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One way of deriving (38) is to rewrite the triple product
in (25) by means of (35) and

One can see that the isovector A of (38) in the limit of
no pseudoscalar singlet does not tend to any one of the
combinations given by (36) and (37) which satisfy the

A,'Bg' ——(A B)b,&+i(A)&B),', SU(2) XSU(2) algebra. However, one can see that the
As'B;"= (A B)b,&—i(A&&B),~,

(39) pion and kaon components of (38) are exactly the same
as those in (36) with bq 0——and b2=4. Therefore, the

which are valid for arbitrary traceless SU(2) tensors isovector (38) satisfies the SU(2))(SU(2) algebra in
such as (Vq), ' in (35). the case when g is dropped.
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Small variations in eigenphase and mixing-angle behavior are correlated with distinct types of large
variations in the elastic phase shift. Applications to recent results for the P» and D» 7rc7 phase-shift analyses
are discussed.

I. INTRODUCTION

S OME recent xÃ phase shift analyses' ' have had
some difficulty in reaching agreement on the be-

havior of the Pll phase shift in the 300—700-MeV pion
laboratory kinetic-energy region. To some extent (see
Ref. 5) this has also been true of the Dq3 phase shift. In
a discussion of the results in Refs. 1—3 for the Pll phase
shift, Dalitz and Moorhouse' have given plausible
arguments why the detailed behavior of the phase shift
in an energy region of high inelasticity (which is true
of the region under consideration) is not critical in
deciding the existence of a resonance. The purpose of
this paper is to correla, te certain types of large fluctu-
ations in the elastic phase shift with much smaller
variations in the parameters describing the eigenscatter-
ing of the system. It is then possible that these widely
different sets of elastic phase shifts will appear as so-
lutions to very similar data with comparable x2 .If this
is so, a detailed study of the contrasting forms of these
phase shifts in the light of the following discussion may
provide a clue to the behavior of the possible underlying
eigenparameters. We first present the relevant theory,
then discuss in detail manufactured examples of several
pertinent situations, and finally apply the ideas de-
veloped to a discussion of the existing solutions for the
Pll and D13 partial-wave parameters.

* Supported in part by the U. S. Office of Naval Research.
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Letters 18, 342 (1965).' J. Cence, Phys. Letters 20, 306 (1966).
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II. THE EIGENPHASE REPRESENTATION

Suppose that in the energy region where the am. -
biguity occurs, the scattering may be approximately de-
scribed by a 2&(2 symmetric unitary S-matrix diagonal
in total I, J and parity. The inelastic channel need not
be a two-particle or a quasi-two-particle channel. '

~11 ~12

-~12 ~22-

We may then diagonalize 5 by a real orthogonal
matrix and write

where c is the mixing angle, and 6, and b~ are the eigen-
phases. The two eigenstates of 5 are

4„=cose 4r+ sine 4'2,

4'e= —sine 4y+cose % 2'.

From (1),

~11—gllg2i611 COS2& &2i6++Sin2& 2i6b

This equation forms the basis for the subsequent
discussion.

The matrix element Sn given in Eq. (2) may be
represented in an Argand plot (Fig. 1) as the complex

' In the energy region under consideration, J. Kirz, J. Schwartz,
and R. D. Tripp LPhys. Rev. 130, 2481 (1963)) have suggested
that the production of I=0 pion pairs and E*(1238) resonances
may be important. Presumably, then, the S-wave production of
the former is important in PI» (Refs. 3 and 6) and the I'-wave
production of the latter in D18.
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sum of the two phasors

8,= cos2e e2'~~
7

b —sjn2& &2i5

We now provide some restriction to the range of
values considered for the parameters 8„8~, and e.
From (2), one obtains for the absorption parameter
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Figures 2 (a)—2 (c)

This deals with a real resonance (8, going rapidly
through 90') in channel a. For a&45', err displays a
resonant behavior LFig. 2(b)7 of apparently narrower
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FIG. 1. Argand plot of elastic channel S» as complex sum of
s, and st, Lsee Eq. (2) of textj. 8 and bq are the eigenphases, ~ is
the mixing angle.

In most of the analyses under consideration, p» drops
rapidly to a value between 0.1 and 0.3, then rises. From
(3), one deduces that the quantity sin2e sin(8, —8b) rises
rapidly to a value between 0.995 and 0.954, then falls.
This behavior may be produced by various choices of
the parameters, but simple arithmetic shows that at
minimum rtrr&0. 3, 36'&&&54', 73'&(8, 8b)—&107 .
For purposes of illustration, we now make the simplify-
ing but somewhat extreme choice of keeping by=0,
44'&e(46', and allowing reasonable variation in 8,.
This choice will produce an unusually small p» at
minimum ( 0.1), but it will soon be obvious that these
choices have been made for the purposes of emphasis
rather than to cloud any of the essential physics.

At this point, let us consult Fig. 1, where the phasor
s& lies along the ray 8&——0. It is easy to see that when the
lengths of the phasors s, and s~ are not too different
(a~45'), and 8, is varying in the vicinity of 90', the
phase of the resultant S» will depend critically on
variations in ~ about 45 which do not noticeably affect
the character of the eigenstate b,.

By the use of Eq. (2), we have constructed a
"pathology catalog". By this we mean a systematic
plotting (Figs. 2 and 3) of most of the critical cases of
possible interest. This catalog will be used in the dis-
cussion of applications. There is little trouble in re-
constructing these graphs by conducting the phasors in
Fig. 1 through the motions dictated by the choice of
behavior of b and 8, described in the captions (remem-
bering to keep bb=0). We supply some brief cornrnents
on the figures which will be useful in the discussion of
applications following these comments.
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width if measured by the slope of the phase shift as it
goes through 90'. For e)45', 8~~ reaches a maximum
below 45'. This is true for any behavior of b„and can be
proved easily as follows: From Eq. (2), with 8b=0, we
derive the formula used in plotting all these curves.

cot28rr ——cot8,+(tan'e —1) cosec28, . (4)

By differentiating and imposing tan&&1, we find
that 8» reaches a maximum in the first quadrant at

when

err ——
2 cot r(tan4g —1)r&2

sec'5 =2 tan'e/(tan'e —1) .

(5)

The sudden and precipitous drop in b~I seen in Fig.
2(c) will probably not appear in such dramatic for~n in
a phase-shift analysis. It may, however, be detected in
such an analysis by a sudden downward shift in the real
part of the elastic phase shift from a value in the region
below 45', accompanied by relatively large error bars.
In such a case, the position of the break could be indica-
tive of the energy of the resonance in the eigenscatter-
ing. ' An application to the result of Cence' for the D]3
wave will be discussed below.

An example of the b11 behavior in Fig. 2(c) emerging from a
specific dynamical model may be seen in an article by P. R. Auvil
and J. J. Brehm, Ann. Phys. (N. Y.) 34, 505 (1965).

FIG. 2. Plots of dominant eigenphase and resulting elastic phase
shift for various cases. Left column reading down: (a) 8 resonat-
ing, (d) I!'I climbing to 86' and falling, (g) It'I climbing to 94' and
falling. Middle column (b), (e), (h): 811 corresponding to (a), (d),
(g), respectively, with &=44'. Right column: same as middle
column, with ~=46'.
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Figure 3

The behavior of 8 in this case is identical to that in
Fig. 2(g). The wild gyrations in 8» are a result of
critical dependence on exactly where e goes up through
45'. The behavior of c applicable to each of the figures
is described in the corresponding figure caption. It is
easily seen by reconstructing Fig. 3(c) tha, t it is a general
characteristic in such a, case for 8» to continue past
lh'O'. This remark will be useful in what follows.

III. APPLICATIGNS TG Egg

As an example we study the results for P» obtained
by Auvil et ul. ' Bareyre et al. ,4 and Cence. 5

(a). The Auvil analysis has the P» phase shift
rising to a maximum near 100' at about 600 MeV, then
dropping quite sharply, with large error bars, to about
50' at 700 MeV. The absorption parameter g in this
solution (their preferred solution I) drops rapidly to a
minimum value of 0.13+0.07, then rises, then seems to
fall slightly, then rises again. All these features are

compatible with the eigenphase behavior of Fig. 2(g)
or 3(a). The vacillations of the absorption parameter
are those expected when 6, goes through 90' (g reaches a
minimum), 8, goes past 90' (rl begins to increase), 6,
goes back to 90' (q decreases again), and 8, decreases
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Fio. 3. (a) Same as Fig. 2(g). (b) Corresponding 811, with e
going down through 45' after 8, goes down through 90'. (c) corre-
sponding b11, with e going down through 45' before 5~ goes down
through 90'.

Figures 2 (d)—2 (i)

These 6gures show that 8» depends critically on
whether 8, reaches a maximum just below or above
90', with e held constant. For example,

in Figs. 2(d) and 2(e) (8,), = 86' —& (6»),„= 57',
in Figs. 2(g) and 2(h) (8,), =94'~ (8») =124',

for 8=44'. Similar comments could be made about
Figs. 2(f) and 2(i). There, incidentally, we see a further
example of the theorem proved in the last paragraph
concerning the behavior of 6» when ~ stays above 45'.
In practice, the variation in all these cases may be
somewha, t milder but still considerable.

from 90' (g increases again. ) These are most easily
followed with reference to Fig. 1. Finally, the fact that
the phase shift goes past 45' is indicative that, at some
point, e(45', i.e., the elastic "width" is &~.

(b). The Bareyre analysis has the real part of the
phase shift going through 90' at about 600 MeV, after
which it shoots up push 180' to about 200'. The oscil-
lations of the absorption parameter p greatly resemble
those in the Auvil analysis. These two facts, especially
the climb past 1.80', are surprisingly compatible with
Fig. 3(c) and hence with the same eigenphase behavior
as in the Auvil case, except that this analysis more
definitely suggests that e goes through 45'.

(c). The solution of Cence has the phase shift hover-
ing near 40', with the absorption parameter g having a
value of about 0.5 near 600 MeV, thereafter becoming
quite uncertain. There are large uncertainties in this
analysis after 600 MeV, but even as it stands it is
compatible with the eigenphase 8 reaching 70' with
~=44 . The maximum eigenphase required in the Auvil
Sareyre analyses is just over 90'. While this is different
from 70', a small nonzero value of 6~ could conceivably
move these fits even closer to a common set of eigen-
parameters.

IV. APPLICATIGNS TG Dga

Several analyses show the a~3 phase shift going quite
rapidly through 90', accompanied by large absorption.
These results are all compatible with the behavior of
8» in Fig. 2(b) accompanying a resonant behavior in
6, with a mixing angle just below 45'. They also show a
sharper slope in the elastic phase than is indicated by
the width of the resonant cross section; this feature
agrees with the behavior illustrated in Fig. 2(b). The
dissenting analysis is that of Cence. Here the phase shift
reaches a maximum of about 30' at 600 MeV, where
there is a break and a falloff with comparatively large
error bars. These results are reminiscent of the behavior
of 6» in Fig. 2(c), where 6, goes through resonance with
e&45'. The plunge through zero may be avoided by
lifting b~ off its zero value. This will increase the value
of g at resonance [Eq. (3)], which is also a requirement
of Cence's analysis.

V. CONCLUSIONS

Some reasonable conclusions to be drawn from the
above analysis are that:

(i) There is an eigenchannel for P» scattering which is
approximately an equal mixture of miV and something
else, " and which attains a pha. se shift of about 90' but
does not climb much higher before dropping. This
agrees with the conclusions of Ref. 6. The mixing angle is
indicated to lie just below 45'. This is only in qualitative
agreement with the Gt of Bareyre et ul. ' to the total

f) P. Sareyre, C. Sricman, G. Valladas, G. Villet, J. Sizard, and
J. Seguinot, Phys. Letters 8, 137 (1964).



PHASE SHIFTS AND EIGENSCATTERING

I=—,
' cross section which yields for the 1400-MeV

"bump" a F,~/I'~, & of 0.65. This number, if set equal to
cos e, gives a mixing angle of 36 . (ii) There is an eigen-
channel for D»3 scattering which is resonating. If one
believes the Auvil, Bareyre, or other its (except
Cence's), the mixing angle is (45'. (Note that one
cannot make this statement from a knowledge of q,
which is symmetric in e for values about 45'.) The
Bareyre et al. ' cross-section fit dictates I',I) I";„,i, in
agreement with the conclusion reached here.

Ke may throw in an additional point of interest. By
following the phasor s, in Fig. 1, with bb held near 0'„ it
is easy to understand the oft-observed fact that
g= ~s,+sq~ reaches a minimum. This occurs when 5,
either reverses after reaching a maximum, or goes
through 90'.

Some of the points made in this paper will no doubt
have been known to some people from their own ex-
perience, or as a result of a particular dynamical model.

Our purpose has been to provide a simple guide to
correlate by eye certain types of widely different
phase-shift curves with much narrower variations in a
possible set of underlying eigenparameters. The case of
a third eigenchannel has not been considered but is not
expected to qualitatively change things much if it shows

nondescript behavior. The method used here has also
allowed us to roughly estimate the inelasticity of a
resonance or peak. from the phase shift, as has been done
for the two cases discussed.

In a later publication dealing with some specific
models of the P»» enhancement, several of the points
treated here in a phenomenological fashion will be seen
to emerge from the dynamics.
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The lifetime of an atomic state against decay induced by the lepton part of the weak interaction is com-
puted. Lifetimes against such decay, in which neutrino-antineutrino pairs are emitted, are extremely long
(~1(P'—10'0 sec in hydrogen). Despite a very strong dependence on atomic number (~Z13 for the 2P —& 1S
transition) the power radiated in neutrinos is very small (~10 5 erg/gm ' sec ' for iron). In the temperature
and density range relevant for this process other neutrino processes are quite small and optical luminosity
serves as the major energy loss mechanism for a star.

INTRODUCTION

'HE universality of the weak interactions predicts
the existence of a direct coupling among the

leptons. In particular, such a direct coupling between
electrons and neutrinos has interesting implications for
stellar evolution. One therefore hopes to observe proc-
esses which depend on the purely lepton coupling
(ev) (Pe). For this reason it is of interest to compute the
lifetime of an atomic state against decay induced by
such a coupling.

Ke may get a rough idea of how this process goes as
follows. From simple dimensional considerations we
have for the transition rate for a dipole-like transition
(e.g., 2P—1S):

1 2' (1-=—
f P~/'p(E)

/

— (Gm ')'(hE)'(hE)'
r
1 d,E 4 AErp 'hE

(Gm~')' 10 '(Zn)" sec ',
T 8$ Ac

* Supported by the National Science Foundation.

and for the power radiated per gram by the neutrinos:

5E Xp
10"(Zn)" erg g

' sec '.
A 7 2Z

In this paper the lifetimes of various states against
such decay are calculated. To determine whether this
process has astrophysical implications, the power radi-
ated in neutrinos has been estimated. It is seen that
the power radiated in such transitions is too small to
play any significant role as a mechanism for energy loss
during the evolution of a star.

The transitions considered were for the lowest lying
states since they have the shortest lifetimes. The usual
electromagnetic selection rules no longer apply and the
transitions fall into two main categories: (a) The leading
term in the matrix element is linear in the momentum
transferred to the two neutrinos (e.g. : 2P ~ 1S). The
power radiated per gram has an energy dependence of
(5E)' and consequently a very strong dependence on
the atomic number, Z" for these transitions. (b) The


