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Commutation Relations of Baryon "Currents"
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The notion of baryon "currents" is introduced. We make the hypothesis Lpartially conserved baryon cur-
rents (PCBC)j that the divergences of these baryon currents are related to baryon 6elds in much the same
way that the hypothesis of partially conserved axial-vector current (PCAC) relates the divergences of
axial-vector meson currents to pseudoscalar meson fields. Pn the basis of the quark model, we construct the
baryon currents as linear combinations of the products of three quarks. Using the canonical anticommutation
relations for the quarks, we derive the equal-time commutation relations of the baryon currents with vector
and axial-vector meson currents. The right-hand sides of these commutation relations turn out to be linear
combinations of the baryon currents themselves. As applications we consider the matrix elements of the
commutation relations (1) between vacuum and baryon states and (2) between meson and baryon states.
The results consist of algebraic relations between various form factors, which can be checked, in principle,
by accurate experimental data when available.
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~ 'HE introductory work of Gell-Mann' and of
Fubini and Furlan2 on the commutation relations

of meson current components has been pursued by Adler
and Weisberger' and also by many others4 in the
derivation of various useful sum rules. As further
development along this line of investigation one could
either And new applications of the same algebra of
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integrated currents or make refined studies of the
techniques involved.

It seems to us that following another line it might be
fruitful to investigate commutation relations of new

baryon "currents"' which bear the same relationship'
to the baryon 6elds as do the axial-vector currents to
the pseudoscalar-meson fields. In this paper we propose
to obtain these commutation relations on the basis of
the quark model, ~ which underlies the parallel deriva-
tion for the meson currents. The triplet of spin-~

quarks is assumed to satisfy the canonical anticommuta-
tion relations. The meson currents are built out of linear
combination of quarks and antiquarks. It is a natural
generalization of these ideas to suppose that the baryon
"currents" are built out of linear combinations of
products of three quarks.

In Sec. II we review the quark model of the meson
currents and present a new way of framing the hy-
pothesis of partially conserved axial-vector currents
(PCAC). Those who are familiar with the subject may
prefer to omit this section, except to note Eqs. (2.10) and
(2.11).In Sec. III we suggest the hypothesis of partially
conserved baryon currents (PCBC) and then construct
the baryon currents as linear combinations of three
quarks. Some properties of these currents are examined
and discussed. On the basis of the canonical anti-
commutation relations for the quarks, we obtain in
Sec. IV the commutation relations of the baryon
current, with the vector and axial-vector meson cur-
rents. As application of these commutation relations
the matrix elements between vacuum and baryon states
on the one hand and between pseudoscalar meson and
baryon states on the other hand are studied in Sec. V.
Finally the results are summarized and discussed in
Sec. VI.

'No connection with vector (meson) currents built out of
baryon Gelds.

This idea was suggested, though in a different context, in
J. Nuyts, Ph.D. thesis, University of Brussels, 1962, p. 81
(unpublished).' M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, CERN
report, 1964 (unpublished).
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12Qxl2 = 1Q+143. (2.4)

Further decomposition with respect to SU(2,2)QxSU(3)
goes as

1=[1,1], (2.5a)

12=[4,3],
12= [4,3],

(2.5b)

(2.5c)

II. MESON CURRENTS: PCAC

Weak and electromagnetic interactions provide strong
support for the existence of, at least, vector and axial-
vector currents. The matrix elements of these currents
have a well-de6ned interpretation in terms of leptonic
decays and photon coupllngs.

For later convenience it is useful to introduce the
quarks as a triplet of spin--', objects Q'(x) (altogether
12 components) considered as states of the funda-
mental (nonunitary) representation of the SU(6,6)
group. s In this quark model, the vector and axial-vector
meson currents are obtained quite natur ally as a bilinear
combination of quarks and antiquarl-s:

Jz, '=Q;(x)7zQ'(x) (s j=1,2, 3), (2.1)

where yz equals yr (vector) or y"ys (axial vector). By
letting yz extend to all sixteen Dirac matrices [i.e.,
including 1 (scalar), ys (pseudoscalar), and o&" (tensor)
in addition to ys and y"ys], one obtains the 144 com-

ponents of the quark-antiquark system. Equation (2.1)
can also be written in the form

z(a) q(x)X yzQ(x) (rr 0 . . . 8) (2

The correspondence between the tw'o forms is that for
i =j; ) are the Gell-Mann matrices' with 0.=0
[SU(3) singlet], a=3 (neutral isovector), and rr=8
(neutral isosinglet); for iA j we take X to be
(Xr+$Xs)/V2, (X4+$Xs)/v2, ol (As&sXz)/V2 so as 'to give
the currents de6nite quantum numbers.

Let us analyze this in a language that will become
useful later for the construction of baryon currents. The
group SU(6,6) possesses the following chain of
subgroups

SU{6,6)&SU(2,2)QxSU(3)&SL(2,C)QxSU(3), (2.3)

where the second step involves simply the decomposi-
tion of SU(2, 2) with respect to SL(2,C), and where

SL(2,&) and SU(3) are the usual I,orentz group' and
the commonly adopted approximate internal symmetry
gmup. In SU(6,6) it is easy to verify the pmduct
decomposition.

The first number [second number] in the square
bracket refers to the dimension of the representation of

SU(2, 2) [SU(3)]. The decomposition of the repre-
sentations of SU(2, 2) in terms of the representations of
SL(2 C) is giveli by

1= (1,1),

4= (2,1)Q+ (1,2),

4 = (2,1)Q+ (1 2)

(2.6a)

(2.6b)

(2.6c)

ls= (1,1)Q+(2,2)Q+(2, 2)Q+(3, 1)Q+(1,3) . (2 6d)

In SL(2,C), the representation (1,1) corresponds to a
scalar (or a pseudoscalar), (2,2) to a vector (or a pseudo-

vector), (3,1)Q+(1,3) to an antisymmetric tensor, and

{1,2)Q+(2, 1) to a spinor. Other tensors are used in
Sec. III. In view of Eqs. (2.4)—(2.6), it is clear that (2.1)
and (2.2) exhibit the decomposition of the 144 current
components with respect to SL(2,C)QxSU(3).

in the notation of (2.2). In the spirit of Cabibbo's

model u the constant e may be written as

(2.8)

where m is the mass of the particle associated with the
field @ . Here e is a constant independent of n.

i'm,
ga

g.iziz(o)
{2.9)

It depends on the mass of the proton (M~), the weak

axial coupling constant (gz) in P decay, the pion

nucleon form factor evaluated at zero momentum

transfer with the normalization gs ~~(zzz s)/4zr = 14.7.
Let us frame the content of (2.7) in the notation of

(2.1). Calling P (x) {s,j= 1, 2, 3) the nine pseudoscalar
meson 6eMs, PCAC should be written as

A. PCAC

Aside from their direct interpretation in terms of
weak leptonic decays, the axial-vector currents are in-

directly related to properties of strong interactions by
the generalized partially conserved axial-vector currents
hypothesis" (PCAC). Denoting the pseudoscalar fields

by 4 this hypothesis states that

ri„J &'(x) = v 4 (x), (n=-0 excluded) (2.7)

143=[1,8]Q+[15,1]Q+[15,8]. (2.5d) a„J» (x) = e i'»'(z) . (2.10)
8 %'e shall often use the word group in this paper where, in fact,

properties of the related algebras only will be relevant to our
discussion. The justification of the SU(6,6) attribution becomes
apparent in Sec. IV. Almost everywhere, however, it can be
thought simply as a convenient way of labeling indices running
from i to j.2 with some symmetry properties. See also Ref. 17.

9 More precisely the covering of the homogeneous Lorentz group.

The Inost general form of e,*~~ satisfying the isospin

'0 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
S. I . Adler, Phys. Rev. 137, 81022 (1965}."N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).



COMMUTATION RELATIONS OF BARYON ''CURRENTS'' 1217

invariance is"

s 'is=- abi'5 s+bb, 'bis+V3cb P s) is+V3d(Xg) 'bP

+&3sB,'(~s) s—8 P„),s—-', (~s) 'b, sj
+v3 fL(Xs) i'b,'—& '(&s) i'—s (4) bi'j

+3g(&s)i'(&s) .
I.et us note that charge conjugation invariance"

Since the nonet of vector mesons allows for singlet-octet
mass mixing we expect in this case that all the terms in
the expansion of t ~~, except perhaps the one analogous
to g in (2.11), are different from zero. Aside from their
indirect connection to the vector meson fields through

(2.11) PCTC (2.19), no direct (experimental) interpretation
of the tensor currents has yet been found.

implies

~.i k p.y lj' l —i I (2.12) III. BARYON CURRENTS: PCBC

or
(2.13)

The physical interpretation of the diGerent terms in
(2.11) is as follows: a and b are the SU(3)-invariant
terms (b separates the singlet from the octet whereas
a does not); c and d are related to singlet-octet "mixing"
in the sense that the divergence of the axial-vector
singlet gives rise to octet pseudoscalar field (c) and
vice versa (d); e and f induce an SU(3) violation term
which transforms as an octet without "mixing"; finally

g carries a higher order violation which can be made
a pure 27-piet by a suitable linear combination with
the other terms.

Equations (2.8) and (2.11) agree if

(2.14)

a= (8nsxs+7m s+—3m ')
18

(2.15)

'V

e =f=—(Sm '—2mxs —3m ')
18

(2 16)

g=—(3m„s+sa,s—4mxs),
18

(2.17)

b and c being arbitrary. It is clear from these formulas
that, at the limit of an exact Gell-Mann —Okubo mass
formula, g vanishes, hence the contribution from the
representation 27 is absent. Also, d equals zero (no
mixing); a and s= f are in the ratio

B„B.&,' (z) = V,''is(.s'(x), (3.1)

where f &'(x) is a nonet of baryon fields. "The most
general form of V ~~ satisfying the isospin invariance is

V 'is= AS&'5'+Bb '5 is+V3C5'(Xs) is+VBD(Ãs) 'bi"

+V3ELb/'(Xs), s—sb (Xs)i"—s (Xs) 'bisj
+~»L(~s), b,'—sb, '(~s),'—-'(~s) 'b, "7

+3G(X ) '(X ) . (3.2)

Charge-conjugation invariance does not lead to any
constraint on this equation. The physical interpretation
of the various terms of (3.2) is exactly the same as given
immediately after (2.13) for the case of PCAC. If here
again U &~ is directly correlated with the mass-splitting
operator, then we expect G to be small (no 27 breaking)
as well as small C and D (no mixing). The remaining
coeKcients A, 8, E, and Ii should be related in a simple
way to the baryon masses. By analogy with (2.18) we
conjecture that V ~~ is proportional to some power of
the mass operator; hence we can derive the forms

In this section we turn our attention to the baryons
and attempt to construct baryon currents with the pro-
perty that their divergences are related to the bar-
yon 6elds. We shall refer to this property as the PCBC
(partially conserved baryon current) in the same
spirit as PCAC.

A. PCBC

Let us denote the baryon currents by 8 & (x)
describing a nonet (i, j=1, 2, 3) of vector (index
@=0, , 3) spinor (index n) currents. PCBC then
implies

a 2mxs+ns '

8 5$ —5$~

B. PCTC

(2.18) 2 = (Mz"+Ms, ")V

8= (2MFs"—Mz"—Mp") V/6,

E= (Mz"—Miv") V/3,

(3.3)

(3.4)

(3.5)

Ii = (Mz"+2Miv" —3M'")V/6,If tensor currents can be related to the nonet of (3.6)
vector mesons Q"s'(x) in a way analogous to (2.10) and with ss being an integer and V some constant of the
(2.11) then we have dimension of mass to the power (4—ss).

g Js,~.i(&) ~,i slav i(&) (2.19) B. Construction of Baryon Currents
"In view of the identity

5&igj gjsg& +~3gji (X8)&k+~ (X8)&.iB&k

—~S (~8)j'—(~8)t'~ +3(4)S (~8) —3(~8); (4)t'=o,
(X8) (38)q~ can be expressed as a linear combination of the seven
terms of Kq. (2.11).

'8 We consider here only the fIrst-class currents.

In order to construct the baryon currents and later
establish their commutation relations we shall adopt

'4 This does not necessarily imply the existence of a low-lying
ninth baryon. By a suitable choice of the values of V P, the
singlet and the usual octet can be completely decoupled.
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the quark model. The simplest scheme in this model is
to build the baryon currents out of linear combinations
of products of three anticommuting quarks. We use
the language that has been set forth in Sec. II.

In SU(6,6) the direct product of two quarks de-
composes as

12Qxl2 =66Q+78 (3.7)

where the representation 66 is antisymmetric and 78
symmetric under the interchange of the two quarks.
For the product of three quarks one has

12Qx12Qx12
=220 (A)Q+572(PS)Q+572(PS)Q+364(S) . (3.8)

The symbols in the parenthesis indicate that the
corresponding 3-box Young diagrams are totally anti-
symmetric (A), partially symmetric (PS), or totally
symmetric (S).

The decomposition of these SU(6,6) representations
with respect to SU(2, 2)QxSU(3) is

66= [6,6]Q+[10,3], (3.9a)

78= [10,6]Q+[6,3], (3.9b)

220 = [4,10]Q+-[20,8]Q+[20',1], (3.9c)

572= [4,8]Q+[20,1]Q+[20,8]Q+[20,10]Q+[20',8], (3.9d)

364= [4,1]0+[20,8]0+[20',10], (3.9e)

where we have used for SU(3)

3Qx3=3Q+6, (3.10)

3Qx3Qx3= 1(A)Q+8(PS)Q+8 (PS)Q+10(S), (3.11)

and for SU(2, 2)

4Qx4= 6Q+10, (3.12)

4Qx4Qx4=4(A)Q+20(PS) Q+20(PS)Q+20'(S) . (3.13)

In turn the representation. of SU(2,2) are reduced to
represen. tations of SL(2,C) by (2.6) and

6= (1,1)O+(1,1)O+(2,2), (3.14a)

1o= (2,2)O+(1,3)O+(3,1), (3.14b)

20= (Iv2)O+(2, 1)O+(1,2)O+(2v1)Q+(2)3)Q+(3v2), (3 14c)

20'= (2,3)Qy(3, 2)Q+(1,4)Q+(4, 1) . (3.14d)

The two new types of representations of SL(2,C) which

appear in these decompositions are (2,3)Q+(3,2) and

(1,4)Q+(4, 1). The former being a 12-component tensor
corresponds to a 16-component tensor t I" constrained
by the four conditions"

(3.15)

"fn fact tg= (21&3)Q+(3&2)Q+(1,2)Q+(2, 1) and the conditions
(y„tv)=0 eliminate the superfluous spinor (1,2)Q+(2, 1), while
s vv = (1,4)Q+(4, 1)Q+(2,3)Q+(3,2)Q+(1,2)Q+(2, 1) and the conditions
e "=—(y„si'") =0 eliminate a tensor I " which evidently has the
same content as t ".

The latter tensor having eight components corresponds
to a 24-component antisymmetric tensor s I'"

(3.16)

with the 16 conditions"

-(v.~'")=0. (3.17)

Since the baryon currents are, we propose, to be
constructed out of three anticommuting quarks, only
the totally antisymmetric combination 220 survives.
Since we also want an octet in the traceless part of 8 I',"

these components are to be found in the [20,8] part
of 220 [see (3.9c)].More precisely we choose to identify
our baryon currents with just the (2,3)Q+(3,2) part of
the 20 representation [see (3.14c)]. Consequently,
following (3.15) we have

(v„B,")=0. (3.18)

y 'C= —Cy

C'= —C.
(3.19)

Quarks are represented by the spinor Q '(x) an.d we

use the notation

-(AQ') =—A-st'
(O'A). —=Qtt'A p-.

(3.20)

First the 66 antisymmetric components of the product
of two quarks, as given by (3.9a) and (3.14a,b), are
explicitly

66~

'[(1 1) 61

L66] [(»1)6]
.[(2,2),6]
[(2,2),3]

10,3
[(3,1)Q+ (1,3),3]

S"=O'CQ'

Ptv' Q'CVsQ—v'

A „"=Q'Cv„v, Q'

~u;= ' eQt'sCQv'

7'tvv, t= etjsQ 'CosvQ

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21e)

where the two quark fields are taken at the same space-
time point. It is easily veri6ed, using (3.19) and the
anticommutation properties of the quarks, that S, P,
and A are symmetrical in i and j, while factors following

e;;& in V and T are antisymmetrical in j and k.
In order to obtain the 220 components of the products

of three anticommuting quarks at the same space time

point, one multiplies the above 66 components of (3.21)
by Q '(x). These products can be rearranged by linear
combinations to yield the decomposition (3.9c), (2.6c),

Now we are in a position to proceed with the explicit
construction of the baryon currents, uniquely defined

up to a factor. We introduce the charge-conjugation
matrix C with the usual properties
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Dt2v 4gy v +P+ v

E,~."=6(8„~8."—8,"8.~)

-3(v v ~." v "v ~ vv.ti- —
+v "v,8p")+2o""o'p, ,

(3.23)

(3.24)

where we have chosen definite normalizations. We re-
mark that the forms obtained above, (3.22), though
unique up to a normalization, can be written in many
different ways related through identities which follow
from the completeness relation of the y matrices:

16

2 (v')-o(vs), i=43-i»o
Z=1

(3.25)

One such identity, which will be essential later in the
derivation of the commutation relations, is proved in
appendix A and reads

—(e'Cv, v.e ) .(D"e')= (e'Cv, e') .(D"v.e )
+(Q Cv„e ) .(D"v,e'). (3.26)

In concluding this section we discuss briefly the
various components of (3.22). The component (3.22a)
satisfies all our o, priori requirements for the nonet of
baryon currents and will be studied further in the next
sections. It is not evident to us what obvious use can be
made of the other components of 220. This situation is
already met in the case of meson currents where no
interesting or fruitful interpretation of the scalar and
pseudoscalar currents has yet been proposed. Since the
decuplet (N*, F'*, *, 0 ) is the best established set of
baryon resonances beyond the usual octet, one may
ask whether any connection with (3.22e) can be found.
The situation does not appear very promising. Indeed
an equation of the type

ijk(x) Uij kP tmn(x) '(3 27)

is unsuitable if P„,' " is to represent the decuplet of
spin-2 fields since for example the spin would have to
be aligned along the momentum (ji index part). A
better connection could perhaps be of the kind

Sijg Q e+Sjig Q r+Seig Q j U i j kp ime (3 28)

(3.14c,d)

[(2$)Q+(3~2)~10+8] B~"j'=Ve (D""Q') (3.22a)

[(1)2)Q+(2,1),8] B =S'"Q 'egij (3.22b)

220~ [(1,2)Q+(2)1),8] B;"=P'"Q iekii (3 22c)

L(1,4)O+(4, 1),1] B.&"= T&~ .(P. &."Q') (3.22d)

[(1 2)C+)(2 1) 10] B 'i"=S'je '+Sj'Q '
+S»e i (3.22e)

In (3.22a) the singlet and octet parts are given, respec-
tively, by the trace and traceless parts of 8 I' . The
matrices DI"" and E & " have to be such that 8 I' ' and
B I"", respectively, obey conditions (3.15) and (3.16),
(3.17). It can be shown that these matrices are

which in some way could be interpreted as "orbital
excitation" of the constituent quarks. However, we do
not feel very secure in proceeding along this line of
thought in view of the innumerable underlying
ambiguities.

IV. COMMUTATION RELATIONS

As we have already mentioned in the introduction,
the commutation relations of the baryon currents are
to be derived on the basis of the quark model. As usual
we assume that the quarks satisfy the canonical anti-
commutation relations

{Q-'(x),eojb)) *,=.,=o (4 1)

S~"(xe) = Q, (x)v' eo'(x)d'x (4.5)

are related to the spin part" of the generators M&" of
the homogeneous Lorentz group and satisfy the
algebra'r of Sl.(2C), which is a subalgebra of SU(6,6).
On the other hand, the space integrals

Uj(t) = Q;(x)v'Q'(x)d'x, (4.6)

~ (t)= 9,(.)"v.e'()d" (4.7)

"See, for example, N. N. Bogoliubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields (Interscience
Publishers, Inc. , New York, 1959), p. 25.

'7 We remark that since we deal with algebra and allow arbi-
trary combinations of the generators with complex coefficients
depending, for example, on the definitions of the 16 y mat-
rices the distinctions between SU(6,6) and SU(12), between
SU(2) x SU(2) and SL(2,C,), or between SU(3)QxSU(3) and
SI.(3,C are not crucial here. We have chosen to refer to (4.3) and
(4.4) as the algebra of SU(6,6) since we believe that the inter-
pretation of (4.6) as the elements of the algebra of the spin part
of the Lorentz group is quite natural.

{Q-*(x),Q j(y)).,=.,= ~- ~' ~'(»—y) (4 2)

From these equations it is then easy to obtain the
commutation relations of the meson currents at equal
time:

P-'(x),~s'(y)]*,-;
=~ ( -y)-:e*( )«~.,~]{"",

+{~.»o) [v'v" v'v']) Q(x) (4 3)
or

[~" '(x) ~' "(y)]*,=.,
= ~'(»—y) {~ 'Q (x)v"v'v'Q" (x)

-»"Q (*)v'v'v'Q'(x)) (44)

These algebraic relations specify the Lie algebra of
SU(6,6).

Let us brieQy recall the usual interpretation of some
of the subalgebra of (4.4). The space integrals of the
traces of the tensor components
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A. Commutation Relations between Baryon
and. Meson Currents

As %'e hRvc R1I'cRdy seen ln thc preceding scctlon thc
proper trilinear combination of three quarks that gives
the baryon current is the one in (3.22a):

B. ()= Q"()Cv,e().(D"e'(*)) (4»)
wllcl'c D"" ls dc6ned 111 (3.23). Wc co11sldcl' 111 this sub-
section only the commutation relations of this current
with the vector and axial-vector meson currents. More
speci6cally, our discussion is condned to the time com-
ponents of these currents only:

J' (x)—=Q, (x)v'Q'(x), (4.12a)

~''( )=—Q ( )v'v Q'(*) (412b)

The reason for this restriction is quite clear in vievr of
the recent success in establishing the physical relevance
of thc ch, lx'Rl RlgcblR.

Consider 6rst the commutation relation between
f33,'(x) and 8 &I'(y) at equal time. Use of (4.1) and
(4.2) yields

I ~39(*)»-"I'(y)]*,-3
= ke *(&)v3Q'(&), Q'(y)&v Q'(y) -(D""Q"(y))]*3=33"»
= ~ ( -y)L(» e'cv'.e'-» e cv' e') -(D"e')

—»'Q Cv.e'.(D""v3Q*')]3.» (4 13)

On account of the identity (3.26), the first two terms
on the right-hand side of (4.13) may be put in the form
of the last term, and wc obtain, in. terms of the nonet
baryon currents defined in (4.11)but with the indices y
and n suppressed for the sake of clarity

P3"(&) BI'(y)]*o=-
—$3(x y)V ($.38 i+J ig.k $3$ ige,

g.ig 3 2g Ivg i+g ig 38. v). .

This relation may bc simpli6cd lf we dcADC

8 ' (X)=f33' (X') O'f33 ''(X)-'

(4.14)

(4.15)

+."I"(y)—=8-"I'(y)—3&I"8-".'(y) (4.16)
We get

t:@ (~),@.I'(y)].,=„,
= h'(x —y) (V3) Iikb'(all~I'(~)+ bi'(BS3'(x)] (4.17).

generate the familiar chiral algebraII SU(3)QXSU(3) in
the form

LVI'(~) VI'(~)]=&I'VP(&)—»'VI'(~) (4 g)

LV'(t) AI'(t)]=81'A "(t)—O'2 '(t) (49)

L~ (~),~ '(~)]=& 'V,'(~)-» «'(I). (4 10)

We proceed now to the derivation of the commutation
relations of the baryon currents. We discuss separately
the commutators )J3,8 &13] and the anticommutators
{83:,ig v 3)

The structure of this commutation relation is not un-

cxpccted from gloUp-thcol ctlcal consldcx'Rtlons. Wc
have seen that J' and 733 are related, through (4.6)
and (4.'/), to the generators of the subalgebra" SU(3)
QxSU(3). Under commutation with the baryon current
which is in the (2,3)Q+(3,2) representation of Sl-(2,C),
they must transform (2,3)Q+(3,2) into itself (with the
additional factor of V3 in the case of f33 ). Now, the
light"hand side of thc commutation 1clatlon being R

trilinear combination of RntlcoIIlInutlDg quaI'ks, xllust

be contained in the 220 representation of SU(6,6). The
fact that it must also be in the (2,3)Q+(3,2) representa-
tion of the Sl.(2,C) subalgebra demands, according to
(3.22), that it can only be an object that transforms
just like our baryon current, i.e., no other components
beside the nonet. The particular combination of the
bRI'yoll currents 011 tllc right-hand side of (4.14) ls, of
course, unexpected. The algebra SU(3)QxSU(3) that
is generated by J' and J5' then suggests that

PY(&)»-"I'(y)]*o=-
= b'(x —y)pi'B. ~ (x)—» B.~I'(x)], (4.18)

Rnd this can be veri6ed explicitly.
Thc normalizations of thc slnglct coIIlponcnts ln

(4.15) and (4.16) may be altered if we adjust the
coeKcients a and b in the expansion of e, 'I3 in (2.11)for
PCAC, and the coeKcients 2 and 8 in V,'I3, (3.2), for
PCBC. Wc shall therefore not be concerned with the
1clRtlvc magnitudes of thc slDglct Rnd octet com-

ponents, Rnd consider just thc coIDIDUtatlon 1'clRtloDs

as given in (4.1'I) and (4.18). Their consequences will

be examined in the next section.

B. Anticommutation Relations between Baryon
and Antibaryon Currents

Kc build the antibaryon current out of three Rnti-

quarks in exactly the same way that the baryon current
ls constructed out of three qURI'ks. Thus wc hRvc

gs"3'(y) =""'Q.(y)cv.Q.(y)(Q3(y)D'")s (4 19)

Tile Rll'tlconlnllltatloll relations of tllls wltll 8~Ivi~(g)

can, in principle, be computed along the same line. We
shall not go into an explicit calculation of this here, but
plcscnt R qualltatlvc dlscusslon.

On account of the canonical commutation relations
of the quarks, it is clear that the right-hand side of the
anticommutation relation of baryon and antibaryon
currents must consist of a linear combination of
products of two quarks and two antiquarks, thus of
two meson cul 1cnts. From 1DvR1 lance consldel Rt ion
one obtains the general form

{8-Y'(*),Bs'I'(y)) *.=33=&'(x- y)

y p (I o(t)) sg.i~& vv, n(g)yr v(&)Jz v(&) (4 20)
ggI

In (4.20) the summation over Y and Z has the same
meaning as for (2.1) and (3.25); the superscripts 0 refer
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to the zeroth component of a Lorentz vector. The
tensor I P,","(f') is built out of the Kronecker 8P
only; the tensor Frs'(f) must be s. Lorentz covariant
(with indices 0, F, and Z) 4X4 matrix built out of
the 'r matrices, g~e& and emery. Tbe index i runs on the
discrete set of all possible tensors X and I' in any
combination.

From group-theoretical considerations in SU(6,6) the
left-hand side of (4.20) belongs to

220Qx22O= 1Q+143Q+4»2Q++044

while the right-hand side, being the product of two
meson currents belongs to

(1Q+143)Qx(1Q+143)= 1Q+143Q+143Q+1Q+143

Q+143Q+4212Q+5005Q+5005Q+5940. (4.22)

Thus (4.20) can only contain terms transforming
as 1, 143, and 42j.2.

The only structure which has a physical interpreta-
tion and seems to be built out of two meson currents
taken at the same space-time point is the nonleptonic
weak Hamiltonian. A connection could perhaps be
found between the baryon-antibaryon anticommutation
relations and the weak nonleptonic decays. However we
shall not go into more details on this problem now.

Taking the matrix elements of the integrated form of
(4.17) between vacuum (0 I

and the baryon states I 8,"&

one obtains

«IC~ (~),~. '(~)jl&."&

= (ve)-e(0 IP~'&e~'(&)+be@eP(&) 3 I &.") (5 3)

We shall show that, if we introduce a complete set of
intermediate states in the left-hand side of (5.3), the
only ones which can contribute in the 6rst term of the
commutator are states with J~=o:

2 &oI ~ '(~) I~&( I+.i"V) l2l. '&

n g(P)

and in the second term states with J~=—+:

(5.4)

Z &ol~. (~)I && l~ V)l~:& (55)
~ g(&)

(ole (~) l~)=(ol d'x e' (x) IN)

This restriction follows from PCAC and PCBC and
from certain regularity conditions. Indeed we have

V. MATRIX ELEMENTS

In the preceding section we have derived the corn, -
mutation relations (4.17) between the baryon and the
axial-vector currents. As an application we consider
now' the matrix elements of the commutators of the
space integrals of these currents, erst between vacuum
and baryon states, and then between pseudoscalar-
meson and baryon states. After introducing a complete
set of intermediate states one obtains a set of linear
equations for the matrix elements of the baryon
currents. We shall assume that this complete set of
intermediate states can be approximated by a few
low-lying single-particle states. Using PCAC and
PCBC the resulting equations can be expressed as
relations between vertex form factors. The linearity in
the baryon currents then implies that the overall
constant in PCBC I the analogue of V in (3.3)—(3.6)]
is not determined by these equations, but that the
relative strengths between the various terms of (3.2)
are related to the form factors.

(0 I
d'x 8 8& '(x) I e&

i

e .'(0 I
d'x yp(x) Ie&, (5.6)

where we have assumed that the integrals of the space
derivatives (3-dimensional surface terms) vanish and
where (2.10) has been used. It is then clear, in the
absence of zero-mass hadrons, that the pseudoscalar
meson states dominate:

(2~)'&'1
(Ol ~ '(&) IP~'(P)&=~I —,I —e '"'e~'. '&'{I) (5 7)

We have adopted here the convention that Pp annihi-
lates the state

I
Pq'&. A similar argument holds for the

baryon currents

A. Between Vacuum and Baryon States

Let us introduce the following notation for the space
integrals of the time components of the currents

~2s '"
=i(Me')'I'I — e '+'Vp, egg'(P)8'(P). (5.8)

e (~) = e"(x~)d'* (5 1) %e shall attempt, as far as possible, to use capital
letters (lower case) when referring to the baryons
{mesons).

The remaining matrix elements that have yet to be
evaluated are (Pq IS JIB,"& and (Be'I 6 IB;& Pro-.
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ceeding as before, we obtain

(P '(P) I +- "(~)
I
~ "(P))

(i~ a„+M. )y. (*)=S. (*),

(B„B~+mi, )yoP(x) = gp(x).

(5.11)

(5.12)

The most general Lorentz covariant forms of the
matrix eleiileiits (5.9) and (5.10) of these current sources
S(x) and g(x), can be found in Appendix 8 where we
have listed all useful matrix elements of that type in
terms of their form factors. Collecting all the terms,
realizing that the contribution from (5.5) vanishes,
Rnd dividing out by common factors, we obtain

P g&edc r~.i &aid/1G 'a c s+ (M r ~ s) 2G s c e)
abed

—jP.i:I/' i 8+P iP'.i a) P 13)

where 6 1s R known function of masses:

(Ai, g'.") '=2m''(rei, —M;)
X (Mg'+mi, —M,")/M,". (5.14)

The baryon-meson form factors '0 Rnd '6 of
(pi, 'I Sq'I 8;) are evaluated for the meson pi, and the
baryon 8," on their mass shell and the momentum
transfer squared at (M,'—mi, ')'. In order to understand
the physical content of (5.13) let us study in detail a
special case of the "pion-nucleon" commutator:

(5.15a)

(5.15b)

(5.15c)

PCAC (2.11) and PCBC (3.2) then imply u=1, b=2
an«= 2, d=3, respectively. Isospin invariance Lor
(3 2)) ~squires the equahty of the following two
relevant coeKcients

yg 3 P'l 3 (5.16)

=Z (2 )'&'(p-P) I ".
(P'—P') M' (P —P)—

&«P "(p) I ~."(0)I8. (P)), (5.9)

(8 (P-) I
o: (~) I&,"(P))

'(p.0—I*0)g

=Q (2m)'P(P. —P) i,'.&

ai i, (p„o po) i s2 (p p)2

~&8 (P-) Ia"(0)I&. (P)} (5.1o)

where we have used the notation p=—y&p„and the
dehnitions of the current sources

1.
'G ii~= —'G + =—'G''' (i=1 2) (518)

Recall that in '6 ~~ one of the nucleons is out of its
mass shell and carries a momentum transfer squared
equal to (M —m.)'.

Equation (5.1/), as a special case of (5.13), represents
our first result as a constraint on the form factors of
the meson baryon vertex. Another relation between g
and '6 can be obtained directly on the basis that the
form factors of (83) and (86) are analytic continuations
of each other. Kith all the invariant variables taken
at their mass-shell values, one gets

g
~ q f 1G c e f+lG„c a fM&a (5.19)

where the SU(3) indices (op)~ (~~d) and (~~f) sp~c~fy

the components of the baryons, pseudoscalar mesons
and baryons, respectively. For the pion-nucleon case
one has then

g.N~='G mr+'G zmMn (5.20)

With the help of (5.1'/) and (5.20), 'G can be expressed

in terms of g provided we assume that the form factors
do not vary signihcantly between the points where the
two equations are evaluated.

We can make a similar analysis for the matrix
elements of the integrated form of (4.17) between the
vacuum and the spin-~3 decuplet of baryon resonances.
In this case it is obvious that the right-hand side
vanishes. As before the second term of the commutator
does not contribute. Computing the 6rst term we obtain

~.i 5P' i &(~ +)—2

y PHp„' 'Hi, ~' (mi, —M""))—=0. (5.21)

The form factors 'IJ are evaluated for the pseudoscalar
meson and the decuplet on their mass shells and the
spin-2 baryon at (M""—mi, ')'.

Again, as before, on the mass shells the following

relRtions h.old

h u'/. ~.—&/ a'.i.+Ma' &~'u'. ~' (5 22)

It is clear that these two equations (5.21) and (5.22)
render R complete relationship between h and '8
provided, again, that the form factors do not vary too
much in the neighborhood of, and in the region between,
the points where the equations are valid.

It would be interesting if sin1ilar equations could be
obtained for other form factors, 'X of (8'/) for example.

However, this requires additional hypotheses such as

Using the value of u given by (2.8) and (2.9), (5.13)
becoDles in this cRse

M„' gg
PG.~N+(M, m—,) 'G wv)=1,

m (m —Mi,) g war(, 0)
(5.1/)
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pCTC d th t t'o 1 t'o b t th (P-'(p)

Iieet-

'ID"&{D"
I & 'I&.'(P))

tensor and baryon currents.
(2M ")'i'

= p(y p)e'(ro-I'o)o s ~ sV, s s

(moo)'M, o

As a second application of the commutation relations
(4.17) we investigate their matrix elements between
pseudoscalar meson and baryon states:

(P-'IE~,~- 'jlf1."&

=~,(P.'ILb, 'e. +s; N. ,')Ia, ). (5.23)

As we have mentioned before, we shall approximate the
complete set of intermediate states that are to be
inserted in the left-hand sides of the equations by a few
low-lying single-particle states. Here we limit our
coilsidciRtioIls 'to oIlly lntcrmcd1atc pseudoscalar (P)
and vector (V) mesons and to spin-st (8) and spin-s
{D) baryons whenever allowed. We shall also find it
convenient, following the work of Fubini and Furlan, '
to consider the limit of inhnite momentum for the
states. In this limit the equations are considerably
simplified since the four-momentum transfers tend to
zero.

Let us compute now explicitly the various terms
which contribute to the left-hand side of (5.23). Using
the relevant matrix elements of 6, and N given in
Appendix 8 and with the help of Appendix C for the
sums over lntcrmedlRtc spin states, wc have for
P= P ~QQ

(2M,")'~'
p(y p)&i(yo —Po)o e.i bV s 4

(ms )'Mg'

X (('~+2 ~)L( ~)
4(mr')'L(M ")'—(mr' )"

(M.")'1+2M E}8„'s.rg," (P), (5.24)

x 'H'g' r h''«s 'N " (P) (5 26)
6(M «)'

For the right-hand side we have directly

~.(P.'{p)IL~'6 +~ ~. 'jl&."{P)&

(2M,")'"
=IP{y—P)er(no I'o)&— IG t ce

Mg'L(M, ')'—(m„')'j

X (&I'V' "+O'VI' ")N "(P) (5 27)

All form factors in the above equations are evaluated
for two particles on their mass shell and, since the
three-momenta of the states are taken to be in6nite, for
the momentum transfer square at zero.

The final formula for the matrix elements (5.23) of
the commutator relations is obtained by combining
linearly the different terms which we have just com-
puted in the following way

Eq. (5.24)—Eq. (5.25)
—Eq. (5.26)+ ~ =Eq. (5.27) {528)

where the dots indicate some possible contributions of
highel xIlass intermediate stRtcs.

In order to understand the possible use of this
formula let us again consider the special case of the
pions and nucleons. In fact, let us investigate the
pRI ticulRI' conipoIicIits Rs giveII by (5.15) silpplcIIiciltcd
by

(5.29)

In each term contained in {5.28) only one sts, tc contr, i-
where the SU(3) indices of 'Er o~o,' have been suppressed
ox' x'cvlt ' a soty) factors, we have

{P-'{p)l6-'lflf &{~r Io: Ifi "(P)&

(2M ")Iis
go(y p)&r(ro —I'o)& e.' sV s s

(mo )sMg'

—6M~ I{M„'—m.') 'IG„g.„~
—2MSi '(MSI —M„) 'H o„IOoh piro+

= (12 / )(sMe,' m')-' 'G—.„„. (5.30)

X IQ t cf
L(M, )s—(m„)sj(M, +M, )

)&gr's „'u," (P); (5.25)

"For y-ooo we have retained the zeroih-order terms in
I yI ';

they are proportional to N,"(8).'I he Grst-order corrections, which
we have neglected, have two terms, one proportional to e,"(P) and
the other to y~,"(E}.It might prove useful to consider the
equations contai»I1g yo as further relations on ihe form factors.

In view of the results of Sec. V.A, Rll form factors
except the 'E's can be related to experimentally
measurable quantities provided that they vary smoothly
with their invariant momentum transfer. Thus this
equation may be regarded as a constraint on the 'E's,
which themselves, in principle, can be measured by a
dctailcd analysis of p ploductlon processes dominated
by nucleon exchange. Ful thcl thcox'ctlcRl 1clations
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between the 'X's can be obtained if one assumes, for
example, PCTC and suitable commutation relations
between the tensor currents and the baryon currents.

One can also investigate the matrix elements of
(4.17) between vector mesons and baryon states. The
equation is the analogue of (5.23) with P ' replaced
by V„'. The calculation in this case, is completely
similar to what we have already considered except that,
in addition, the pseudoscalar mesons contribute to the
allowed intermediate states. The relevant formulas can
easily be obtained by use of Appendices 3 and C.

VL SUMMARY AND DISCUSSION

To summarize we have introduced the notion of
baryon currents. We have based this notion on the
hope that, at least approximately, the baryon 6eld can
be related to the divergence of a current. We have given
this relation the status of an hypothesis under the name
of partially conserved baryon current. In the quark
model these currents have been built out of products of
three anticommuting quarks. Their commutation rela-
tions with axial-vector and vector currents have been
derived by use of the canonical commutation relations
for the quarks; they are given in (4.17) and (4.18). It
is'important and interesting that the right-hand side of
these commutation relations are linear combinations of
the baryon currents themselves.

As applications we have considered two different

types of matrix elements: A, between vacuum and
baryon states; 3, between meson and baryon states. In
case A we have obtained relations between different
form factors corresponding to different analytic con-
tinuations off the mass shell of the same baryon-baryon-
meson vertex. These relations are valid for two particles
(a,b) on their mass shells (m,' and mp') and the third
variable evaluated at (m, —m p)'.

he applications in case 8 rely especially on the
approximation that only the low-lying single-particle
intermediate states contribute significantly to the sum
rules. Since the extent to which this approximation is
good is not known, we do not regard that it is meaning-
ful to consider these conditions as a set of simultaneous
equations to be solved exactly. If detailed experimental
information is available for the various form factors
involved, the validity of these sum rules can be checked.
If new experimental results are obtained for other
higher resonances which are allowed to contribute to
the intermediate states the approximations can be
examined and improved, if necessary.

While exact agreement cannot be expected on account
of the approximations, a rough agreement would

probably indicate the meaningfulness of the notion of
baryon current and the associated hypothesis of PCBC.
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v.v.+v.v.=2g:
gpp ——+1, g;,= —1, i=1, 2, 3. (A1)

To form the complete set of sixteen 4&(4 matrices we
add

V5= —
zVOVQ'2V3 )

1/'..=p(v.v.—v.v.),
Vps VpVsy

and the unit matrix. We note also

Vp VOVpVoy

V'= —CVC '

O'= —C.

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

The usual completeness relation can then be written

where

Q(v') p(vz) p=48 pb p
z

Z=S, V,T, 2, I',
V = &&V")&"",V"Vs&VS,

Vz ~ pV pytT vpyVSV pyV5 ~

(A9)

We now proceed to the derivation of the identity.
We multiply first (A8) by (Q'Cv„), p(v&QP), Q", and
(4g""—v"v&)~ and obtain, remembering that two quarks
anticommute,

(e.Cv.v'v. e')(4g"-v v )v.e
=-4(e Cv.e)(4g"-.')v.e (A10)

Multiplication of (AS) by (Q'Cv„), p(vpe'), Q", and
(4g&"—v"v&)~ yields

(O'Cv.v'v. e )(4g"-v v )v.e
= —4(e'Cv. Q')(4g""—v"v")vpe (A11)

We takeone fourth of the sum of (A10) snd (A11).The
left-hand side is therefore symmetrical under the inter-
change of u and b. It can then be shown, with the help
of the antisymmetry properties of the components
(3.21d) and (3.21e), that the terms V, P, and A in the
sum over Z vanish. The terms S and T give the same
contribution, namely,

l(e Cv.v.e')(4g"—v v )e
Equating the left- and the right-hand sides leads to the
identity

(O'Cv.vpe')(4g"" —v"v")Q'
= —(Q Cv.Q')(4g""—v"v")vpe'

—(O'Cv. Q')(4g""—v"v")vpe (A12)

APPENDIX A. THE IDENTITY (3.26)

In order to derive the identity (3.26) let us Erst 6X
our convention for the V matrices
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APPENDIX B. COVARIANT FORMS OF MATRIX ELEMENTS
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In this appendix we list the matrix elements of the current sources g and I which are useful for applications
to the commutation relations. All the momentum transfer variables, s„or S„, are de6ned as the momentum of
the bra state minus the momentum of the ket state

(P '(P) I 8"(0) I Vf'(c)) =

(Vp(g) i
g&'(0)

i
Vf'(g ))=Sg Sr'Mt, d', i6|, "$&S,ff'",

(» (P) I J"(o) I
B '(P')) =N 'N. "g "'.'u (Ph'u '(P'),

(D"'(Q)18 "(o)
I B.'(P)) =N'"Ng'k'". ' 'u "(Q)s"~'ug'(P),

(Duba(Q)
i g d(p) i

afgh(Q~)) NeboNfgh[lf a 5 c dgliv+2f e 5 c dspsv]u she(Q)+5 ufgh(QI)

(Pp(p)i Sp'(0)iBg'(P))=upNf [Gt, d, + GI, g S$p uf'(P),

(Vp(q) i
Sd'(0)

i B, (P))=n&~Ni'~p& js„['Kb'&'.~+'K& „J'Sj+q„PEp&',~+4K p&',~Sj}u, (P),
(P~'(P) I &"(o) I

D'"(Q))=u~ N"['&~ ".r.+'&~".rgS)v'S"u. '"(Q),

(Vp(g) i gd'(0) t
D'f&(Q)) =u& N'r'e&~&(pL &~&'gfg+21ig'd'6 fgS)sos"

+['I.g'g', f0+'I-g g',ggSlyP"+['L~'~'erg+'Lg g', rgS jb„"}u„' f'( Q)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

The states labeled by P(p), V(q), B(P), and D(Q)
correspond, respectively, to pseudoscalar, vector, spin-~
and spin-23(decuplet) particles with momenta p, g, P,
and Q. The normalization factors u for the mesons
and S for the baryons are

I= (27r) 'i'(2p') 'i' (810)

APPENDIX C. SUMS OVER INTERMEDIATE
SPIN STATES

In this paper the states are normalized according to

N= (2s) '"(3f/P')'". (811)

The form factors [0, a&, f, g, k, G, H, K, I] depend on
the invariants, namely the masses of the initial and
anal states and on the square of the momentum transfer
(s2 or S'). The SU3 indices on the form factors are
arranged with a convention such that if these matrix
elements are invariant under SU3 these form factors
may be expanded in tensors built only with bb, e ",
and Gabe

e„k"=0,

For spin-~3 particles, we write a wave function
which obeys

(k—m)u, (k) =0,

y"u (k)=0

u" (k)u„(k) = 1.

(C4)

(C5)

u, (k)

(C6)

(C7)

(C8)

These equations imply for the sums over spin states of
vector mesons

Q e„(k)e,(k) =m 'k„k„—g„„,
spin

(C9)

spin-~ispinors

For spin-1 particles, the polarization vector is chosen
to satisfy

(krak')

=~3(k—1'). (C1) Q u(k)u(k) = (0+m)/(2m),
spin

(C10)

The Dirac equation is given by

(i'r —m)u(k) =0

with a normalization

and spin-~3 spinors
(C2)

Q u„(k)u„(k) = [3g„„2m 'k„k„—y—„y„—
spin

u(k)u(k) =1. (C3) +m-'~„k„—m-'k„~„](k+ m)/(6m). (C11)


