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Prescriptions are given for constructing S-matrix elements from the general theory of n-particle scattering
previously developed. Some simple models based on the separable approximation are discussed and a method
for including corrections to this approximation is described.

INTRODUCTION

'HIS is the last of a series of papers' ' devoted to
the formal theory of e-particle scattering. The

aim of these investigations is to provide, by suitable
generalization of the results obtained by Faddeev' and
Lovelace, 4 a practical theory for many-particle scatter-
ing problems. The first step of this program is of course
to solve the four-particle problem; this has been done
independently by several authors. ' ' 8 The results were
essentially equivalent and can be summarized as follows:
For scattering from a given initial state of a four-par-
ticle system, there are six independent amplitudes
which are solutions of coupled integral equations whose
kernel is connected' ' and does not depend explicitly
on the potentials. The six amplitudes correspond to
scattering from the (arbitrary but 6xed) initial state
to a final state which contains two free particles and a
two-particle bound state; they are called independent
because once they are known all scattering amplitudes
from the same initial state to an arbitrary final state
(e.g., four free particles or a three-particle bound state
plus one free particle, etc. can be calculated. "Con-
nected" means that under suitable conditions'" the
kernel is compact' and the problem can thus be solved

by the usual integral-equations techniques. On the
other hand, the kernel depends only on the two- and
three-body scattering amplitudes, but these amplitudes
are to be known og the energy shell. This is the price
for not worrying(about exact potentials. Beside this
generalization of the Faddeev approach there exists the
n-particle scattering theory developed by steinberg'
who explicitly uses the potentials. In a sense both
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approaches may seem equivalent since the only rigorous
way of determining the two-body off-shell scattering
amplitudes is by means of the Lippmann-Schwinger
equation which requires explicit knowledge of the exact
potentials. On the other hand, the properties of off-shell
amplitudes were recently discussed by Noyes" who
was able to show that there are "model-dependent"
as well as "intrinsic" contributions. So the Faddeev
equations may lead to the invalidation of some two-
particle interaction models but this interesting property
requires further investigations. Finally, the o6-shell
formalism leads naturally to the separable approxima-
tion as we shall show below and is certainly easier for
practical calculations.

In I, we gave an alternative solution to the four-
particle problem, but still in the Faddeev spirit: we
showed indeed that four scattering amplitudes com-
pletely determine the system. These amplitudes which
correspond to scattering from a given initial state to a
final state made of a three-particle bound state plus one
free particle, are, in turn, the solution of coupled
integral equations with a connected kernel depending
only on off-shell scattering amplitudes for two-or
three-particle subsystems.

Both solutions are easily generalized to the e-particle
case but while the 6rst one leads to -', rs(rr —1) coupled
equations, the second one leads only to e equations.
Even with this formal improvement, the gap between
theory and any practical calculations is still very large.
It is the purpose of the present paper to try to fill this

gap by suggesting some simple models.
The different practical applications of the three-

particle scattering formalism to the Xzw, 4" the three-
neucleon, ""or the three-pion" systems are all based
on a kind of separable approximation. This means,
essentially, that each two-body scattering amplitude is
supposed to be dominated by bound states (or reso-
nances). This assumption which seems physically
reasonable has been rigorously justified by Lovelace'
who also showed the connection between this approxi-
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mation and separable potentials. "To avoid the purely
technical difhculties associated with resonances, we
shall, in the following restrict ourselves to bound states.
In the three-particle kernel these bound states enter
the calculation by means of their "form factors. "4"
This concept will be generalized in Sec. IV to n-particle
bound states. As shown in I, the four-particle kernel
can only be solved when all the scattering amplitudes
for the diferent two- and three-particle subsystems are
known. We can thus construct two kinds of separable
models, at least: one in which only the two-particle
systems are supposed to be dominated by bound states
and another where this bound-state dominace is
supposed to hold for the three-particle as well as for the
two-particle subsystems. Both cases will be briefly
discussed in Sec. IV.

Section V is devoted to a description of two particular
models which are inspired, respectively, by the Smm

system4 and a possible quark model. In the first case,
one may consider the nucleon as a bound state of a
nucleon and a certain number of pions; as a first approxi-
mation the interactions between the pions may be
neglected and so we are led to study a many-particle
system with no interactions between some of the
particles. In the second model, the nucleon is supposed
to be made of three quarks; among the possible models,
one may choose one in which quarks interact only via
three-body potentials. It is then rather easy to construct
for example, a model for the quark-nucleon scattering
This will also be done in Sec. V.

In more refined calculations it is of course necessary
to include corrections to one of these models or to the
separable approximation. The simplest way to include
these "perturbations" in the formalism is described in
Sec. VI. Since it is completely out of the question, for
the moment, to perform any calculation for a system
made of a large number of particles, our discussions
will generally be restricted to the three-and four-par-
ticle problems which are already hard enough. No calcu-
lations are presented in this paper; our aim is not to
work out a particular example in detail but rather to
present a set of assumptions and techniques which,
in principle at least, could be applied to most of the
practical problems. The reader may wonder why we
did not even mention one of the keystones for any
application of the many-particle scattering formalism,
namely the separation of angular momentum. For
three particles, this problem was solved in a demo-
cratic" way by Omnes" and his results have been
extended to the general case by Pestieau. " A prob-
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lem which seems much harder, when no ad hoc
approximations are made, is to include spin in the
general formalism. We shall simply ignore this difhculty
and neglect spin.

In order to make this paper as self-contained. as
possible we recall briefly in Sec. II the results of I.
At the same time this will fix the notation. Finally
Sec. III will be concerned with the construction of the
S-matrix elements. Our discussion of unitarity relations
will be somewhat more detailed than in I but still
remains very simple since we consider only bound-state
poles (or cuts) and do not worry about the technical
refinements necessary to extend the results to
resonances.

What still remains as an intrinsic weak point of this
formal theory of e-particle scattering is of course its
nonrelativistic character. This makes the theory
probably more adequate for nuclear physics than for
elementary-particle physics although a relativistic
version of the Faddeev equations has already been
developed. ""

II. NOTATION

We suppose the Hamiltonian of the rs-particle system
to be given by

H=Hp+ Q V;, ,1(i(j'(n

Hp is the kinetic part and V,, (i&j) are the potentials
between particles i and j. Although most of our con-
siderations remain valid in the presence of many-
particle potentials, we shall for simplicity, restrict our-
selves in this section to Hamiltonians of the form of
Eq. (1).In general, there are many possible asymptotic
states. We shall use a Greek index to label any quantity
(Hamiltonian, Green function. . .) corresponding to a
fixed but arbitrary asymptotic state. As we shall most of
the time be concerned with the four-particle problem,
we list for this case the asymptotic states as well as
some of the corresponding Hamiltonians:

A three-particle bound state plus one free particle;
the Hamiltonians will be noted H;(1&i&4) where the
index i refers to the free particle, for example,

H 1=Hp+ V23+ Vp4+ V34
' e'tc.

A two-particle bound state plus two free particles;
we shall denote the corresponding Hamiltonians by
H;;, where i and j refer to the bound particles

Hg=Hp+ V*.~

Two two-particle bound states; the three possible
Hamiltonians will be noted B(;;~ if particles i and j
are bound together. So

H(&&) =H(34) Hp+ Vyp+ Up4.
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Four free particles; the corresponding Hamiltonian
is of course Ho. The complete and asymptotic Green
functions are defined, respectively, by

and.

G.(s)=(H.—s) ', (6)

where s is a complex variable. These Green functions
satisfy the so-called resolvent equations:

G(s) —G(s') = (s—2')G(s)G(s')

G, (s) —G.(s') = (s—s')G. (s)G.(s'),
(7)

X„,(s) =V„—V„G(s)V„
F'„,(s) = V.—V„G(s)V, .

(10)

(11)

With the help of Eq. (9) it is easy to verify that on the
energy shell these operators are equal. For the unitarity
relations, both off-shell extensions are needed as we

shall see in the following section. The matrix elements of
Eqs. (10) and (11) between eigenstates of H„and H„
were shown in I to coincide with the usual transition
amplitude for a scattering process. Substituting Eq. (8)
in Eqs. (10) and (11), we obtain what we called pre-
viously the "basic equations":

X"(s) =V.—V3G. (2) V-(2) = V.—X"(s)G. (2)V. (12)

V„,(s) = V,—V„G.(s) V,„(s)= V,—X„.(2)G, (s)V, . (13)

Repeated indices do not imply a summation. A key
point in the construction of the formal theory for n-

particle scattering is to note that in each of the basic
equations the index a may be different for each (or
some) of the potentials belonging to V„or V, : It is

precisely this freedom in the choice of o. which permits
one to find integral equations with connected kernels.

Graphically, we may represent ' the system by n
horizontal lines and an interaction between particles
i and j by a wavy vertical line joining the ith and jth
horizontal line. These wavy vertical lines will be called
"connections. "

We shall adopt the convention that a p-particle bound
state can be represented by (p —1) connections (which
is the minimum necessary). With this convention in

mind, we call a graph disconnected, once-connected,
twice-connected, etc., when it contains zero, one,
two, connections. The physical meaning of this term-

inology is of course immediate. A disconnected graph
represents e free particles while, for example, a three-

G(s) = G.(s)—G.(2)V.G(s)
=G.(2)—G(s) V.G.(s),

where V„ is that part of the interaction potential not
contained in II„:

V„=—H —H„. (9)

In I we introduced two kinds of transition operators

times connected graph may refer to a system containing
either a four-particle bound state and (42 —4) free
particles or a three-particle and a two-particle bound
state or, finally, three two-particle bound states. In
both methods previously developed'' for solving the
n-particle problem, we start from an arbitrary but
fixed initial state. The first method can be described as
follows:

"Once connected graphs —+ twice connected graphs ~——1(42—2) times connected graphs 1 once connected
graphs. " (14)

Each arrow is the symbol for what we shall call a
decomposition. The first arrow, for example, means that
a transitiono perator —from the fixed initial stat- to
a final state made of a two-particle bound state and
(33—2) free particles is to be expressed (by a suitable
choice of o in the basic equations) in terms of transition
operators to final states which are twice connected.
Furthermore, the more-connected states entering the
decomposition of a (less-connected) state are supposed
to contain it as a subsystem and the potentials in the
basic equations are grouped in such a way that they
express the virtual desintegration of the more-con-
nected state into the less-connected one. Finally the
last decomposition of Eq. (14) associates to each
potential U;; the Green function G;;(s) = (H3+ V;;—s) '.
If all these conditions are satisfied, we obtain with the
help of Eq. (14) (i.e., by substitution of each decom-
position in the preceding one) a set of 21e(33—1) coupled
integral equations whose solutions are the transition
operators to once connected final states. The prescrip-
tions we have given for each decomposition are necessary
to get a kernel which depends only on transition opera-
tors for subsystems and no longer on the potentials
and whose second power is compact under suitable con-
ditions on the potentials. ' '

To illustrate the method, let us take the four-particle
problem. as an example. Equation (14) then leads to
the following decompositions:

V 12 (s) V (U13+ V28) G4 (s) V4 (s)
—(V14+ V24)G3(s) V8„(z)

—V34G(») (s) V(»)~(s)1 (15)

V4p (s) Vy V14G14 (s) F'14„(s)—V24G24 (s) V24p (s)
—V34G84(s) V34.(s) (16)

~( ).()=V.-V G ()~ .()-V«. ()~ .()
U23G28 (s) V23y (s) V24G24(s) V243 (s) ~ (17)

Substituting the equations for V,„(s) and V(,,»(s)
in those for V,;„(s) we obtain si2,"coupled integral
equations which completely solve the problem with
the help of Eqs. (16) and (17) or similar ones. Typical
terms in the kernel given by this method are, for
example,

(V13+U23)G4(s) U14G14(s)
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or

V34G(12) (s) V,3G,3(s) . (18)

Using the second resolvent equations for the asymptotic
Green's functions it is then easy' ' to remove the explicit
dependance on the potentials.

The second method leads to a set of e coupled integral
equations for transition operators to a final state made
of an (23—1)-particle bound state and one free particle.
The chain of decompositions is the following'.

(23—1)+1'~ (23—2)+2' —& (l3—3)+3' —+ ~ 2

+ (23—2)' ~ 1+ (43—1)' (19)

The precise meaning of, for example, the first arrow
is that a transition operator to a final state made of a
(33 1) —particle bound state and one free particle is to
be expressed in terms of transition operators to final
states consisting of a (23—2)-particle bound state (323d

a two-particle bound state. The decompositions of
Eq. (19) are uniquely determined by the following con-
ditions: For instance, in (23—2)+2' —+ (23—3)+3', we
require the (23—3) particle bound state to be a sub-
system of the (43—2) particle bound state and the three-
particle bound state (3') to contain the two-particle
bound state (2') as a subsystem. Furthermore, we group
the potentials in such a way that they are followed by
the Green's function which contains them. With these
requirements and by substitution of each decomposition
in the preceding one Eq. (19) then leads to a set of 43

coupled equations whose solutions are the transition
operators —from the fixed initial state —to a final state
made of (I—1) bound particles and a free one. Once
these operators are known the Eqs. (14) and (19) can
be used to solve the problem completely. For the four-
particle problem, this second, method leads to a kernel
which contains expressions of the form'

V13G(13)(s) (U14+ V34)G2(s) . (20)

By using the same techniques as for the first method,
the explicit potential dependence can easily be removed.

To end this section, we recall a possible choice of
kinematical variables for the four-particle problem.
Instead of using the momenta of the particles it is
much simpler when the system is made of two two-par-
ticle bound states, to take the following combinations:

P= [2(ml+m2+mp+m4)] '"(pl+p2+p3+p4), (21)

$12 [2mlm2 (mi+ m2) ] (m2pl mlp2) (22)

3134 [2mpm4(mp+m4) j-'"(m4pp —mpp4), (23)

31(12)
——[2(m, +m2) (m, +m, ) (m, +m2+mp+m4) j—'"

X[(m3+m4) (pl+p2) (ml+m2) (p3+p4)] (24)

m, and p, are the masses and momenta of the four par-
ticles. The normalizations of Eqs. (21) and (24) have
been chosen so that

In the following we shall always suppose that we are
in the total center-of-mass frame and so we may forget
the variable P.

III. UNITARITY CONDITIONS

As is well known4 23 the complete Green's function of
an e-particle system is operator meromorphic in the
s plane except on the real axis. As a first simplification
to our discussion, we shall forget the possible resonances
and restrict ourselves to bound states. The following
singularities then occur: (a) The 33-particle bound
states which give poles; (b) The 23-particle branch-
point at s= 0; (c) The branch points at s = —E (E )0)
which correspond to the bound states of the diferent
subsystems (asymptotic channel "n").

The residues at the poles (a) are determined once the
bound states wave functions are known. Since we are
mostly interested in scattering problems we shall
suppose all these bound-state poles to be at the left of
all the branch points. Finally as a last simplifying
assumption we shall suppose that no branch points
coincide.

The main problem which must then still be solved is
to define correctly the discontinuities through the
various cuts. Since the cuts overlap, a possible method
to calculate discontinuities is to rotate them by a small
angle. This technique was proved to be rigorous for the
three-particle problem by Lovelace. 4 The proof re-
quires rather complicated mathematical tools and
although it can be extended without any supplementary

difficulty to the e-particle problem, we prefer not to
use it. We shall instead present more intuitive argu-
ments which lead anyway to the correct result. Let us
start with cut (b). Among all asymptotic Green's
functions the simplest one which admits a cut of this
type, is of course Gp(s), i.e., the Green's function of the
free system. For Gp(s) the discontinuity through cut
(b) is well defined since Gp(s) has o43ly this cut: Let
hp(s) be this discontinuity. It is then easy, and we have
done it in I, to calculate the discontinuity Do(s) of
G(s) induced by hp(s). Using Eq. (8) (for )(4=0) we
obtain

G(s)G(s') = [1—G(s) Vo]Go(s)Go(s') [1—VoG(s') j. (25)

Defining hp(E) (E)0) by

Gp(E+io) —Gp(E —io) =22rikp(E) ~ (26)

We are then led with the help of Eqs. (7) and (25) to
the following identity:

DoG(E) = 2m.i[1—G(E+ip) Vp]

&&Ap(E)[1—VpG(E —ip) j. (27)

Similar arguments may be applied to each of the cuts
(c). Since the details are slightly different we give one
more example. Let us consider, for instance, the cut

+n f +(i12 +Il34 +Il(12) ~ "T.Kato, Trans. Am. Math. Soc. 70, 195 (1951).
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(c) corresponding to the scattering states made of a
bound state of particles 1 and 2 and of (r4 —2) free
particles. The simplest Green function which admits this
cut is G»(s) = (Ho+V» —s) '. Let us first look at
G»o{s), i.e., the restriction of Gio(s) to the two-particle
Hilbert space. The singularities of this Green function
are: a pole which for simplification we shall suppose
unique at z= —E»(E(&)0) corresponding to a bound
state and a cut starting form s=0 and corresponding to
the scattering states. The extension Gio(s) of Gioo(s)
to the Hilbert space of three-particle states then admits
two cuts: one starting from x=0 and one starting from
s=—E~2 and corresponding to physical systems made of
a bound state of particles 1 and 2 while particle 3 re-
mains free. We define bio(E) (E)—Eio), the discon-
tinuity of Gio(s) through this second cut in the following

way:
2vriaio(E) =DG(o(E) —24riDoGio(E). (28)

So, in general, to calculate D G(E), the discontinuity
of G(s) through a cut corresponding to a bound state of
the subsystem n plus some free particles, we must
first calculate 6 (E), i.e., the discontinuity of G (s)
through this cut. Then, with the help of the resolvent
equations, we may write

D G(E)=24ril 1 G(E+io)V 5—
X6 (E)l 1—V G(E—io)j. (30)

For n=0 this formula reduces to Eq. (27).
As is well known 6 (E) is the projection operator on

the bound state of the subsystem n. For example, if
the system is made of four particles and n corresponds
to the subsystem of particles 1 and 2, it is easy to
verify that

«»' qo4' q(»)'
I ~»(E) l(lio @44 q(»))

=&(E+Eio—
(344

—g(io)')(bio I
&io

I bio)

X() ('@$4 $84)~ ('%(12) 6(»)) y (31)

where r» may be written as I((»)(y»l with
I y») the

bound-state wave function. With the general formula

(30) and the definitions (10) and (11),we obtain for the

DoGio(E) is the discontinuity through the first cut of
G»(s) and can easily be calculated as we just have
sllowil' DGio(E) is tile 'total discontinuity of Glo(s)
through the cuts (b) and (c) and it is well defined since

G»(s) is supposed to be known explicitly. Equation
(28) can then finally be extended to the Hilbert space
of n-particle states and leads to a unique definition of
r4o(E), i.e., the discontinuity of Gio(s) through the cut
corresponding to a bouud state of particles 1 and 2

plus (44—2) free particles. Once Bio(E) is known the
same reasoning as before leads to the following expres-
sion for D»G(E):

DioG(E) = 2n.iL1—G(E+io) Vioj
Xa„(E)L1—VioG(E —io)j. (29)

where lq4) and Q()l are, respectively, the initial and
Anal bound-state wave functions. In our case, it is
easier to introduce a reduced S matrix which will be
noted S~ and is defined by

~s-{E)=~) -"(E)~(Es E-)— {35)

With the help of Eq. (33) it is then easy to verify that

Z.S,. (E)(S )j..(E)=~(P—) o- S (S )t=1.
Similarly Eq. (33) leads also to (5")$5s=1 which then
proves the unitarity of the one-shell S matrix.

In this section we shall restrict ourselves to the four-
particle problem. Aa a first approximation to the
scattering operators we may suppose that they are
dominated by the four-particle bound-state contribu-
tions. This cannot generally be expected to be a good
approximation but gives a very simple method to get
some information on the scattering amplitudes. To
simplify further the discussion let us suppose that our
four-particle system admits only one bound state of
energy Ewhose wave functio—ns is I((). The spectral
decomposition' of G(s) then permits to write in the
neighborhood of this bound state.

Y~.()=Vol~)1/(+E)&~l V.. {36)

To get the transition amplitudes we have to calcu-
late the matrix elements of Eq. (36) between eigenstates
(ot, l

and Iy.) of t e asy ptotic Hamiltonians e, and
IJ„.I.et Ep and E be the corresponding eigenvalues.
If, for example, n consists of a bound state of particles
j. and 2 with particles 3 and 4 remaining free, we have

En= I144 +(1(io) —Eio,

where E» is the binding energy of the given bound

discontinuities of the transition operators through the
cuts (b) and (c)

D X„„(E)=DY„„(E)= V„D—G(E)V„
=24riX„(E+io)A (E)Y' „(E—io)

which is a generalized unitarity relation off the energy
shell. The total discontinuity of the transition operators
through the right-hand cuts is then obtained by sum-
mation over n (including n= 0) and we may write

X„„(E+io) X„„—(E io) =—Y„„(E+io)—Y„„(E'io]—
= —24(i+„X„.(E+io)A. (E)Y.,(E io) . —(33)

With these relations, the construction of a unitary 5
matrix becomes trivial. Without writing explicitly the
kinematical variables, the S matrix element for the
process n +P may—be deiined as follows (E=E =Es):
~s.(E)=~{p ) 2--Qsl -Xs.(E) l~.)t {E. Es)—

=~{p--)-2- &~sl Yp. (E) I~.»(E--E~), (34)
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V.= In)Z. &nl . (38)

Lovelace calls
I n) the form factor"' of the bound state.

Solving the Schrodinger equation for the potential (38)
it is easy to verify that the bound-state wave function
can be written as Ip, &=Gp(s) ln) for 2 —+ Ewith-
E the binding energy. The use of the form factors
introduces a great simplification in the formulation of
the three-particle problem. Lovelace was able to show4

that if each of the two-body potentials is approximated

by sums of separable terms (we shall keep only one

term), the three-body problem reduces to multichannel
Lippmann-Schwinger equations with "potentials" de-

6ned by
Vs-(s) = (1—~s-)(PIGo(s) I ) (39)

On the energy shell, i.e., for z= E =Ep= E, the
potential becomes

Let us remark further that the form factor may also
be written as

ln&= (ao+ Z-) I4-&= —(a-—ao) I(t-& (4O)

If we suppose now to have a bound state of particles

1, 2, and 3
KI44&= —E4I44&

which can disintegrate, for example, in a bound state
I&12) of particles 1 and 2, it is rather natural to define

a "form factor" of the bound state l(t4) relative to the
channel 12 by —(H4 —H)2) I &4). With this convention,
the form factors ln) of Lovelace may be called "form
factors relative to the free channel"; quite in general a
form factor of the bound state Ip{)) relative to the
channel n (the bound states of channel n must of
course be subsystems of the bound state

I
(t )3&) may then

be defined by the expression:

-(Ifs-fI-) l~~&-=le; &.

Equation (37) then becomes

&Al Vs. (s) le-&—=&(tel 0&1/(s+E)'& nil-&, (41)

&(t 4)l; P& is then a "generalized potential" of the type
(39). So, in the crudest separable approximation of the

state. In general we may thus write the amplitudes as

&A I Vs-(s) I 4 -&=&—A I
ff I—fs I 0&

X1/(2+@)&4 Ia—a. ly-&

-=(E+Es)A~I~»/(2+E)&~l~. &(E+E.) (37)

So all transition amplitudes can be calculated once the
"overlap functions" ((t 3 I p& are known. It is interesting
to remark that these overlap functions are related to
the form factors and the "potentials" introduced by
Lovelace. Let us recall how he proceeds. Suppose we

have a two-body system with a separable potential of
the form

four-particle system —the extension to n particles is
trivial —all scattering amplitudes can be calculated
once the form factors of the four-particle bound states
relative to all asymptotic channels are known. As far
as the possible experimental determination of relative
form factors is concerned, we shall perhaps devote a
future work to this problem; anyway, in principle, they
can be calculated once the bound-states wave functions
are known which reduces the problem to the solving of
Schrodinger equations. The method we just sketched is
of course of little use for a somewhat detailed study of
the scattering amplitudes. What seems a more reliable
approximation is to suppose that the two-and three-
particle subsystems are dominated by bound states.
To simplify as much as possible we shall suppose further-
more that each subsystem is dominated by only ore
bound state. Let us indicate briefly how to proceed for
both solutions of the four-particle problem. For each
four-particle transition operator, we define reduced
scattering amplitudes T)) (s) as follows:

Vs-(2) = I(t s&Ts-(2)(((-I (42)

lgp&»d g( I
are eigenstates of the asymptotic final

and initial Hamiltonians, respectively. Let us look
first at Eq. (16). With the help of the resolvent equa-
tions it is easy to show that

V34G34(s) = T34(s)Gp(s),

(«12 «34 «(12) I T34(s) I «12 «34 «(12))

(«12 «12 )() («(12) '«(12) )
X(«34 I

t34(s {712 {7{12)) I «34) y (44)

where t(s) is the usual two-body scattering amplitude.
Using the separable approximation for each two-body
potential, we may write4

T34(s)= I 34)t34(s)(34 I, (45)

I 34) is now the form factor of the bound state relative
to the free channel and, —t34(s) can be interpreted as the
bound-state "propagator. "4 Its simplest form is
1/(s+E34) but, as was shown by Lovelace4 this leads to
a violation of the unitarity conditions. We refer the
reader to the papers of Lovelance for a full discussion of
these propagators. With Eqs. (42) and (45) we rewrite
Eq. (16) in the following way:

T,(z) = &~. l V, le,&Q. I
14)t (s)T14,(s)

—&y4124&t24(s) —Q4I34&t34(s) T34,(s) (46)

The first term can easily be estimated with the help of
Eq. (38). It is a remarkable fact that Eq. (46) has
exactly the structure of a Lippmann —Schwinger-type
equation; beside the first one, each term consists of
three parts: a scattering amplitude, a propagator and
a generalized potential which is again, as in the three-
particle problem, the overlap of a bound-state wave
function with a form factor. Equation (17) can be
treated in exactly the same way: we may either approxi-
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mate directly the three-particle subsystems in a separ-
able way or use only this approximation for the two
particle systems. We shall only detail a little bit the
first method. Let us take, for example, the expression

—(Vls+ Vss)G4(s) &4„(s).
If we suppose once more that there exists only one
bound-state of particles 1, 2, and 3, it can then be
written as

—(H4 —Hls)
~
y4)(s+E4)—I/4~ V4„(s)

and its contribution to the scattering amplitude Tls„(s)
will be given by

(~.i4; »)(+E)-T:,()
The two last terms of Eq. (15) can be treated in a
similar way; so, for example, the last one contributes
to Tls, „(s) by

&e I(»);»)(+& -'T:,(). (48)

To avoid any confusion, we recall that E(~2)=q(~2)'
—Ejg—E34 where Egg aild E34 ar'e the blrldlilg energies
of the bound states which make part of the asymptotic
cllallllcl (12). Kqllaflolls (47) Rnd (48) Rl'c RgalI1 of tile
form discussed before but we have used the simplest
form of the propagator. More re6ned expressions for
these propagators can easily be constructed in analogy
with the two-particle results. 4

We showed in Sec. II that the two general methods
to obtain a set of integral equations with compact kernel
for the four-particle problem led to analogous manners
of grouping the potentials. So all approximations used
in this section can be applied without change to the
second kernel. Let us remark 6nally that the separable
approximation scheme can easily be extended to
e-particle systems.

V. SPECIAL MODELS

In this section we suggest two particular models for
further investigations of four-particle scattering: one
where three of the four particles do not interact with
each other and one where the interactions of the system
are described uniquely with the help of three-body
potentials. The 6rst case is inspired by the S~mz system
and the second model can be used, for example, for the
scattering of quarks" by nucleons or also, as an approxi-
mation to the scattering of 0, particles by C".We start
with the second model and suppose it to have a Hamil-
tonian of the form:

V~, for example, is a three-body potential which de-
scribes the interactions of the subsystem made of
particles 2, 3, and 4. As asymptotic states we have only
two possibihties: either four free particles or a three-
particle bound state plus one free particle. The asymp-

~4 M. GeQ-Mann, Phys. Letters 8, 214 (1.964).

totlc Ham11tonlans Rl'c Hs Rlld H = Ps+ V . Wc wl'1'tc

the basic equations in the following form:

VJ'(S) = V'—V4Gs(S) Vs*(S), (5o)

where Gs(s)=(Hs —s) '. We choose the index k in
such a way that. each potential is followed by the Green
function which contains it. More explicitly, we have,
for example

VI ( )
——V —VsGs(s) Fs (s)—VsGs(s) Vs;(s)

—V4G4(s) V4, (s) . (51)

Before going on, let us first look at the three-particle
problem which has for Hamiltonian H4=Hs+ V4. With
Gs(s)=(Hs —s) ' and G4(z)=(H4 —z) ' the free and
complete Green functions, it is trivial to repeat the
usual formal theory of two-particle scattering and to
calculate the transition operator for the only possible
transition, namely "3free particles" -+ 3 free particles. "
Denoting the corresponding operator by T4(s), we are
led by the basic equations to the following expression:

T4(s) = V4—V4G4(s) V4. (52)

With the help of the second resolvent equations it, is
easy to verify that

G4(s) V4 ——Gs(s) T4(s); V4G4(s) = T4(s)Gs(s) . (53)

Substituting Eq. (53) in Eq. (52), we obtain

T4(s) = V4—V4Gs(s) T4(s)

which is of course the Lippmann-Schwinger equation,
but the important point is that for a three-body poten-
tial (with suitable conditions) the kernel is compact and
the equation can thus be solved with the usual tech-
niques. If we now substitute Eq. (53) in Eq. (51) we
obtain for our particular model a kernel which is
excatly the four-body analog of the Fadeev kernel. '
Introducing furthermore the separable approximation
for these three-body potentials, i.e., V4 ——p~ ~

4pp 4„(4p ~

where again
~ 4p) is the form factor (relative to the free

channel) of the pth bound state. With this potential,
the solution' of Kq. (52) may be written as

T ()=Z.I4p)«. ()(4pl, (54)

where f4~(s) is defined by f4~(s)=L1/X4„+r4~(s)j-I
with r4, (s)=(4p~Gs(s) ~4p). Introducing Eq. (54) in
Eq. (51), it is possible (and easy) to repeat for this
particular four-particle problem the reasoning of
Lovelace' for the three-particle case and to obtain 6nally

(by introducing the same potentials and symmetrizing
the equations in the same way as in Ref. 4) for the
four-particle transition operators multichannel Lipp-
mann-Schwinger equations. This result can easily be
generalized as follows:

"If the interactions of an e-particle system are de-
scribed with (Is—1)-body potentials which may be
approximated separably, then the m-particle transition
operators are solutions of multichannel two-body
Lippmann-Schwlngel equatiorls.
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This proposition shows clearly how simple an n-
particle problem may become by using only many-
body potentials; we believe that this model could be
very useful as a first approximation for a lot of processes.
For example, in the reactions C"+42 —+ C42+n and
C"+42 —+ C"~+42 it would not be unreasonable to
approximate the interactions by three-body potentials
dominated by C" and C"*.Anyway it should be worth-
while to try the approximation for these particular
reactions and we intend to do it in a future work. The
first model is, in our opinion, perhaps less interesting
but since it reduces the four-particular problem to
uncoupled integral equations it may certainly be worth-
while to use it as a first approximation. Small correc-
tions to this approximation can be calculated with the
help of the very simple perturbation method which will

be developed in the next section. We suppose thus to
have a four-particle system described by the following
Hamiltonian:

H= Ho+ Vn+ Vi3+ V34 (55)

So particles 2, 3, and 4 interact only with particle 1 and
not with each other. The Green's function is given as
usus, l by G(s) = (H —s) '. The possible asymptotic
states are: (a) four free particles; the Hamiltonian is

HO and the Green function GO(z) = (HO —s) '; (b) three-
particle bound states plus one free particle; the three
possible Hamiltonians will be noted H, and the Green
functions G;(s)= (H,—s) '(2&~i&~4). More explicitly
H2 Ho+ V13+F14) H3= Ho+ V12+ V14 l H4= Ho+ V12

+V33, (c) two-particle bound states plus two free
particles; there are again three possibilities. The
Hamiltonians are H;; =HO+ V,; and the Green functions

G;, (s) = (H';,—s)-'.
Experimentally, only channels (b) are useful as

initial states. The basic equations are

Y (s) = V'- V.G.(s) Y-(s) .

To be quite definite, we shall take as initial state an
eigenstate of H4, i.e., a bound state of particles 1, 2,
and 3 with particle 4 remaining free. From this initial
state seven types of transitions are possible. We have
as basic equations, for example,

F24(s) V/4 V$2G, (s) Y.4(s),

Y14; 4(s) = V/4 (V/2+V/8)G. (s) Y.4(2),

Y04(s) = V14 (V12+ V18+V14)G (2) Y 4(s) ~

Using the freedom of choice of 0., we rewrite these
equasions in the following way:

F24 (s) = V~ 4
—V~ 2G8 (2) F84 (2), (56a)

Y34(s) V14 V18G4(s) Y44(s) (56b)

F44(s) V14 V14G2(s) F84(s) (56c)

Yi4;4(s) = V24 —V12G8(s) Y34(s) V18G2(s) Y24(s) I (57)

F04 (s) V14 V12%2(s) Y12;4(s) V18'%8 (s) Y18;4(s)
V$4G~4(s) Y$4;4(s) . (58)

These equations show that the problem is reduced to
solve Eqs. (56). Indeed, once the F;4(z) are known, we
may be Eq. (57) or analogous equations calculate all

Y;;,4(s) and then with Eq. (58) Y04(s). Except for the
independent terms, it is easy to suppress the explicit
potential dependance. We may use either the general
method which was detailed in I or proceed as follows:
we define

V12G4(s) =X32(s)GO(s) and V38G4 ——X38(s)G0(s) ~

The second resolvent equations lead then to

X12(s) 2 12(s) 2 12(s)GO(s)X13(s) (59)

X~3(s)= T33(s)—T38(s)GO(s)X32(s). (60)

Substituting Eq. (60) in Eq. (59) we get for X32(z)
an integral equation with a compact kernel. The inter-
esting property of the model is that Eqs. (56) are easily
decoupled: indeed, substitution of Eq. (56b) and
(56c) in Eq. (56a) gives

F24(s) V14 V12G8(s) F14+V12G8(s) V18G4(s) V14

V12G8(s) V18G4(s) V14G2(s) Y24(s) . (61)

It is still possible to simplify the independent term but
this does not matter much since we shall not try here
to solve Eq. (61) explicitly. Knowing Y24(s), we have
solved the problem since Eq. (56c) gives Y'44(s) and
Eq. (56b) Y84(s). The application of this model to the
static Exmw system can be done without any difhculty
and leads to even simpler equations since we have three
identical particles. The simplifications introduced by
identical particles have been discussed in detail by
Lovelace4 and Pestieau" and their reasoning can easily
be extended to the e-particle problem.

VI. PERTURBATIONS

In this section we develop the simplest possible
method to evaluate corrections to the Fadeev-Lovelace
equations for small perturbations. Although the method
would be valid for e-particle problems we shall restrict
ourselves to three particles since this case is already
hard enough for practical calculations. Essentially, we
may consider three types of perturbations induced,
respectively, by a three-body potential, a two-body
potential in a channel where the interaction was initially
neglected and finally a two-body potential which is
added to a separably approximated channel. Let us
develop our method for the first case. We suppose the
Hamiltonian to be given by

H0+ Vl+ V2+ V8+V128 ~ (62)

V~ ——V~3 is the potential between particles 2 and 3 and
V~ga is the preturbation. The various asymptotic
channels together with their Hamiltonians and Green
functions have been defined by Lovelace4 and we shall

"J. Pestieau, Mdmoire de licence, Louvain, 1965 (unpublished).
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keep his notation. We write the basic equations in the
following form:

()=V '—V 'G.()Y. ()+V
—V»8G (s)Y (s) (63)

We have explicitly separated the three-body part and
hence P ' is that part of the interaction which does not
belong to H and is made only of two-body potentials.
The basis of our perturbation method is the following
construction: We introduce an additional channel which
may be called the perturbation channel and which corre-
sponds to the situation where only the perturbation is
acting. In the present case, this channel is characterized
by its Hamiltonian H128= Bo+V»8 and Green function
G128(s) = (P128—s) '. The essential point is now that the
free index o- in the basic equations needs not to be
restricted to observable channels but may also refer to
the perturbation channel. So we rewrite Eq. (63) as
follows:

Ys-() = V ' —Vs'G. ()Y-()+V
V128G128(s) Y128;a(s) ~ (64)

The problem is now reduced to 6nding an expression
for transitions to the perturbation channel in terms of
the physical transitions. The answer is once more given
by the basic equations: indeed, we may write

Y128.(s) = V '—P T.(s)Gp(s) Y,.(s).
cr=]

It is then evident how to proceed: We start with the
unperturbed problem which is supposed solved:

Y -"'( )= V-' —V 'G.( )Y-"'( )

With the help of the transition operators Ys "&(s), we
define by Eq. (65)

Y128; &" (s) = V '—Q T, (s)Go(s) Y„&o&(s) .
0=1

Substituting this equation in Eq. (64), we get the erst
approximation

Ys "'(s)=V '—Vp' —G (s)Y "'(s)+V128
V128G128(s) Y128;e (s) '

In general, we get for the rsth approximation

Y128 ™(S)=V Q T (S)Go(S)Y &" 1&(S)
o=1

Ys-'"'(s)=v ' V—s'G (s)Y '" "(s)+V»8

V128G128(s) Y128;a '(s) ~

A problem which we have not solved is the convergence
of this method. As far as perturbations induced by two-
body potentials are concerned we may repeat without
any change the preceding construction. We introduce
again a perturbation channel and with the help of the
basic equations we express transitions to this channel in
terms of the physical transitions. Let us take for example
the Exz system. In a first approximation we may
neglect the interaction among the x's and then introduce
as a perturbation a m-m interaction which can be as-
sumed to be dominated by the p. In this case the pertur-
bation channel is observable (A p). We may also try to
estimate electromagnetic corrections —this gives an
interesting model for calculating the 28-p mass difference—but these corrections do not lead to an observable
perturbation channel.
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