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The present work deals with the derivation of a neutron-scattering cross section for quasi-elastic scattering
from a complex hydrogenous liquid. The internal motions of the proton within the molecule and possibly
the motions of the protons between molecules have to be taken into account in a full description of the
dynamical picture, and consequently also have to be included in the interpretation of scattered neutron
spectra. The motion of the scattering protons is described as a superposition of the motion of the proton
with respect of the center of gravity of the molecule on the motion of the center of gravity itself. A rapid
jump motion of the proton during the time v& is considered; the origin of the jump might be an isomeric
rotation or a change of proton position due to jumps in a hydrogen bond. In between the jumps, the proton
is supposed to vibrate for a time v p. The motion of the center of gravity of the molecule is supposed to be
either a diffusive motion for a time r~, if the molecule is free to move, or a vibration for a time 7 p if the
molecule is bound, for instance via hydrogen bonds to neighbors.

1. INTRODUCTION

a~URING the last few years a considerable amount
of experimental information has been obtained

in various laboratories on the molecular and atomic
motions of complex hydrogenous liquids by means of the
slow-neutron scattering technique. '' For water, ex-
perimental data' ' have been compared with very de-
tailed predictions of the diffusive part of the molecular
motions worked out by Singwi and Sjolander, ' Chudley
and Elliot, ~ Oskotskii, 8 and Rahman et u/. ' In all these
cases the motion of a point-like molecule was considered
and no investigation was made of the effect of proton
motions within the molecule on the neutron-scattering
picture obtained.

The quantum-mechanical formulation of Zemach and
Glauber, ' which takes into account the translational,
rotational, and vibrational degrees of freedom, was used
by Dasannacharya et al." to explain the neutron-
scattering result on liquid methane. They pictured the
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translational part as a simple diffusive motion, but the
predicted intensity of the quasi-elastic line did not agree
with the observed intensity, veri6ed also by other ex-

periments (janik et ttl. rs).

There are strong experimental evidences that the
hindrance of molecular rotations in the Geld of neighbors
and also the possible change of energy barriers to in-

ternal hindered rotations in going from the free gaseous
state to the condensed state play a rather important
role in quasi-elastic scattering from complex hydro-
genous liquids. It seems proved beyond doubt that the
picture of simple diffusion for the translational part of
the proton motion is insuAicient to explain the facts.

In view of the moderate success of the various models
in explaining the atomic motions even in simple liquids,
it is quite understandable that no eBort has been made
to establish any model or useful theory by which the
apparently complex neutron-scattering results obtained
on liquids like glycerol, the alcohols, pentane, etc. could
be even qualitatively understood. The experimental re-
sults obtained on liquids like glycerol, propyl alcohol,
and pentane indicate, however, certain striking facts
which might make the understanding of these neutron
spectra simpler than the very complex water results. In
several cases" it was found that the apparent self-
dift'usion coeKcient derived from studies of quasi-
elastic linewidths was larger, and in cases like glycerol
at low temperature much larger, than the directly meas-
ured or calculated real self-diffusion coefFicient. The ob-
vious conclusion was that the neutron in such cases ob-

serves a mixture of the protonic and molecular motions
or only the protonic motions. Under such circumstances
the comparison of models created to describe the motion
of monatomic liquids with the experimental results ob-
tained on complex liquids seems generally quite mean-
ingless. This is particularly true for strongly associated
liquids like propyl alcohol, CsHr(OH), with one hydro-

"J.A. Janik and A. Kowalska, in Thermal Neutron Scattering
(Academic Press Inc., New York, 1965), p. 474.

"K.E. Larsson and U. Dahlborg, Physica 50, 1561 (1964).
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gen bond between a given molecule and one of its neigh-
bors. Also, for long molecules like pentane, C~H~~, or
still longer ones, the hindrances for diffusion should be
expected to be considerable. On the other hand, internal
molecular hindered or partial rotations are known to be
possible, so that for instance a CH3 group or a CHSCH~
group may perform a partial rotation over an angle of
the order of 120' round a C-C bond to create a rotational
isomer. The possibility that such mechanisms might be
the cause of the so-called di6usive broadening of a
neutron line has been pointed out for the case of
glycerol" in which a CH&OH group would have to per-
form a partial rotation after one hydrogen bond is
broken. No cross section was, however, calculated for
such a possible and simple cause for the scattering
mechanism.

The erst of the two present papers will deal with the
derivation of a neutron-scattering cross section for a
proton bound within a molecule. The proton is supposed
to be free to perform jumps from one position to
another within the same molecule. Independent of the
internal protonic jump motion —which might be caused
by rotational jumps as described above —the molecule
is supposed to exist in two phases of motion: Either it
might be bound to neighbors, for instance by hydrogen
bonds, or it might be free to move. It is obvious that
the proton motion will appear as a superposition of the
two independent motions thus de6ned.

The second paper will deal with a comparison of the
theoretical and experimental results on relaxation times
and apparant self-diGusion coeKcients for propyl
alcohol and pentane.

2. FORMULATION OF THE NEUTRON-
SCATTERING CROSS SECTION

Use will be made of the formulation of the incoherent
differential scattering cross section per atom, per unit
solid angle, and per unit energy her given by van Hove":

d'cr u' k +" +"
expi(ur —a)t) G,(r,t)drdt, (1)

d0407 24 k0

where a is the bound incoherent scattering length, and k
and hp denote, respectively, the final and initial wave
vectors of the neutron. The energy and momentum
transfers in the scattering process are

ha)= (hs/2m)(h' —hp') and he= h(k —kp), (2)

m being the neutron mass.
The central problem is to formulate the self-

correlation function G,(r,t). To do this we shall make use
of the ideas already developed by Singwi and Sjolanders

and Oskotskii. ' Four diGerent types of probability
density functions contribute in building up G,(r,t)
according to our assumptions, namely:

(a) to define the internal proton motion:

g;(r, t) is the probability of finding the proton vibrating
stationary at the position r within the molecule at time
t if it starts at the origin at time 0.

h;(r, t) is the probability of finding the proton jumping
at the position r within the molecule at time t if it
starts at the origin at time 0.

(b) to define the motion of the molecule:

g.(r,t) is the probability of finding the center of
gravity of the molecule in a bound state at r and t if it
starts at the origin at time 0.

h, (r,t) is the probability of finding the center of
gravity of the molecule in an unbound state at r and t
if it starts at the origin at time 0.

In an analogous way we define p;(t) as the probability
that the proton remains in a bound vibrating state at
time t if it was vibrating at time t=0. Furthermore
q, (t) is defined as the probability of finding the proton
remaining in a jumping state at time t if it was jumping
at t=0. Exactly in the same way p.(t) is defined as the
probability of finding the molecule remaining bound to
its neighbors at time t if it was bound at time 0. Finally
q, (t) is the probability of finding the molecule free to
move (unbound) at time t if it was free at time 0. For all
these functions we have that p'(t)dt or —q'(t)dt give—s
the probability that a certain state is left between t and
t+dt

With these functions dered we divide the molecular
motion into steps numbered 0, 1, 2, , 2m, We
assume that during one step for the molecule the proton
performs a motion in 1 or 2 or 3 or or e steps.

Then

Hp(r, t) = g,(r', t)p,(t) Q P„(r—r', t)dr'
n 0

describes the probability of Gnding the proton at r and t
if the molecule remains in a bound state. F (r—r', t)
describes the displacement of the proton made in e steps.
Here primed quantities describe the coordinates of the
center of gravity and unprimed describe the coordinates
of the proton. Already in this 6rst step of the anal pro-
ton motion described by Hp(r, t) it appears as a folding of
all possible internal proton motions with the motion of
the center of gravity. r—r' is the position of the proton
with respect to the center of gravity of the molecule.

Step number two will be a free state of the molecule at
r and t with probability

OO

Hl(r t) dtl drlq (t tl) dr h (r rl t tl) 2 ~ Er rl (r rl ) t tlj
I n~0

X g,(rl', tl) p, '(tl) g F„(rl—rl', tl)drl'. (4)
n~0

'4 K. E. Lsrsson snd K. S. Singwi, Phys. Letters 3, 145 (1962)."L.Van Hove, Phys. Rev. 95, 249 (1954).
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To make the computations easy, it is further necessary
that the width functions p„(t) and po, (t) describing the
spreading out in space and time of the molecular center
of mass should be hnear functions of time such that

If we further assume that the four functions p;, p „q;,
and q, are given by

e—~
—t/r0'

2m+1

pos(t) p14(r1+ro+ ' ' '+rom+1) Z pos(ri) ~

With these simpliications the integrals appearing in
Eq. (9c) are evaluated to give for 2

we directly see that

Ch = —ith/ro,

dh= —4./ri.
(18b)

In a completely analogous way we now 6nd for the
magnitude 8:

Ct e ''p, (t) -exp(ooo r)dr g.(r', t)

X+0~(r—1', t)di=ith'CA"dh" (15.a)

ro itB+fiBCB r1 fiB+itBcB

r0+r1 1 CBdB r0+r1 1 CBdB
(17b)

Similarly for step number 2n+1 for the proton one The four functions aB, bB, cB, and dB are given by
6nds

«B--'V (t)P'(t)
«c-' 'p.(t) exp(ooo r)dr g,(r', t)

XFo +1(r—r', t)dr'=bhCA"+'dh". (15b)

Xexp( —x'Lpo;(t)+po. (t)j),
«c-'V (t)V'(t) (2O)

(ah+ 4ch)/(1 —chch) .

If these two expressions are added one Ands that the Cg= Gg/ 7 0)
sum over all values of e is given by

(16 )
dB bB/ri ~

Xexp( —ii'[ py„.(t)+po, (t)1),

The value of A thus is

ro ith+fiACA ri 4+ohdh

ro+ri 1—chCA ro+ri 1 CACA—
(17a)

In this expression the four functions ug, bg, cg, and dg
are found from

ct e-'"p (t)p;(t)

Xem( —x'Epo;(t)+po. (t)1},
(18a)

dt e '"'p, (t)g;(t)-

Ke have not yet made the full determination of 3 in
(9c) because in obtaining (16a) we assumed that the
proton started in a vibratory state. The probability of
finding this state is ro/(ro+ri). There is, howevera,
probability ri/(ro+ri) that the proton is found in a
jumping state at the start. If this contribution to A is
evaluated one finds an expression analogous to (16a),
namely

(4+ohch)/(I Chdh) ~

Further, the functions C and D are determined by

C= A/r�', —
oD 8/ri'. — (21)

In order to be able to evaluate A, 8, C, and D, which
enter into the cross section (11),it is necessary to assume
explicit forms for the four width functions P,1o(t) and.
p„, (t). We will assume the following forms with cor-
responding physical consequences:

When the proton is in a vibratory, bound state with a
mean lifetime of 7-o sec, we assume that it just develops
a thermal cloud and consequently

(22)

Here (r 0) is the mean-square radius of the thermal cloud
set up by the proton. —,'(r o)x'= 2W;, which is the Debye-
WaDer factor for the internal proton motion. Ke have
put p(t) =p(~) because in this work we are interested
only in the quasi-elastic scattering. The higher terms in
the expansion of the difference p(oo) —p(t), which give
rise to the phonon terms, are neglected.

When the proton is performing a jump (of mean
duration of ri secs) we assume that this occurs during
such a short time that the whole motion is gas-like, i.e.

Po;(t) =(sot)' (23)
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jumping from position to position without ever really
staying at a deinite location.

In the cross-section formulas" we arrive at in cases
I, II, III, and IV below, we have assumed v~&&7p, vo'

and v&'. As a consequence both v» and r&p r& and
therefore r~pv and v~~~ are both v ~e which is the jump
length /. With this general simplifying assumption as a
base, it is possible to study various cases of physical
interest of which we shall consider four.

CG$8 I. 7 p))Ty cd Tp. This corresponds to a case of
low sample temperature such that the molecule stays
bonded to its neighbors most of the time. The viscosity
of the liquid must be high —of the order 1—100 poise or
more —and the self-diffusion coefFicient very small. In
this case the cross section reduces to

The quasi-elastic line has a Lorentzian shape and the
full width at half-maximum of the line is

2I2 pg
2Wi 4We—~—

&pp &1
(30a)

When fk tends to small values and considering that

820 u2 k
=——&pp

dQdco x kp

(p /T )O 2We —4We' —

X o
—2we' —2we (29)

(4orpo)2+(I (pA/Tl)o
—2W'—4W')2

Tpp—Tp for this case, one 6nds

2i'2(P (r 2))
AE ~ —

~

—+
0 rp(2 6

(30b)

The linewidth saturates at a value which is determined
by the residence time of the proton in a 6xed position
within the molecule. The general shape of the linewidth
curve is given by curve 1 of Fig. 2. To make the numeri-
cal computations of hE we have assumed in all cases
that D=10 ' cm'/sec, t=1.7SX10 ' cm, (r')=10 "
cm', (r,')=0, and. rpp=sX10-" sec. In cases where two
relaxation times are supposed to be of the same order of
magnitude we have set them equal, with vp'=rp in
case II and v j.'= rp in case IV.

Case II. Tp lsd Tp))Ty'. This is a case very much
related to case I. This situation is probably found at
fairly high temperatures in associated liquids whose
viscosities are in a range of 10—100 centipoise. The cross
section is given by

Here (r,p) has been assumed «(r 2), because the
vibrating mass determining r; is the proton mass and,

the mass determining r, is the much larger molecular
mass. It is to be noticed that the slope at the origin of
this curve does not give a diffusion coefBcient but rather
a jump length I, if one assumes P»22(r 2). Also the
limiting value of the linewidth as Ik —+~ is found to be

2h
(30c)

K ~4O

d20 a2 k=——Tpp
dQCko x kp

(1+D,ii r02)(1—(roo/To)(pg/T2)e ' ') (Top/rp)e—
~
—2W's—2W'» (31)

L(1+Deii rp4)(1 (roo/ro)(pg/T2)e ' ') (roo/ro)e ' —'g +(4prpp) (1+D ii T02)

The cross section is still of Lorentzian shape and has a full width at half-maximum given by

roon~ ( /rop)rowo' ' ')
AE= 1———e 'W' 4We-

roo ro T2 1+Deii T02
(32a)

The behavior of AE for small values of ii is given [if Eq. (28) is considered] by

P (rep) 1 2
AE 2h D+ + —+-

2vp 6 v. p v p'
(32b)

It is to be observed that D, is not in general the true self-diffusion coeKcient D. This may be deined by

D= [r2'/(r p'+ r2')]D. . (33)

In the present case, when r2'«T 0', one has D~(T2 /T p )D,. If again P&&(r42), and if r 0 is of the same order of magni-
tude as rp, it is seen that the shape of the linewidth curve at the origin is mainly given by the true self-diffusion

"In all our cross-section formulas the detailed-balance factor, e"""~, has been omitted because it is practically constant and
1 over the quasi-elastic peak.
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coeKcient taken together with the combination P/2rp, which may be considered as an internal protonic diffusion

coeKcient. Since in this case the mobility of the molecules cannot be very high, it is probable that D and f /2r p

contribute about equal amounts to the slope at the origin.
From (32a) it is also seen that the limiting value of LIE for large ~ values is given by

2h
QjV

TOO

(32c)

In this case r p and r p' are of the same order of magnitude, so that the full value of r pp given by r pp
'= r p '+r p

'
has to be used. This case is illustrated as curve II of Fig. 2.

Case III. T1 ))Tp lsd Tp. This case corresponds to the extreme opposite of the previous cases. It corresponds to
a very high temperature; perhaps it is not possible to reach this state in an associated liquid. The viscosity ought
to be very low, &1 centipoise and the self-di6usion rate very high. In this case one finds for the cross section

d'o u' k 1+D,~'rpi (pB/r—i)e '
g
—2W'-'

d&doi s' ko (oiroi) +(1+D,a roi —(pB/ri)e ' ')
(34)

Again the line shape is Lorentzian and has a full width at half-maximum of

DE=(2k/roi)(1+D~oroi (pB/ri)—e o ').

Considering that r perp, it is found by use of (28) that the limiting value of LIE for small o: values is

(35a)

5E ~ 2kLD+(1/ro)(iP+xo(r o))jgo.
a -+0

(35b)

Here use has been made of (33).The slope at the origin is given as a sum of D and P/2rp, if again P))o(r o). Not even
in this case, most similar to a simple diffusion case, is the slope at the origin given by the self-diGusion coefficient.

On the other hand, when i~ tends to large values, one finds from (28) that

AE ~ 2h(Di~'+1/rp). (35c)

The expected diffusive behavior is reached, but it should be noticed that the line width only asymptotically ap-
proaches the simple diffusion value 2AD~ . The asymptote intersects the dE axis at 2h/r p. This case is illustrated in
curve III on Fig. 2.

Case IV. T1' aed To))TO . In this case T1' is supposed to be of the same order of magnitude as To. The molecule
is bound to its neighbors only a small fraction of the time. This case probably does not exist in strongly associated
liquids because the requirement that T1'))To' is probably not fulfilled in the liquid state for such molecules. It
could possibly be so for van der Waals liquid like methane for which 7o —+~, ethane, propane, etc. but probably
not for alcohols, glycerol, etc. In this case the cross section is given by

1+De& roi (roi/ro)(pB/ri)e (roi/ri)e=——
TO1

dQdko s ko (ooroi)'+(1+Deil roi (roi/ro)(pB/ri)e — ' (roi/ri)e ' '—')' (36)

Again the cross section is of Lorentzian shape and has a full width at half-maximum which is

2A TOl PB T01
1+D gor oi ———e-Pir' ——e-'ir'-4ir~

1T01- TO T1 T1

The behavior of AE at small values of ~ is given by use of (28) and (33)

P (r o)(1 2~-
aE-2k D+ +

~

—+—
~

~'.
2ro 6 pro ri')

(37a)

(37b)
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It has again been assumed that (r,')«(rP). As in cases
II and III it is seen that the slope at the origin has three
components, namely those from the self-diffusion
coefficient, the proton jump length, and the radius of
the thermal cloud. As r~' and r p are of the same order of
magnitude, it is expected that the contributions to the
slope at the origin from the first two terms should be
comparable in the present case as in the previous one.

For large K values on the other hand it is seen from
(37a) that the linewidth is given by

AB ~ 2h(D"'+I/rpg). (37c)

In case II it has been assumed that DK 7']'((1.

This is quite similar to case III and shows that the be-
havior of hE typical for the simple diffusive motion is
asymptotically reached. The asymptote intersects the
AE axis at 2A/ro', where roc '=ro '+rs' '

This case is illustrated in curve IV of Fig. 2. The fact
that curves III and IV look diferent originates from the
quantity (dao) r pp used as ordinate. In the present case
we have rpp/r py rp/r py, —which is «1 according to the
assumption. In case III one finds that roo/roi —roo/ro,
which is of the order of 1 if v~'&&rp' and v p.

In all the simplified cases I—IV it is found that the
cross section is of Lorentzian shape. A consequence of
this is that the integration over energy is easily per-
formed thus giving the angular distribution, do/dQ. One
finds:

d0
Case I and II: —=a'—e '~' '~'.

dQ kp

do k
Case III and IV: —=g'—e '~'.

dQ kp

It is seen that in all cases the Debye-Wailer factor
governs the angular intensity variation. In all cases
the factor 2t/t/';, the origin of which is the internal proton
cloud, enters. It is to be noted also that when the mole-
cule as such diGuses in a simple way (cases III and IV)
a Debye-Wailer factor determines do/dQ. This varia-
tion with angle is in sharp contrast to the variation pre-
dicted by applying a simple diffusion model for the
translational part of the molecular motion, treating the
molecule as a mass point, as has for instance been done
for methane. "This model predicts a constant angular
distribution which is not in agreement with observed
facts for methane or any other hydrogenous liquid.

If none of the simplifying assumptions given above
may be expected to be valid for a particular case, the
full cross-section form defined by (11), (17), (21),
(27), and (18b) has to be used. However, the cross-
section formula thus obtained is quite unsurveyable,
though its computation includes only straightforward
algebra; therefore, we do not give it here. In the general
case the line shape is not Lorentzian. %e have used the
full formula to compute the linewidth bE for the case
7 p

= 7 y
= 7 p)&Ty. The result is given as curve V in Fig.

2.The main difference between this curve and the similar
curves I and II corresponding to cases I and II discussed
above, is that its saturation value is reached more
slowly.

In Paper II of this work we will apply the present
theory to neutron-scattering data.


