucleon to be an
"intermediate" particle, then it would be natural to
consider simply the diGerence in eigenvalue conditions,
Z~&» —ZN&"'=0, as providing the necessary relation
between Am= m~ —m„and input discontinuities such as
the one-photon exchange graph, "for a given f'

' Inclusion of the contribution from the negative-energy state
reduces this divergence to a logarithmic one.

"H. M. Fried and T. N. Truong, Phys. Rev. Letters 16, 559
(1966).

"This is readily seen to be equivalent to our expression (73).
"Equation (15) in Ref. 26.
"R. Dashen and S. C. Frautschi, Phys. Rev. 135, 31190

(1964).


