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Conventionally, Poincare-invariant S-matrix elements are constructed from auxiliary field operators,
which transform like representations of an auxiliary group. Invariance with respect to the index trans-
formations of this group may be extended to couple spin to internal symmetry properties in a covariant
manner, as in U(12) and SL(6,C) theories. It is shown that such an index invariance of the S matrix is com-
patible with unitarity only if the auxiliary operators are unitary representations of the auxiliary group. It is
shown further that local fields transforming as such unitary representations can be made causal only if they
satisfy commutation (not anticommutation) relations. Thus for index-invariant theories, we establish a
direct incompatability between unitarity and causality for Fermi particles.

1. INTRODUCTION

'HE success of SU(6) in relating the internal and
spin properties of the observed particle multi-

plets' has led to an intensive search for a more general
invariance principle, which would incorporate this
symmetry in a covariant manner. The direct approach
to this problem was shown to be impossible by what we
shall call the Poincare theorem. ' This states that any
extension of the invariance of the theory with respect
to a group larger than the outer product of the Poincare
group with the internal symmetry group, which contains
this outer product as a subgroup, requires the extension
of the energy-momentum vector to more than four
components. '

The construction of Poincare invariants is compli-
cated by the fact that under Lorentz transformations
the spin suffix of a conventional Fock. annihilation or
creation operator undergoes a "Wigner rotation, "
which depends not only on the parameters of the
Lorentz transformation, but also on the momentum of
the state being transformed. The standard technique
for dealing with this problem4 is to introduce what we

have called auxiliary operators, which transform as den-

sities under Poincare transformations, but which are
(usually finite, non-unitary) representations of some

auxiliary group, which contains the homogeneous
Lorentz group as a subgroup. These auxiliary operators
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are specifically constructed so that under the Lorentz
transformations the index, which replaces the spin
label, transforms independently of the momentum.
Just for this reason it is a simple matter to extend the
auxiliary group by combining it with any internal sym-

rnetry group [say SU(3)], and so construct covariant
auxiliary operators, which are appropriate to the multi-

plets of extended symmetries such as SU(6) or
U(6)QxU(6). This is what was done for example in the
theories of Sl.(6,C)s and U(12)' Lor U(6,6)].

Having formed such operators one may easily con-
struct S operators which are invariant with respect to
both Poincare and internal symmetry groups. By ex-

cluding explicit momentum-d, ependent factors, one may
further restrict the 5 operators to be invariant with

respect to the purely index transformations of the
auxiliary group (which induce no change in the momen-

tum variables). We refer to this as index invariance. In
this way extra restrictions are built into the theory,
which couple spin with the internal symmetry proper-
ties in a covariant manner. Since it is the auxiliary, not
the Poincare, group which is extended this does not
contradict the Poincare theorem. These results are
summarized in very general terms in Sec. 2.

It has been appreciated for some time that the re-

quirement of index invariance is liable to be in contra-
diction with the unitarity of the 5-matrix. In Sec. 3 we

establish that this is always the case unless the auxiliary

operators transform as unitary representations of the
Lorentz group, and there is a one-to-one correspondence
between the physical one-particle states and the states
of the auxiliary representation. Since these unitary
representations are necessarily infinite, index invariance
is only consistent with unitarity of the 5 matrix if the
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physical particles belong to infinite "towers" of spin
Inultiplets. '

So far we have only considered auxiliary operators
in momentum space. If we now turn to the question of
causality, this is best discussed in terms of local Geld

operators, satisfying causal commutation relations. It
is well known that such fields can be formed for finite
(nonunitary) representations of the Lorentz group if
one assumes the usual relation between spin and statis-
tics (that is commutation relations for integer spin
operators; anticommutation relations for half-odd-
integer spin operators). We show in Sec. 4 that for
index invariant theories, there is a very direct incom-
patibility for fermions between the unitarity of the
5 matrix and, causality.

We define
I~'; p,»&= I p ~&—

E;=Jp;.

(2.2)

(2.3)

2. AUXILIARY OPERATORS

In this section we summarize the procedure for con-
structing Poincare invariants. We follow the develop-
ment of I,4 but extend the discussion to include the
possibility of (infinite) unitary representations of the
auxiliary group.

The in6nitesimal generators of the Poincare group are

P„,J„„(fc,v=0, 1, 2, 3). (2.1)

The single particle states belong to the irreducible
representations labelled by mass and spin, with com-
ponents specifying momentum and spin direction. Thus
we have

variants involving a(p, s), one introduces an ugxiliary
group, which contains the homogeneous Lorentz group
as a subgroup. If we use

I n) to denote a representation
of the auxiliary group, which contains the spin s in its
decomposition, we can de6ne auxiliary operators

A. (p)=(rrle "-"Ip&(pIM,s&a(p, s)—=sc, (p) 'u(p, s) .

Under a Lorentz transformation" U(rl), we have

f/(n)A-(p)f/ '(n)=( le'" "l&)A (p'),
—=5 eAe(P').

(2.6)

(2 7)

(2 g)

Thus the advantage of the auxiliary operator over the
Fock operator is that under U(rf) the spinor index trans-
formation is decoupled from the momentum.

If we restrict the auxiliary group to be the homo-
geneous Lorentz group, 2, the states In) are

lot&= lkp, c; j,tn). (2.9)

kp& j& lcl —1.

For unitary (infinite) representations we have:
either

(2.10)

principal series
ko=0, -', 1, , (j&ko),

(2.11)
c pure imaginary;

where" ko and c label an irreducible representation, and

j,tts (spin and spin direction) determine a particular
component. The parameter kp is a nonnegative integer
or half-integer. For finite (nonunitary) representations

I
c

I
differs from kp by a positive integer, and"

I p,s)= Jt/e "r'ale, s). (2.4)

Then the boost operator is the pure Lorentz transfor-
mation which transforms rest states to moving states:

or

supplementary series
kp=0,

0~& c(1. (2 12)

It is convenient to introduce Fock annihilation and
creation operators, "

o'(p, ~)&o= Ip, ~), o(p,~))o=0, (25)

where )p is the vacuum state. Under the pure Lorentz
transformation which takes p to p', the spin variable s
in a(p, s) transforms according to the Wigner rotation
which depends not only on the parameters of the
Lorentz transformation, but also on the momentum. In
order to facilitate the construction of Poincare in- (kp, c)= (-,', +s). (2.13)

In a unitary representation, the matrix (rrlEIP& is
Hermitian. For a finite representation it is anti-
Hermitian.

The role of the constant spinor (nl M,s) appearing in

(2.6) is best understood in terms of particular examples.
If s=-,', we may take for lrr& either the "dotted" or
"undotted" two-component representations of
which in the above notation are labeled
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659 (1966); A. Salam and J. Strathdee, Trieste Report No.
IC/66/5 (unpublished). See in particular S. Coleman, Phys. Rev.
138, B1262 (1965).
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p. 585.
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For either case there is a one-to-one correspondence
between the physical states IM,s) and the auxiliary
states In), the components of the latter being specified
by m= ~—', . Thus we may write

Dirac representation

A (P)=(As(P))'(vs) p,
and in general we define a matrix 1 such that"

(2.21)

(nIM, s)=8 ', (n, s=1, 2). (2.14)

The states
I M,s) specify a representation of the little

group with generators J,, Since the parity operator R
commutes with J... we may also specify the parity of

I
3II,s). On the other hand, for states In) of 2, we have,

for both unitary and nonunitary representations,

~
I
&s c jm) =a I ho —c, j, m) . (2.15)

Thus, unless c=0 (or k, =0), parity can only be in-
cluded if In) is the reducible representation which in-
cludes states with both ~t,". For s= ~ this implies the
Dirac representation (combination of "dotted" and
"undotted" spinors). Then In) runs over four values,
and the constant spinor for a positive parity physical
particle satisfies the restriction

(7s).s&PI iV,s)= &n
I
&V,s). (2.16)

Alternatively, one may maintain the one-to-one cor-
respondence between the physical states

I IV,s) and the
auxiliary states

I n) by doubling the number of physical
states to include both parities. Then again

A. (p) = (A, (p))t(r),-. (2.22)

The operator 8 (p), on the other hand, is a creation
operator which transforms like A (p), under Lorentz
transformations.

Since the effect of I orentz transformations on the
suffix n is independent of the momentum, it is easy to
extend the auxiliary group to contain internal sym-
metry groups as subgroups such as U(6,6) or SL(6,C).
In this case In) defines a representation of the larger
auxiliary group.

In the subsequent sections we restrict the discussion
to the auxiliary group being just Z, since this is suK-
cient to illustrate all the necessary points, and the above
extension to include internal symmetries is trivial. Of
course the original motivation for introducing index
invariance, discussed in the next two sections, was
essentially connected with the extended theories.

3. INDEX INVARIANCE AND UNITARITY

We define index transformations to be those under
which

(rrIiV, s)= b.', (n, s=1, , 4), (2.17) A-(P) ~~-'A s(P), (31)
where now s labels both spin and parity.

In the next section we are led to consider unitary
representations In) in one-to-one correspondence with
the states IM, s) of the physical multiplets. This re-

quires that s also runs over an infinite "tower" of spins,
as discussed by Fronsdal. '

As described in I, it is convenient to introduce two
other types of auxiliary operator for the construction of
Poincare invariants:

aild

A (p) =~t(P,~)&K~II)(PI""I~), (2.18)

~4 See Ref. 8. We may require the theory to be invariant with
respect to A=(J„,}L~j(P„QxS„„)=(J„p)~]P„)QxS„„,where
S„„are the generators of an SI.(2,C) "spin" group distinct from
J„„,and J„„~=J&„—S„„.Then the little group in the rest frame
is J;,'QxS„„. One may restrict the physical rest frame states to
belong to the trivial representation of Jy*, thus giving for [M,s)
the unitary representations of SI,(2,C).

&-(P)=&~Is " I&)&&l&liVs)&'(p, s), (2»)
=~=(P)'b'(P, s),

where &M,s I
8

I
3f,s ) is the spin flip matrix defined in I.

From (2.18) we see that A (p) is defined to transform
contravariantly to A (p) under Lorentz transfonna-
tions. For unitary representations

I
rr)

A. (p) = (A-(p))". (2.20)

For nonunitary Irr) the relation between A and A t

depends on the particular representation. Thus for the

where 5„t' is defined in (2.8). As discussed in the intro-
duction, a restricted class" of Poincare invariant densi-
ties (scattering operators) can be defined by requiring
them to be index invariant. These can be formed by
saturating the indices of the appropriate auxiliary
operators. The same procedure of "saturating indices"
can be extended to unitary representations as has been
shown by Fronsdal.

We now consider under what circumstances this
additional requirement of index invariance is consistent

's For Quite irreducible representations ~o;), this should read
A = (A p)tFp, since the process of Hermitian conjugation takes
the operator out of the representation (for example "dotted" to
"undotted"). Alternatively )a) may be taken reducible to include
both the required representations t as in the Dirac case (2.21)j.

' A typical Poincare invariant density in terms of auxiliary
operators which transform as finite dimensional representations
(using the "dotted" and "undotted" index notation) is

A&- "" (p)&) -.""
(q)p '- C'"" (~)&'(p+q —~)

Since the momentum p is unchanged by the index transformations,
index invariants must be constructed by a similar saturating of
indices but in expressions which do not depend explicitly on p ic.
Fronsdal shows that scalars can be constructed from unitary
representations by an analogous saturation procedure provided
an analytic continuation is made in the number of indices attached
to the auxiliary operator, and the Hermitian conjugate is correctly
defined. /See Fronsdal's equations (6.30)-(6.31) Ref. 12j. This
last point is particularly important for the transcription of our
argument in Sec. 4 to Fronsdal's notation.

) iv, s) = [M',k„c,j,m),

A~(0) =tt g,...gyM
&" "&.
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0'= 0,
(3 2) we get the conditionZ 2'I.

&&
I2't,

I t=&(p)-',

with the unitarity of the S matrix. Explicitly the uni- From (3.9) and the identity
tarity relation expresses the imaginary part of the T
operator in terms of (3.12)

(3.13)

where the summation is over a complete set of physical
states ts) subject to energy conservation. As usual the
states ts& can be expressed as an outer product of Fock
creation operators on the vacuum. For consistency the
expression (3.2) must be index invariant, if T is assumed
to be index invariant. An index-invariant T operator
has the form

for all p, which is clearly impossible. Thus the require-
ment of index invariance for S-matrix elements is not
consistent with unitarity if the auxiliary operators
transform as finite representations of the auxiliary
group.

(b) For unitary representations, however,

& (c)".~.(p)f(p. c;" )

E=Et, F=1,
and (3.7) can now be written

(3.14)

f A. (p)d4p.

)&b(p —
q )d'p d'q. . . (3.3)

where
U(p)OU(p) = I

U(p) —e
—re K

(3.15)

(3.16)

Since ~fs& is an outer product of creation operators, it
is sufficient to consider the contribution of a single
particle to a term in the sum (3.2). This leads to an ex-
pression of the form,

U(p) U'(p) =1
The condition (3.15) is satisfied if

0=1,
which implies

(3.17)

(3.18)

«&-(P)'(~s(P)')t(1't)s'fs (3 4) ( (m, s&=~. . (3.19)

If we perform an index transformation which, of course,
only affects the operators t, this goes to

p fs-'NNtrtsf. (3 5)

For this to be index invariant we require"

Z,NNtFt =cI, (3.6)

(where c is a constant which we take to be one below).
More explicitly (3.6) can be written

& ls ""Ip&&pl~s&&%sly)&mls"xtI»
X &~[ rt(»=a.". (3.7)

Index invariance is thus consistent with the unitarity of
the Smatrix provided the auxiliary operators transform
as unitary representations of the auxiliary group, and
there is a one-to-one correspondence between the physi-
cal states and the auxiliary states. This implies infinite
"towers" of spin multiplets, all of the same mass.

4. CAUSALITY AND FERMI STATISTICS

We now consider the connection between causality,
the auxiliary group, and statistics. "'We define causality
in terms of a local field, constructed from the auxiliary
operators, which is required to satisfy the causal (anti)
commutation relation

9-(*)Astb)l+=O, (*—3)'&O (41)
(a) For f'tnite nonunitary representations

and (3.7) can be written

H(p)OH(p)I't= 1,
where

(3.9)
~-(*)= 1.~-(p) '".+&.(p)'" j~'-&p)d'p, (4 2)

where

(In (4.1), the + and —refer to commutators and anti-

(3.g) commutators, respectively). Here (see I),

&(p)=e-""=&t(p), (3.10) 6+(P) = (2tr) s8(Pp)8(P' —ftss) . (4.3)

and 0 is the projection operator

0= ~M, s&&M, s~ . (3.11)

'7 For irreducible representations ~o.l this follows from Schur's
lemma. For reducible representations, 1 on the right-hand side of
(3.6) is replaced by a generalized y&, which does not alter the
argument in any essential way.

'7' 'Footnote added in proof. In this paper we discuss the causality
conditions in terms of 6elds constructed from the auxiliary opera-
tors de6ned in (2.18) and (2.19).It is possible to construct more
general local fields with simple Poincare transformation proper-
ties in which the components of different spin have different mass
and appear with different weight. These will be considered in a
separate paper. Their existence does not alter the conclusion re-
garding the incompatibility of index invariance, unitarity, and
Fermi statistics arrived at here.
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As has been shown by Weinberg' (and in I) for finite
representations j&r), the condition (4.1) leads to the well
known connection between spin and statistics. We
therefore only consider unitary representations. If we
assume that the particles are either bosons or fermions,
that is, that the Fock operators satisfy either commuta-
tion or anticommutation relations, we obtain

'( )t~)
W(nl V(p)OU'(p)

I
p)e* &*- &)A+(p)d'p, (4.4)

where 0 and U are defined by (3.11) and (3.16) respec-
tively, and

o=a~iv, a)(m, g~
a-,

= i', s)(M,si.
(4.5)

Here, Bin ~HEI, B) runs over the same values as sin ~M, s),
but refer to antiparticle states. We introduce the nota-
tion for the projection operators

E(p) =—U(p)OV(p) (4.6)

&(p) —= ~(p)o~t(p) (4.7)

To satisfy (4.1) it is necessary to have

P(p) =P(—p), Bose statistics, (4 g)

We have established two theorems'9 which may be
considered as extensions of the Poincare theorem in that

' By P(—p) we mean the analytic continuation of P(p) from
p& to —p&. In the case of finite representations, explicit expressions
for the corresponding operator H(p)OH(p) are well known (see,
e.g., I) and the analytic continuation is trivial. For unitary re-
presentations which satisfy the unitarity theorem 0= 1 and there-
fore P(p) =1, an&i the analytic continuation is again trivial.
Although the condition (4.6) is necessary in order to satisfy Bose
statistics, it is not sufhcient, since (4.6) implies

LP (~)A &&t(y)l=P'(~ a) (s-' &*- & —s' &''- &)A+(P}&f'f

where 8—=8j&&x . This will certainly vanish for (a—y)' (0 if P(p)
is a polyno&niaf in p but not necesss, rily otherwise. However, if we
insist on the unitarity of the S matrix, P (p) = 1 by (3.15),and thus
the causality condition is satisfied.

~' The content of these theorems has appeared previously in the
literature in more or less precise terms. Thus it has been appre-
ciated for some time that index invariance with finite representa-
tions was inconsistent with unitarity {Ref. 7). The authors who
have worked with unitary representations {Ref.8) appear to have
taken it for granted that this would solve the problem of the uni-

E(p) = I'( p)—, Fe—rmi statistics, (4.9)

Since I (p) and I'(p) are projection operators the con-
dition (4.8) can be satisfied for any unitary "tower", re-

gardless of spin content. "On the other hand (4.9) can-
not be satisfied.

S. CONCLUSIONS

they also establish in rather general terms, certain
limitations on theories which combine symmetries re-
lated to spin, with internal symmetries. These are:

Theorem I: The UrliIar~ty Theorem. Invariance of the
S matrix with respect to the index transformations of
the auxiliary group is incompatible with the unitarity
of the S matrix, unless all the auxiliary operators are
unitary representations of the auxiliary group, and
there is a one-to-one correspondence between the com-
ponents of the auxiliary representation and the states of
the corresponding physical multiplet.

Theorem II: The Culsulity Theorem. A local field
constructed from those auxiliary operators satisfying
Theorem I cannot satisfy a causal anticommutation
relation.

We have stated and proved the Unitarity Theorem
in terms of the unitarity of the S matrix since consist-
ency with unitarity appears to be a minimum require-
ment for any satisfactory theory. It is clear that the
problem arises in any situation which involves summa-
tion over spin, on or off the mass shell. In particular,
Feynman propagators corresponding to nonunitary
auxiliary operators also destroy index invariance. Thus
the theorem applies a fortiori to any attempt to con-
struct index-invariant S operators by the Feynman-
Dyson technique from an index-invariant interaction
Lagrangian built up from such operators.

As we have stated the Causality Theorem, it excludes
the possibility of an index invariant causal field theory
which includes Fermions. Thus one cannot construct a
consistent theory along these lines, even within the
rather general framework proposed by Weinberg, 4 and
one has lost the attractive features of local fields —the
substitution law and CTP invariance. Similar consider-
ations will apply to "S-matrix theories" which introduce
causality on the basis of analytic continuation.
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