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The present work deals with the derivation of a neutron-scattering cross section for quasi-elastic scattering
from a complex hydrogenous liquid. The internal motions of the proton within the molecule and possibly
the motions of the protons between molecules have to be taken into account in a full description of the
dynamical picture, and consequently also have to be included in the interpretation of scattered neutron
spectra. The motion of the scattering protons is described as a superposition of the motion of the proton
with respect of the center of gravity of the molecule on the motion of the center of gravity itself. A rapid
jump motion of the proton during the time 7; is considered; the origin of the jump might be an isomeric
rotation or a change of proton position due to jumps in a hydrogen bond. In between the jumps, the proton
is supposed to vibrate for a time 7o. The motion of the center of gravity of the molecule is supposed to be
either a diffusive motion for a time 7./, if the molecule is free to move, or a vibration for a time 7¢/, if the
molecule is bound, for instance via hydrogen bonds to neighbors.

1. INTRODUCTION

URING the last few years a considerable amount
of experimental information has been obtained
in various laboratories on the molecular and atomic
motions of complex hydrogenous liquids by means of the
slow-neutron scattering technique.!? For water, ex-
perimental data®-5 have been compared with very de-
tailed predictions of the diffusive part of the molecular
motions worked out by Singwi and Sjélander,® Chudley
and Elliot,” Oskotskii,8 and Rahman et al.® In all these
cases the motion of a point-like molecule was considered
and no investigation was made of the effect of proton
motions within the molecule on the neutron-scattering
picture obtained.

The quantum-mechanical formulation of Zemach and
Glauber,!® which takes into account the translational,
rotational, and vibrational degrees of freedom, was used
by Dasannacharya ef al.'' to explain the neutron-
scattering result on liquid methane. They pictured the
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3B. N. Brockhouse Nuovo Cimento Suppl 9, 45 (1958).
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translational part as a simple diffusive motion, but the
predicted intensity of the quasi-elastic line did not agree
with the observed intensity, verified also by other ex-
periments (Janik et al.12).

There are strong experimental evidences that the
hindrance of molecular rotations in the field of neighbors
and also the possible change of energy barriers to in-
ternal hindered rotations in going from the free gaseous
state to the condensed state play a rather important
role in quasi-elastic scattering from complex hydro-
genous liquids. It seems proved beyond doubt that the
picture of simple diffusion for the translational part of
the proton motion is insufficient to explain the facts.

In view of the moderate success of the various models
in explaining the atomic motions even in simple liquids,
it is quite understandable that no effort has been made
to establish any model or useful theory by which the
apparently complex neutron-scattering results obtained
on liquids like glycerol, the alcohols, pentane, etc. could
be even qualitatively understood. The experimental re-
sults obtained on liquids like glycerol, propyl alcohol,
and pentane indicate, however, certain striking facts
which might make the understanding of these neutron
spectra simpler than the very complex water results. In
several cases!® it was found that the apparent self-
diffusion coefficient derived from studies of quasi-
elastic linewidths was larger, and in cases like glycerol
at low temperature much larger, than the directly meas-
ured or calculated real self-diffusion coefficient. The ob-
vious conclusion was that the neutron in such cases ob-
serves a mixture of the protonic and molecular motions
or only the protonic motions. Under such circumstances
the comparison of models created to describe the motion
of monatomic liquids with the experimental results ob-
tained on complex liquids seems generally quite mean-
ingless. This is particularly true for strongly associated
liquids like propy! alcohol, C;H7(OH), with one hydro-

123, A. Janik and A. Kowalska, in Thermal Neutron Scattering
(Academic Press Inc., New York, 1965), p
LK. E. Larsson and U. Dahlborg, Physxca 30 1561 (1964).
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gen bond between a given molecule and one of its neigh-
bors. Also, for long molecules like pentane, CsHys, or
still longer ones, the hindrances for diffusion should be
expected to be considerable. On the other hand, internal
molecular hindered or partial rotations are known to be
possible, so that for instance a CHj; group or a CH;CH,
group may perform a partial rotation over an angle of
the order of 120° round a C-C bond to create a rotational
isomer. The possibility that such mechanisms might be
the cause of the so-called diffusive broadening of a
neutron line has been pointed out for the case of
glycerol'* in which a CH,OH group would have to per-
form a partial rotation after one hydrogen bond is
broken. No cross section was, however, calculated for
such a possible and simple cause for the scattering
mechanism.

The first of the two present papers will deal with the
derivation of a neutron-scattering cross section for a
proton bound within a molecule. The proton is supposed
to be free to perform jumps from one position to
another within the same molecule. Independent of the
internal protonic jump motion—which might be caused
by rotational jumps as described above—the molecule
is supposed to exist in two phases of motion: Either it
might be bound to neighbors, for instance by hydrogen
bonds, or it might be free to move. It is obvious that
the proton motion will appear as a superposition of the
two independent motions thus defined.

The second paper will deal with a comparison of the
theoretical and experimental results on relaxation times
and apparant self-diffusion coefficients for propyl
alcohol and pentane.

2. FORMULATION OF THE NEUTRON-
SCATTERING CROSS SECTION

Use will be made of the formulation of the incoherent
differential scattering cross section per atom, per unit
solid angle, and per unit energy #w given by van Hove!s:

d%c a*k

00
=—— expi(xr—wt)Gy(r,t)drdt, (1)
dQdw  24r ko/ / pil

where ¢ is the bound incoherent scattering length, and k
and ko denote, respectively, the final and initial wave
vectors of the neutron. The energy and momentum
transfers in the scattering process are

hoo= 12/ 2m) (2= k) and Fae=h(k—ko), (2)

m being the neutron mass.

The central problem is to formulate the self-
correlation function G,(r,t). To do this we shall make use
of the ideas already developed by Singwi and Sjélander®
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and Oskotskii.? Four different types of probability
density functions contribute in building up Gi(r,f)
according to our assumptions, namely:

() to define the internal proton motion:

gi(r,1) is the probability of finding the proton vibrating
stationary at the position r within the molecule at time
¢ if it starts at the origin at time 0.

hi(r,t) is the probability of finding the proton jumping
at the position r within the molecule at time ¢ if it
starts at the origin at time 0.

(b) to define the motion of the molecule:

go(r,t) is the probability of finding the center of
gravity of the molecule in a bound state at r and ¢ if it
starts at the origin at time 0.

her,t) is the probability of finding the center of
gravity of the molecule in an unbound state at r and ¢
if it starts at the origin at time 0.

In an analogous way we define p;(¢) as the probability
that the proton remains in a bound vibrating state at
time ¢ if it was vibrating at time ¢{=0. Furthermore
¢i(t) is defined as the probability of finding the proton
remaining in a jumping state at time ¢ if it was jumping
at t=0. Exactly in the same way p.(f) is defined as the
probability of finding the molecule remaining bound to
its neighbors at time ¢ if it was bound at time 0. Finally
qe(t) is the probability of finding the molecule free to
move (unbound) at time ¢ if it was free at time 0. For all
these functions we have that —p’(¢#)d¢ or —¢'(£)dt gives
the probability that a certain state is left between # and
t+dt.

With these functions defined we divide the molecular
motion into steps numbered 0, 1, 2,---, 2m,---. We
assume that during one step for the molecule the proton
performs a motion in 1 or 2 or 3 or - - - or » steps.

Then

Holr)= / BEDPOE Fale—r, D )

describes the probability of finding the proton at r and ¢
if the molecule remains in a bound state. Fn(r—1/, £)
describes the displacement of the proton made in 7 steps.
Here primed quantities describe the coordinates of the
center of gravity and unprimed describe the coordinates
of the proton. Already in this first step of the final pro-
ton motion described by Ho(r,?) it appears as a folding of
all possible internal proton motions with the motion of
the center of gravity. r—r’ is the position of the proton
with respect to the center of gravity of the molecule.

Step number two will be a free state of the molecule at
r and ¢ with probability

¢ ]
Hy(rt)=— / dh / drig.(t—t) / Ar'h(t'—r1), t—11) 3 Falr—11—(t'—1), t—11]
[]

n=0

14 K. E. Larsson and K. S. Singwi, Phys. Letters 3, 145 (1962).
1. Van Hove, Phys. Rev. 95, 249 (1954).

X / g.,(n',tl)p,’(tl)§ Fo(ti—r!, t)dr!. (4)

n=0
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In general it is easy to see that the probability that step number 2 of the molecule corresponding to a bound
state of the molecule at r and ¢ will be described by

t tom 123
Hom(r,t)=(— 1)2'”] dlzm/ dtom—1-* / dil/ . '/dl'zm' <~ dripo(t—tam)qe (bam—tam—1) " - - pé (11)
0 0 0

X/ge(l'"—l'm—l', t— th) Z Fn[r— Yom— (r’—r2ml), t— l2m:|dr,

n=0

<]
X / he(tom'—Yom—t', tam—tom—1) 2 FalTom—Tom—1— (otm’ —Yom—1")ylom— bam—1 10T 2m’

n=0

X f gt ) 3 Faltimrd, 6)dxe . (5)

n=0

But according to definition we have that G,(r,?) is the probability of finding the proton at r at time ¢, if it was at
the origin at :=0. If we sum up all steps H(r,f) we find for the self-correlation function

Gut) =3 [Hom(t)+Hamma(r,)], ©)

m=0
where we always have :>0.
Instead of trying to calculate G,(r,) we consider the integrals

0
/ dt / dr exp[i(x-r—wt) [Ham(t,t) . @)
0
This integral reduces to a simpler expression if the following variables are defined:
I—lom= Tomt1, bom—lom—1= Tom" * *h1=T1, (8a)
Y —Tom =Nomyr, Tom —Tom—1' =mnom - 1'=11, (8b)
I'—TIom="2mt1, Tom—Yem—1=Nom" * " ¥1=11. (8¢)

From this substitution it follows that
r=Nom1+Nom+ '+“11,

v =02m1"+02n'+ - - -0t (8d)
t=Tomi1tTom+ o 71

The complex integral (7) then reduces to a product of independent and similar integrals

f “a f dr expli(x- T—f) JHan(x,0)

® (-]
= / dTomi1 / expli(% Nemi1—w0Tomi1) 1pe(T2mr1)dMamis / geMomityTomi1) 2 Fr(amir—2mts Tomi1)damed’
1]

n=0

n=0

X('— 1)/ dem/ eXPI:i<'KTIZm"w'7'2m):]qa,(TZm)d")2m/he(”2m,,72m)Z Fn("nm_"?m,) T2m)d"2m,
0

X(=1) f an / expli(x-n—wr1) 1pe (11)dn / ge(n,m1) 22 Falpi—ni,r)dny/=ACmD™. (9a)
n=0
Similarly one obtains for the step Hamt1 the following result:

f & / dr exp[[i(xt—wf) [Hampa(x,1) = BC+Dm. (9b)
0
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In the integrals (9a) and (9b) the functions 4, B, C, and D are defined by

A= /; dt / dr exp[i(xr—wt) Jpo(t) / ge(r’,t)Eo F.(x—r', t)adr’,

B= /; i dt / dr exp[i(xr—wi) ]ge(?) f h,(r',t)éo F,(x—r't)dr’,

(%)
C=(—1) / dt / dr exp[i(xr—awt) ]pé (£) / gt 8) > Fa(x—1', t)dr,
0 n=0
D=(—1) / dt / dr exp[i(xr—wt) Jqo'(¢) / he(t' )Y Fo(x—r', 8)dr.
0 n=0
By summing up all the contributions from the various steps of the molecular motion one obtains
o pte o A+BC
/ dt / dr expli(xr—wt)] Y. Hu(tt)= +c.c. (10a)
—w o m=0 1—CD

Here use has been made of the fact that G,(r,f) = G.*(—r—#). Instead of starting the molecular motion with a bound
state the series of steps may start with an unbound molecular state. A calculation for this case carried out in exactly
the same way as given above results in an expression:

to et o B+AD
/ dt / dr expli(xr—at) 13 Ha(tf)= Fec. (10b)
—0 — m=0 1—CD
If one now defines two average characteristic times for the molecular motion, namely 7, during which the molecule
is bound to neighbors and 7;’ during which the molecule is unbound, one can easily formulate the cross section by
the aid of Eqgs. (10a) and (10b). These two contributions to the cross section should be weighted with the respec-
tive probabilities 7¢'/(7¢'+71') and 71'/(7¢'+71) so that the series of steps of molecular motions starts in a bound
and an unbound state. One then obtains
d%c a? k[ ¢ A+BC | T B—I-ADi ]

= T C.C.
dQdw 27 kL7’+7' 1—CD  71¢+7/ 1—CD

(11)

So far the problem of the internal molecular proton motions described by the sum Y F,(r,f) appearing in 4, B,
C, and D has not been touched. The internal dynamical behavior of the proton within a given molecule is now
treated in steps, as the molecular motion was. The proton may be stationary, vibrating for a mean time 7o round an
equilibrium position, or jumping for a mean time 71. The functions F,(r,f) describe the steps. The evaluation of
F,(r,t) may be made in exactly the same way as for the molecular steps H.(r,t). Let us consider proton step num-
ber 2, the first step having index zero and corresponding to a vibratory state. This step will be given by

¢ tan 2]
F2"(rat)= ("' 1)21:/ dth/ dlgn—1-- / dtz/ v /drz,,drz,._l- -+ dry
0 0 0

X pi(t—ton)qi (ban—tan—1) i (fan—1—lban—2) - - pi' (2)
X gi(t—Yan, t—ton) hi(Yon—Ton_1, bsn—ton—1) " * - ge(rs,t1) .  (12)

Here we have written r; as an abbreviation instead of make the assumption that the four distribution func-
r;—r;/, which is the relative coordinate of the proton and  tions g;,, and %;,. are Gaussian in shape:
which is seen for instance in Eq. (9a) and (9¢c). As will

be seen from Eq. (9c), all steps have to be added and 1 r?
after the folding of each function F, with a molecular g,-,e(r,t)=|: n 0" €xp 1 ) )
distribution g «(r,#) or £,(r,?) the integrals over space and and TPai,0e Poi.0e (13)

time have to be performed. In order to perform these 1 72
computations definite forms have to be given to the ki, .,(r,t)=———————————exp(— )
eight functions g;, i, ge, %e, piy Giy pe, and g.. We now [4mpn;,n,(8) 1212 4pn; no(2)
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To make the computations easy, it is further necessary
that the width functions p,,(f) and ps,(f) describing the
spreading out in space and time of the molecular center
of mass should be linear functions of time such that

2m+1
po.(D)=po (Tt 1ot -+ Tompr)= Zl poe(Ti),

and

2m+-1
orlt)=pn(Titret o FTompn) = 2 pn,(7i).

=1

(14

With these simplifications the integrals appearing in
Eq. (9c) are evaluated to give for 4

f i dt e "tp (1) f exp(ix-r)dr / go(r',t)
0

XFon(xt—r', t)dt' =asca™da™. (152)

Similarly for step number 2n-1 for the proton one
finds

/ ") [ exptonnar [

X Fonpa(r—r, 1)dt' =baca™td 4. (15b)

If these two expressions are added one finds that the
sum over all values of # is given by

(aA—l—bAcA)/(l-—cAdA). (16&)

We have not yet made the full determination of 4 in
(9¢c) because in obtaining (16a) we assumed that the
proton started in a vibratory state. The probability of
finding this state is 7o/(7o+71). There is, however, a
probability 71/(ro+71) that the proton is found in a
jumping state at the start. If this contribution to 4 is
evaluated one finds an expression analogous to (16a),
namely

(bA+aAdA)/(1—cAdA) . (lﬁb)
The value of 4 thus is
To @atbaca 11 batasda
f . (17a)

_To+1'1 1—cada I7’o-|-’r1 1—cada

In this expression the four functions a4, b4, ¢4, and da
are found from

aa= / dt 5t (2)pilt)
’ Xexp{—«2[pg:;(1)+ps(t)1},

and (18a)

b4=/ dt e='p «(1)gi(?)
° Xexp{—«[on;()+po. ()]} -
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If we further assume that the four functions p;, pe, g,
and ¢, are given by

P’i= "l/fo,
= ¢g—t/70
pe=et, (19)
q.: e"'t/fl
K ’
qe_—_ e—”ﬂ’ ,
we directly see that
ca=—a4/To, (18b)

d4=—bA/T1.

In a completely analogous way we now find for the
magnitude B:

To aB+bBUB| 71 bptasds

To+71 1—cadp ITo-l‘n 1—csds

(17b)

The four functions ez, b, cs, and dp are given by

as= / dt =i, (D)
° Xexp{—«*[pg;()+pn(]1},

bp= f dt —e™tq.()qi(t) (20)
0
Xexp{—«*[on:(t)+pn() ]},

cp=— dB/ 70,
dB= '—-bB/T1 B
Further, the functions C and D are determined by

= -——A /

/705 (21)
= B/T]' .

In order to be able to evaluate 4, B, C, and D, which
enter into the cross section (11), it is necessary to assume
explicit forms for the four width functions ps;,(f) and
poi0,(t). We will assume the following forms with cor-
responding physical consequences:

When the proton is in a vibratory, bound state with a
mean lifetime of 7o sec, we assume that it just develops
a thermal cloud and consequently

Pa.'(t)gpag( ®)= %(71’2) .

Here (r:?) is the mean-square radius of the thermal cloud
set up by the proton. £(r;)x?=2W, which is the Debye-
Waller factor for the internal proton motion. We have
put p(f)=p() because in this work we are interested
only in the quasi-elastic scattering. The higher terms in
the expansion of the difference p(%)—p(¢), which give
rise to the phonon terms, are neglected.

When the proton is performing a jump (of mean
duration of 7; secs) we assume that this occurs during
such a short time that the whole motion is gas-like, i.e.

pri(t)= (5vi)*. (23)

(22)
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F16. 1. Computed values of the integrals

b 2,
P 2 (7 i naimongy( ~PE D wirul ,)
Tio Tl Jo i1 n<rw and 7

in the expressions b4 and bp for various assumptions regarding the
jump length 7=/

Here v is the average velocity with which the proton per-
forms its jump. '

When the molecule is in a bound state of mean life-
time 7o’ sec we assume that the only possible motion for
the center of mass is a vibration, i.e.,

Pa(B)=pg,(©)=3(rs). (24)
Here (r.?) is the mean-square radius of the thermal cloud
set up by the center of mass of the molecule. (3{r.2))x®
=2W ., which is the Debye-Waller factor for the motion
of the molecular center of mass. The phonon terms in
the expansion of p(®)—p(f) are neglected.

Finally, we assume that when the molecule is in a free
state of mean duration of 71 sec, it will diffuse. If we
define a diffusion coefficient D, for this period of 7/,
one may write

P’la(t) =D.t. (25)
Here the fact that this form of p(f) gives a wrong be-
havior at very short times—when it should generally
vary as %, not as /—is neglected, because we are not
interested in the very small times for which the #
variation is of importance (¢<<10~!2 sec) when we con-
sider this phase of the molecular motion.

AW-T,,
/, M
s x
/

1.5 //

. /

v
s
1 /// Yn
/ I
/
05
302[/{2]

1 2 3 4 5

F16. 2. Predicted widths of the quasi-elastic peak given as a
function of 2 for various relative magnitudes of the relaxation
times. Curves I and II correspond to a case for which the molecule
is bound most of the time; curves III and IV illustrate cases for
which the molecule is free to diffuse most of the time, and curve V
corresponds to the intermediate case. Curve I: 7¢>>7/, 7o;
Curve II: 7/, 7¢>>7y/; Curve III: 7/>>7, 7o; Curve IV: 7/,
’ro>>To’; Curve V: 7' =7/=r.
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If we furthermore define a new relaxation time
according to

1 1 1
-——=—+'~/ With k, l=0 or 1

Tkl Tk Ti

(26)

we find the explicit forms for the functions a4, b4, as,
and bp. These are

Tooe—zWi—ZW.
as=
1+1.w1'00
2 ® 2x
ba=eWeryy / expl: —x%— :I
VKT10J 0 VKT10
2wx ; -
X exp[ - z—] x=e"Wep et04
o @
To6 2
apg=—"""-"--—,
14-iwr01+D o7y
2 © 2x(1—|—D eK2Tl1)
bp=r11 / exp[—x2—~—-———]
VKT11J 0 VKT11
2wx .
Xexpl: - i—:ldx = ppei¥B,
K

It is interesting to note the behavior of the integrals
in b4 and bp for the limits of small and large « values:

pa ~ T1(1—%(710v%)%) — 710,
k=0

pB ~ T11(1—%(7'117.’K)2)_) T11,
k=0

(28)

The general values of the integrals are given in the
curves in Fig, 1.

Everything is now known, so that the cross section
given in Eq. (11) may be evaluated. Its general form is
very complex. Great simplifications are, however, possi-
ble under certain assumptions regarding the relative
magnitudes of the four relaxation times entering into
the formulation. A general and quite obvious assump-
tion is that 7¢3>7y, i.e., that the jump time of the proton
within the molecule, which should be equal to //v, where
lis the jump length, is much smaller than the vibrational
time 7o. If /~10~% cm and if v~10% cm/sec, one finds
T1~10718 sec, which ought to be short compared to the
mean life of a vibrational state within the molecule. If
it is not, the proton performs practically a free rotation,
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jumping from position to position without ever really
staying at a definite location.

In the cross-section formulas!® we arrive at in cases
I, II, III, and IV below, we have assumed 7,K7¢, 7o’
and 71". As a consequence both 7i; and 7>~7; and
therefore 7100 and 7119 are both &~y which is the jump
length 1. With this general simplifying assumption as a
base, it is possible to study various cases of physical
interest of which we shall consider four.

Case I. 7¢>>7 and 7,. This corresponds to a case of
low sample temperature such that the molecule stays
bonded to its neighbors most of the time. The viscosity
of the liquid must be high—of the order 1-100 poise or
more—and the self-diffusion coefficient very small. In
this case the cross section reduces to

a’k

d%
=——Tq0

dQw w ko

X e 2Wi—2W 1—(pa/T1)e W i=47e )
€ v e .
<wT°°)2+(1_ (pA/T]_)e_2Wz‘—4W,, 2

The quasi-elastic line has a Lorentzian shape and the
full width at half-maximum of the line is

2k pa
AE=——<1——e‘2Wi‘4W°> .

T00 T1

(30a)

When « tends to small values and considering that
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Too=x7o for this case, one finds

2h/2 (r

k=0 74\2

(30b)

Here {r.2) has been assumed <«<(r?), because the
vibrating mass determining 7; is the proton mass and
the mass determining 7, is the much larger molecular
mass. It is to be noticed that the slope at the origin of
this curve does not give a diffusion coefficient but rather
a jump length /, if one assumes /Z>3(r?). Also the
limiting value of the linewidth as k — is found to be

2h
AE ~ —,

K =~ 1-0

(30¢)

The linewidth saturates at a value which is determined
by the residence time of the proton in a fixed position
within the molecule. The general shape of the linewidth
curve is given by curve 1 of Fig. 2. To make the numeri-
cal computations of AE we have assumed in all cases
that D=10"5 cm?/sec, I=1.75X10"% cm, (r?)=10"16
cm?, {r,2)=0, and 79o=5X 10" sec. In cases where two
relaxation times are supposed to be of the same order of
magnitude we have set them equal, with 7¢’=7¢ in
case IT and 7= in case IV.

Case II. 7o and v¢>7,'. This is a case very much
related to case I. This situation is probably found at
fairly high temperatures in associated liquids whose
viscosities are in a range of 10-100 centipoise. The cross
section is given by

d?c a*k
=TT
dQdw T ko
(14D o*rar)(1—(700/70)(pa/ T1)e 2" =47 o) — (700/ 7o) e ~4W =2 W
—2Wi—2We . (31
L(A+De*ro)(1—(roo/70) (pa/ 71)e™ W 4W o) — (o0/ 7o) e W2V e J2 - (wro0)2 (14 Dek®ron)?
The cross section is still of Lorentzian shape and has a full width at half-maximum given by
/) p—AW i—2W ¢
AE=2_h<1_T fﬁ —2Wz‘“‘4We._——————--—(T00/TD )e > (323.)
700 To T1 1+Dektro
The behavior of AE for small values of « is given [if Eq. (28) is considered] by
2o o(rHs1 2
AE ~ Zh[D—l—-———l— (——l——)]ﬁ. (32b)
k=0 70 6 \1p 7
It is to be observed that D, is not in general the true self-diffusion coefficient D. This may be defined by
D=[7//(ro+1/)]1Ds,. (33)

In the present case, when 71'Kr(’, one has D~(r,'/7(")D.. If again I2>(r2), and if o is of the same order of magni-
tude as ¢/, it is seen that the shape of the linewidth curve at the origin is mainly given by the true self-diffusion

16Tn all our cross-section formulas the detailed-balance factor, exi«/?sT has been omitted because it is practically constant and

=1 over the quasi-elastic peak.
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coefficient taken together with the combination /2/27,, which may be considered as an internal protonic diffusion
coefficient. Since in this case the mobility of the molecules cannot be very high, it is probable that D and /%/27,
contribute about equal amounts to the slope at the origin.

From (32a) it is also seen that the limiting value of AE for large « values is given by

2%
AE ~ —. (32¢)
K= % oo
In this case 7o and 7¢ are of the same order of magnitude, so that the full value of 7¢ given by 7o~ !=7¢"147¢?
has to be used. This case is illustrated as curve II of Fig. 2.

Case IT1. "7 and 7,. This case corresponds to the extreme opposite of the previous cases. It corresponds to
a very high temperature; perhaps it is not possible to reach this state in an associated liquid. The viscosity ought
to be very low, <1 centipoise and the self-diffusion rate very high. In this case one finds for the cross section

d% a*k 14D x2rq— (pB/n)e“zw‘

=— —7qe Wi

: . 34)
iQdw T ko (@r0) -+ (14 Dorroi— (pn/ )27 (

Again the line shape is Lorentzian and has a full width at half-maximum of
AE=(21/70)(1+D *rar— (pp/T1)e™*"?) . (35a)

Considering that 7oy, it is found by use of (28) that the limiting value of AE for small « values is

AE ~ 2W[D+(1/7) B+ 1. (35b)

Here use has been made of (33). The slope at the origin is given as a sum of D and /2/2r,, if again IZ>§(r2). Not even
in this case, most similar to a simple diffusion case, is the slope at the origin given by the self-diffusion coefficient.
On the other hand, when « tends to large values, one finds from (28) that

AE ~ 20(Dit+1/70). (35¢)

The expected diffusive behavior is reached, but it should be noticed that the line width only asymptotically ap-
proaches the simple diffusion value 24D«?2. The asymptote intersects the AE axis at 27/7,. This case is illustrated in
curve III on Fig, 2.

Case IV. 7/ and 7¢>>7¢. In this case 71’ is supposed to be of the same order of magnitude as 7o. The molecule
is bound to its neighbors only a small fraction of the time. This case probably does not exist in strongly associated
liquids because the requirement that 7,/>>7¢’ is probably not fulfilled in the liquid state for such molecules. It
could possibly be so for van der Waals liquid like methane for which 7o—, ethane, propane, etc. but probably
not for alcohols, glycerol, etc. In this case the cross section is given by

d’c a®k 14 Doroi— (ro1/70) (oB/T1)e 2V i— (T /1) e 2V AW
A 01 01/ 7o, 1 0 36)

dQde ko (wrer)?+(1+Daron—(ror/70) (p5/T1)e Wi 701/ o)W =iWi)2

Again the cross section is of Lorentzian shape and has a full width at half-maximum which is
27 To1 PB To1
AE=———|:1+D9;<27-01—-— — Wi g Wit We || (372)
To1 To T1 ™
The behavior of AE at small values of « is given by use of (28) and (33)
2 (r;z) 1 2
AE ~02h[D+——+ (——+—):|K2. (37b)

’
Te Te T1
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It has again been assumed that {r,2)<<{r:%). As in cases
II and IIT it is seen that the slope at the origin has three
components, namely those from the self-diffusion
coefficient, the proton jump length, and the radius of
the thermal cloud. As 71" and 7 are of the same order of
magnitude, it is expected that the contributions to the
slope at the origin from the first two terms should be
comparable in the present case as in the previous one.

For large « values on the other hand it is seen from
(37a) that the linewidth is given by

AE ~ 2h(DK2+1/7‘01). (376)

This is quite similar to case III and shows that the be-

- havior of AE typical for the simple diffusive motion is
asymptotically reached. The asymptote intersects the
AE axis at 2%/1’01, where To1—1=’ro—1+1‘1'_1.

This case is illustrated in curve IV of Fig. 2. The fact
that curves III and IV look different originates from the
quantity (Aw) 7go used as ordinate. In the present case
we have 7o/T01=270’ /701, Which is <1 according to the
assumption. In case III one finds that 7oo/70122700/ 70,
which is of the order of 1 if 7/>>7¢" and 7.

In all the simplified cases I-IV it is found that the
cross section is of Lorentzian shape. A consequence of
this is that the integration over energy is easily per-
formed thus giving the angular distribution, do/dQ. One
finds:

do k
Case I and II: —=gqg2—¢2Wi2We,
dQ ko

In case IT it has been assumed that D«?r/<<1.
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do

—_— az_e—zw.- .

aQ ke

Case ITI and IV:

It is seen that in all cases the Debye-Waller factor
governs the angular intensity variation. In all cases
the factor 2, the origin of which is the internal proton
cloud, enters. It is to be noted also that when the mole-
cule as such diffuses in a simple way (cases III and IV)
a Debye-Waller factor determines do/dQ. This varia-
tion with angle is in sharp contrast to the variation pre-
dicted by applying a simple diffusion model for the
translational part of the molecular motion, treating the
molecule as a mass point, as has for instance been done
for methane.!! This model predicts a constant angular
distribution which is not in agreement with observed
facts for methane or any other hydrogenous liquid.

If none of the simplifying assumptions given above
may be expected to be valid for a particular case, the
full cross-section form defined by (11), (17), (21),
(27), and (18b) has to be used. However, the cross-
section formula thus obtained is quite unsurveyable,
though its computation includes only straightforward
algebra; therefore, we do not give it here. In the general
case the line shape is not Lorentzian. We have used the
full formula to compute the linewidth AE for the case
7¢ =71=710>71. The result is given as curve V in Fig.
2. The main difference between this curve and the similar
curves I and IT corresponding to cases I and IT discussed
above, is that its saturation value is reached more
slowly.

In Paper II of this work we will apply the present
theory to neutron-scattering data.



