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The requirements that are placed on a relativistically invariant theory by the assumption that single-
particle states with different masses are included in the same multiplet are examined. This assumption implies
first that the Lie algegra of the symmetry group which includes the generators of both the Lorentz and internal
transformations must also have an infinite number of other elements, and secondly, that the direct product
of any two single-particle multiplets is irreducible.

IN'TROD UCTION

HE remarkable successes of first-order perturba-
tion calculations' ' for producing mass formulas

in symmetry theories of elementary particles has led
to the conjecture that the mass relations are somehow
inherent in the symmetries of the particles. ' Thus, we

may speak of a theory with an "intrinsic mass formula. "
The states of a multiplet in such a theory are not
degenerate in mass. The mass formula comes out of
the symmetry, rather than out of symmetry-breaking
interactions. The inclusion of a mass formula auto-
matically involves us in a discussion of the Poincare
transformation properties of the particles, since their
masses are just the invariant lengths of their four-
momenta. To distinguish between the relativistic
symmetries and those of the particle quantum numbers
(such as isospin and hypercharge), we shall call the
latter transformations the "internal group. " The most
favored presently available candidate for an internal
group of the hadrons is SU(3), but the conclusions
presented here are equally valid for any other group.

Two theorems pertinent to symmetry theories with
intrinsic mass formulas are presented, using the trans-
formation properties of particle states to provide proofs.
The first is that the complete group of symmetry oper-
ations of such a theory must have an infinite number of
generators. The second theorem shows that an intrinsic
mass formula violates the reducibility of the direct-
product (two-particle) states; this leads to such un-

physical results as the existence of only a single ampli-
tude to describe baryon-meson scattering.

THjEOREM 1

Theorem: An intrinsic mass formula implies a group
with an infinite number of generators.

The existence of an'intrinsic mass formula requires
that the states describing different particles in the same
multiplet have diferent translation properties. That is,
the four-momentum of a particle state depends on. its
internal indices. For example, in the SU(3) theory the
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m. , q, and K mesons are in the same multiplet, called
the pseudoscalar meson octet. To distinguish between
these particles we need an internal index n that takes
on values from one to eight. If these eight mesons or
any collection of particles are indeed in the same
multiplet, it must be possible to determine the mo-
mentum of any of them once the momentum of one of
them is known. To indicate this we write the momentum
of a particle as k (n, q) where q is a momentum character-
istic of the multiplet. As an example of a rule of deter-
mining 4 for a and q, the possibility that all particles
in a multiplet have the same three-momentum may be
considered, in which case k(n, q) would be given by

k(n, q) = Lq, (q'+m'(n))'"],

where m(n) is the mass of the nth particle. There are
obviously many other possible rules for determining
k from n and q. A knowledge of this rule would tell one
how to compare m-nucleon and K-nucleon scattering.
The function k(n, q) must satisfy the requirement that

k&(n, q)k„(n, q) =m'(n),

and we shall also assume that there is one coordinate
system in which all the particles of a multiplet are
simultaneously at rest. If the state vectors of the theory
are

l k(n, q),n, A,S,o), where A is the name of the multi-
plet of the internal group (octet, decuplet, singlet, etc.),
S, the total spin, and 0, its projection on the z axis, we
take the normalization of these states to be

(k (n', q),n', A', S',o'
l
k (n, q),n, A,S,o')

=&[k(n', q') —k(n, q)]&» &..&ss &.." (3)

Under a space-time translation of the coordinate axes
through a distance u these states transform according to

U(a) l k(n, q),n, A,S,o)
=exp(~k(n, q) a)lk(n, q),n,A,S,o). (4)

Under internal symmetry operations G the states
transform according to

U(G) l k(n, q),n, A,S,o)
=Zs ~"'(P)Ds-(G) I k(Aq) P,A,S )S "(n) (5)

where J(n) is the Jacobian

J(n) =
l ak(nq)/aq, l,
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and this factor is required in order that the operation
U(G), de6ned by (5), that represents the internal-group
element G, be a unitary operator with the normalization
(3). The multiplet transforms invariantly under all
possible products of translations, homogeneous Lorentz
transformations, and internal operations, as well as
under each type of operation separately. The complete
set of symmetry operations is therefore the closure,
under multiplication, of all products of internal- and
Poincare-type transformations. Accordingly, the in-
finitesimal generators of the elements of this set must
be closed under commutation. We may now show
explicitly that the number of generators needed to
close the commutation algebra is infinite. This corre-
sponds to the fact that product operators form an
infinity of classes O„where

0„=(g U(a,)U(G,))

which again is a new object, for its momentum de-
pendence is higher than that of C(1). The process may
be continued indefinitely, and we always produce new
generators C(n) for a=i, 2, . This proves the
theorem.

THEOREM 2

Theorem: In a theory with an intrinsic mass formula
(for the single-particle states), the direct product of
two single-particle multiplets is always irreducible
under the internal group.

The internal transformation properties of the one-
particle states [Eq. (3)] dictate the decomposition of
the direct-product states under the internal group.
Thus, one would try to form irreducible submultiplets
of direct-product multiplets by summing with appro-
priate Clebsch-Gordan coeKcients of the internal group:

l&»,C&=& C(C v ~,~P,P) lk,~,~&N)I~,PP) (12)

and e may take on any positive integral value; a;, G;
may be any translations and internal transformations,
respectively. The class O„always contains operators
that are not contained in OI, for k(n.

Consider the generators of the translations. They are
denoted E&, and their matrix representation is diagonal
in the basis we have chosen:

(k,n l
P~

l
k', p) =s.&k~(n) 8'(k —k'),

where we have suppressed the irrelevant indices. Simi-
larly, the generators of the internal operators are

(k n
l
H

l

k' p) =J' '(n) (k ") pJ—'"(p)5'(k —k') (8)

where h;~ is the matrix of the ith generator in the A
representation, and H; is the corresponding Hermitian
operator in Hilbert space. The commutator is therefore

(k, l
p'„,a,"]lk',p&

=~(k —k')Z '(o) (k'),J "(P)[k~(~) -k~(P)] (9—).
Unless k"(n) =k"(P) for all n, P which are connected by
the generators k;" (i.e., in general for all n, P), this
commutator does not vanish. Its momentum de-

pendence, furthermore, clearly implies that it cannot
be expressed as a linear combination of internal gen-
erators. In fact, we may write

(k,-l[C(1)',.]lk',P&=~'"(-)(k;").sj- "(P)
x[k ( )—k (P)7~(k —k'). (10)

Then the commutator [Eq. (9)] is just C(1);,„.
We may again perform a commutation, defining a

C(2) by

(k,o.
l [C(2);,„,„]lk',P)=(k,nl [P",C(1),, „]lk',P).

(k,nl [C(2);,„,,]l
O', P) = (k,nl [C(1);,„]l

O', P) (11)
x[k ( )—k (p)7,

while in the rest frame of the 8 multiplet,

«( )=q( ); [q'( ~)+~'( 1)]'"+~(p)
= [q'(n, )+m'(n, )7'~'+m(p, ), (14)

where we have used the fact that all particles of a
multiplet are simultaneously at rest. There must be a
Lorentz transformation which transforms the rest frame
of the 2 multiplet into that of the 8 multiplet. Thus,
there must be a direction n and an angle 0, such that

and

[q'+m'(n&)]"'=no(n&) cosh8,

[q'+m'(n&)]'~'=m(u, ) cosh8,

«=8m(n&) sinh0,

q=flm(n2) sinhP,

(15a)

(15b)

(16a)

(16b)

where q=q(n&) =q(n&), and where we have used the
parametric form of the Lorentz transformation. Equa-
tions (16) may be solved to give ns(n|) =m(nz), which
contradicts the assertion that there is a single-particle
mass formula, unless the Clebsch-Gordan coeKcients
are nonzero for only a single pair of indices. But this is

But the translation properties of the state on the left-
hand side of this equation will be incompatible with the
requirements of Poincare symmetry. According to Eq.
(1), E=k(n)+l(P) must be determined by y alone.
Thus, if the coeKcient C(C,y; A,n, B,p) is nonzero for
more than one pair of n and P, the vector E will be ill-
de6ned, unless k(n) and l(p) have special forms.

Let n~, p~ and n2, p2 be two sets of indices for which
the coefficient in question is nonzero. Then, if K is to
be dependent only on p, in the rest frame of the A
multiplet, we have

p(p)=p(p); [p'(p)+ '(p)7"+ ( )
=[9'(p)+ '(p)]'"+ ( ) (»)
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tantamount to the irreducibility of the direct-product
multiplet, which was to have been proven.

CONCLUSION

A study of the physically apparent transformation
properties of the single-particle states has led us to two
conclusions about the structure of a group that includes
both internal and Poincare symmetries. It has first been
shown that only a group with an infinite number of
generators can have single-particle lnultiplets with
several different masses. Even if one is willing to accept
such a group, it is not possible to construct a physically
satisfactory theory. The second theorem shows that no
two-particle states are reducible. This implies, for
example, that in octet-octet scattering the familiar

«A special case of the second theorem has been previously
discussed. See N, M. Kroll, Phys. Letters 20, 531 (1966).

formula 8X8= 1+8+8+10+10+27 would. no longer
be valid and only a single scattering amplitude wouM
be required to describe all 64 reactions. The present
results are to be contrasted with previous theorems of a
similar character. "The earlier results are obtained by
making assumptions about the structure of the Lie
algebra of the combined Poincare and internal groups.
These results are confined to groups with a finite number
of generators. Sy treating the states and their trans-
formation properties rather than the operators, we have
shown that only groups with an infinity of generators
can have an intrinsic mass formula but that these
groups are subject to very serious objection. ~

'%. D. McGlinn, Phys. Rev. Letters 12, 467 (1964).' F. Coester, M. Hamermesh, and W. D. McGlinn, Phys. Rev.
135, 8451 (1964).

7 An example of this type of group has been proposed recently
by J. Formhuek, Nuovo Cimento 43, 741 (1966).
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An integral representation for the renormalization function, Zg(s) =A~(s)/AJ'(s), and hence for the
composite eigenvalue conditions Z3(~) =0, lim. „sZg(s) =0 as well, is derived. The representation allows
for the possible emergence onto the physical sheet of Castillejo-Dalitz-Dyson (CDD) poles, as the coupling
strength increases, by satisfying the requirements of analytic continuation in that parameter. The com-
posite conditions are obtained in a relativistic scalar model (in the elastic approximation) and in a one-pole
nonrelativistic model; in conarmation of a surmise due to Ida, these conditions are found manifestly inde-
pendent of the position of the CDD poles. Applications of the representation to some limit problems in the
theory of noncomposite particles, to the Zachariasen model, and to a multichannel generalization of that
model are made. The extension of the representation to the nucleon is the basis for a brief numerical an-
alysis of Zz(zv) and related quantities in the one-branch approximation.

I. IÃTROQUCTION
'N a succession of papers' ' dealing with the Green's-

- t function approach to some problems in the theory of
strong interactions, Ida' has been able to show, by
paying special attention to propagator zeros, the
equivalence of that approach to the ordinary E/D
method. 4 Central to his demonstration is the observa-
tion that the renormalization function, defined by'

Zs(s) —=d, p (s)/hp'(s),

*Research supported in part by the National Science Founda-
tion and by the Rutgers Research Council.
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5 our discussion is limited to the relativistic scalar model con-

is a Herglotz function. It follows that Zs(s) can be ex-
pressed as

s-
Zs(s) = 1+

p(s') g'ds'

s—p,
2

+Q c. , (2)

sidered by Ida (Ref. 2): S-wave scattering (in the elastic approxi-
mation) of a scalar baryon (M) and antibaryon with a (scalar)
one-meson (p) intermediate state. For simplicity, we have taken
over the notation of Ref. 2 wherever possible.

6 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

where the sum on the right-hand side of Eq. (2) repre-
sents the Castillejo-Dalitz-Dyson (CDD) terms'; the
s„'s are the zeros of the meson propagator Ap'(s). It
is assumed that the propagator hp'(s) satisfies the


