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In a recent paper, we considered the possibility of dynamical enhancement of SU (3) symmetry breaking
in baryon couplings. It was found that certain patterns of symmetry breaking are enhanced and tend to
dominate; the results were presented and compared with experiment. In the present companion paper, we
explain in detail the methods by which these conclusions were obtained and give a more complete summery

of the numerical results.

I. INTRODUCTION

DETAILED theoretical study has been made by

us of SU(3) symmetry breaking in the couplings
geen and gagn which connect the J?=3*baryon octet B,
the 2+ decimet A, and the 0~ meson octet II. The idea
was to look for dynamical enhancements in symmetry
breaking, the enhancements being associated with
instabilities or near-instabilities in the symmetric theory.
The main results of this study, and comparisons with
experiment, were presented in a recent paper.! In the
present companion paper, we wish to explain in detail
the methods by which these conclusions were obtained
and give a more complete summary of the numerical
results, with explicit statements where possible of the
uncertainties in the model used.

The physical parameters brought into play by SU(3)
symmetry breaking include mass shifts 60 ; and coupling
shifts 8g:. In a bootstrap theory, these depend on other
mass and coupling shifts, as well as “driving terms,”
which include such things as photon exchange (for
electromagnetic shifts) and higher order terms. One
obtains equations of the form

SM = AMMEY[+ AMosg+ DM (1.1)
dg=AIMM -+ Aoosg+Do, (1.2)

where it is understood that there are many kinds of 6}
and 8g, so that the terms such as 4 are matrices. Now
in a previous paper? it was argued on dynamical grounds
that 4™ is small and can be approximated by zero,
leaving (1.1) and (1.2) with solutions of the form

SM=(1—AMMYy-1DM | (1.3)
8g=(1— A09)-1(A M5+ D). 1.4)

The search for dynamical enhancements in symmetry
breaking thus becomes a search for eigenvalues of 4 ¥
and A99 near one, which from Egs. (1.1) and (1.2) are
seen to represent nearly-self-supporting instabilities of
the dynamical equations. Of course, the identification
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of the near-instabilities does not provide a complete
specification of M and &g, which also depend on the
harder-to-calculate driving terms. Unless the driving
terms happen to be nearly orthogonal to the eigenvector
corresponding to the instability, however, the pattern
of symmetry breaking will tend to follow the instabilities.

The present paper, then, is mainly concerned with
the calculation of matrix elements of 49 and A
that affect ggpn and gasm, and with the eigenvalues of
Avo, These complement the previous study? of 4M¥
which gave a unique instability followed by éMp
and 6M a.

The paper is organized as follows. First, we would
like to call attention to two Appendices, which relate to
important questions underlying our whole approach.
Appendix A deals with the convergence of our disper-
sion relations. It is shown that the dispersion integrals
representing first-order perturbations converge faster
than the dispersion integrals representing strong inter-
actions, by one power of the energy W. We believe that
this decreased sensitivity to contributions from large
W, which are poorly known in practice, is the basic
reason why bootstrap calculations of perturbations on
the strong interactions'*have achieved better quantita-
tive results than ordinary strong-interaction bootstrap
calculations. Appendix B deals with the choice of de-
nominator function. Reasons are given for preferring our
choice of denominator function to that recently advo-
cated by Shaw and Wong.?

Next we turn to the body of the paper, dealing speci-
fically with coupling shifts. In Sec. II the SU(3)-
symmetric reciprocal-bootstrap model of B and A,
which we use a starting point for the study of SU(3)-
breaking perturbations, is reviewed. In Sec. III the
possible types of coupling shift are listed, and the dis-
persion relations used to calculate elements of the A4
matrix are written down.

The explicit method for calculating 497 is described in
Sec. IV. This is the heart of the paper. 499 splitsinto a
simple “dynamical factor” and a more complicated
“group-theory factor.” If we represent the symmetry
violation by a ‘“spurion” S,, the group-theory factor

3 R. Dashen, S. Frautschi, and D. Sharp, Phys. Rev. Letters 13,
777 (1964).

4R. Dashen and S. Frautschi, Phys. Rev. 137, B1318 (1965).

5 G. Shaw and D. Wong, Phys. Rev. 147, 1028 (1966).
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TasLE I. Reciprocal bootstrap model of B and A. In T'/2*, the first row and column refer to 8;, the second row and column to 8,.

Contribution to T, 10%/2"

Diagram Contribution to T/z¥
G? cos?0  cosf sinf
B pole in direct channel of IIB scattering - 0
W —MB\cosfsinf  sin?
G*2
A pole in direct channel 0 -
W—-Ma
G? cos20+(5/3) sin?9 0 4 cos?0[1— (1/5) tanf]G?
B exchange pole ————
10(W —MB) 0 (5/3) (cos?0—sin26) 15(W —MB)
G*2 G*2

A exchange pole

2 /5
3(W——2MB+MA)(\/5 0)

12(W —2MB4-M*)

involves the overlap between the reaction II;+4B; — II;
-+ Bi+S, proceeding via the coupling to a particular
intermediate state in the direct channel, and the reac-
tion I+ B; — I+ Bi+S, proceeding via the coupling
to a particular intermediate state in the crossed chan-
nel. Mathematically, the overlap between two different
ways of combining five objects (four particles and one
spurion) into a singlet is, apart from normalizations and
phases, a 95 symbol. We have worked out the appropri-
ate expressions and had them evaluated by computer.

We proceed with a discussion of our treatment of the
consistency (sometimes called ‘‘vertex symmetry’t:7)
between BBII couplings in the direct and exchange
channels in Sec. V. The resulting eigenvalues and eigen-
vectors of 49¢ are given in Sec. VI. The same methods
permit explicit evaluation of 4#¢ in Sec. VII, and it is
verified that this part of the 4 matrix is indeed very
small, as had been argued earlier.? Section VIII deals
with the evaluation of 49, From Eq. (1.4), we see that
this allows us to determine which eigenvalues of A4¢¢
are most strongly driven by the dominant mass shift
8M. Under the assumption that the term A8}, con-
taining the already enhanced mass shift, dominates D?
in (1.4), one then finds that the eigenvalue of A9¢
iying nearest unity is strongly favored over all other
eigenvalues. ‘

Results for the strong BBII and ABII coupling shifts
are presented in Sec. IX. Readers who are interested
only in the answers rather than in methods of calcula-
tion may proceed immediately to Tables XXT and XXII
of this section. Section X contains the electromagnetic
coupling shifts; the shifts in BBII couplings are con-
veniently tabulated in Table XXIII. The much more
complicated weak nonleptonic couplings are treated in
Sec. XI. Here couplings of either charge conjugation and
parity are considered. We show that the predictions on
parity-violating couplings,® which agree particularly
well! with experiment, are also on especially strong

6 R. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964);
K. Lin and R. Cutkosky, 4bid. 140, B205 (1965).
( "F.) Ernst, K. Wali, and R. Warnock, Phys. Rev. 141, 1354
1966).

theoretical ground: they satisfy vertex symmetry
exactly and are independent of the choice of denomina-
tor function in our model.

Section X1II contains a comparison of our method with
the calculation of Wali and Warnock® and with tadpole
theory.® Finally, in Sec. XIII, the possibility of CP
violation is considered.

We do not provide much comparison with experiment
in the present paper; for such comparisons and for a
bird’s-eye view of the results, the reader is referred to
our earlier paper.!

II. SU3)-SYMMETRIC MODEL

In this section, we review the SU(3)-symmetric
reciprocal-bootstrap model?!® for B and A, as a pre-
liminary to the study of perturbations on the model.

The SU(3)-symmetric reciprocal-bootstrap model for
B and A is essentially an SU(3) generalization of the
Chew-Low model. One considers pseudoscalar meson-
baryon scattering, with B and A poles appearing in the
direct channel, and B and A exchange in the crossed
channels. As an approximation, only the nearby ‘“short
cuts” from B and A exchange are kept in the partial-
wave amplitudes. The short cuts are further approxi-
mated by “pseudopoles.”

Weshall define the scattering amplitude for IIB — IIB
in the P3js 10 channel by

T10,10%/% (W) = M?(e*mo—1) /2ig?, (2.1)

where, as usual, W is the center-of-mass energy and ¢
is the center-of-mass momentum. We take M equal to 1
BeV; the factor M2 is included to make the residues of
poles in the amplitude dimensionless.!* The amplitude

8 K. Wali and R. Warnock, Phys. Rev. 135, B1358 (1964).

9 S. Coleman and S. Glashow, Phys. Rev. 134, B671 (1964).

10 R, Dashen, Phys. Letters 11, 89 (1964).

11 Tn addition to M2, (2.1) differs slightly from Eq. (5.1) of Ref.
2 in the choice of kinematic factors. Equation (5.1) avoided some
distant kinematic singularities, which are, however, of no impor-
tance in an essentially static model such as we are using. The
present choice corresponds to the static crossing matrix used in
Table I. Actually, the static crossing matrix was also employed
in Ref. 2, so we effectively took (2.1) there as well.
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for IIB — IIB in the P12 8 channels is similarly defined
by oz = (43 2igt) (S—1), 22)

where, in this case, T is a 2)X2 matrix connecting the
channels §8; and 8,.

The various pole terms in the BII reciprocal bootstrap
are listed in Table I. Here, the angle 6 is related to the
usual F/D ratio A by!?

A=—(3/5/3) tand. 2.3)

We take 6 in the range f~ —25° to —45°, corresponding
to the value A=} to % which is indicated by several ex-
perimental and theoretical arguments.!*~15 G2 is related
to the usual #VN coupling f,nyn?~0.08 as follows:

G2=(20/3)[cosb— (v/5/3) sinf12(M /M ™) fonn?. (2.4)
The reciprocal bootstrap gives
G*?=(16/55) cos?0[1—(+/5) tand]G?, (2.5)

which is consistent with the experimental ratio of
N*Nw and NN couplings.

The residue matrix of the direct-channel baryon pole
may be diagonalized by passing from the octet states
|8,) and |8,) to |8) and |8¢+), defined by

|89)=cos0|8;)+sinfd|8,), (2.6)
| 8x)=—sinf|8,)+cosh|8,). 2.7)

In the new representation, the direct-channel baryon

pole has the form
80 80*

—-G? <1 O)
W—ME\0 0/
We shall use the 8¢ and 8¢+ representations in our study
of perturbations.
While it is convenient to make calculations in terms
of definite SU(3) representations and residues of poles,
we will also wish to express the results in terms of cou-

plings among particles. In the SU(3)-symmetric case,
the appropriate coupling for II;+B; — By is

8 8 8, 8 8 8,
Grit= l:cos()( >+sin0( ):l
i J k i j k
8 8 8
=i 5 1)
i j k

12 The tangent of 6 is the ratio of the coefficient of matrices Os,
and Os,, each normalized by TrO?=1. The usual \ is the ratio of
the coefficient of matrices F and D, which are proportional to Og,

and Og, but have the normalizations Tr(F?)=3 and Tr(D?)=3$.
The minus sign in (2.3) arises because we take sinf as the coefficient

of (f ? %“) in Eq. (2.9), where 7 refers to the meson in II;B;By,
coupling, whereas N is conventionally proportional to the coeffici-

(2.8)

(2.9)

ent ? g i“),and f 18 i") is antisymmetric in each pair of
indices.

13 A, Martin and K. Wali, Phys. Rev. 130, 2455 (1963).

1R, Dalitz, Phys. Letters 5, 53 (1963).

16 F, Giirsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters
13, 299 (1964).
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where the quantities in brackets are Clebsch-Gordan
coefficients as defined by de Swart.!® Similarly, the
SU(3)-symmetric coupling for II;+B; — Ay is

8 8 10
G,-,,*i=G*< )
i jok

As we have seen, the input parameters of this model
are the average masses of the B and A supermultiplets,
the F/D ratio, and the strong IIBB/IIBA coupling
ratio. The first two quantities are taken from experi-
ment, while the latter two ratios can be taken from the
reciprocal-bootstrap theory, which gives a range of
values consistent with experiment. These input param-
eters, as well as the form of the denominator function
which is discussed in the next section and Appendix B,
will be held fixed in all subsequent perturbations, and
no further parameters will be added to the model.

In spite of its crudity, the model just outlined is the
best available example of a bootstrap. It correctly pre-
dicts strong attraction in the 3+ octet and §+ decimet
channels, and repulsion or weaker attraction in the
other P-wave channels, in addition to giving the F/D
ratio of IIBB coupling and the ratio of IIBB to IIBA
coupling. The reason why such a crude model works so
well is not understood. We have nothing to contribute
on this topic, but simply take the point of view that
the success of the model makes it an especially favora-
ble starting point for the study of SU(3)-violating
perturbations.

(2.10)

III. SPECIFICATION OF BROKEN-SU(3) MODEL

We now turn to the study of symmetry-breaking per-
turbations!” on the reciprocal-bootstrap model of Sec.
I1. In broken SU(3), the residue matrix for the direct-
channel baryon pole will no longer have the simple
form of (2.7). Instead, we shall write it as

R(N,,N)+5R5(N',N) )

16 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

17 We would like to take this opportunity to list a number of
misprints and mistakes in our previous work on perturbations.
(i) In Ref. 4, two lines below Eq. (13), there is a misprinted sign
and the text should have read 6Ri;= — fid fi— (5 ;) f;. (i) In Ref. 4,
the entire right side of Eq. (22) should be multiplied by 3. (iii) In
Ref. 2, Table X, the S=27 term should have read

(—13+1822—451%) /3(5+30A2—27)9).

This misprint was confined to Table X, and the numerical results
quoted in Eq. (5.55) of the text are correct. (iv) In Ref. 2, top of
p- 1346, the statement that the SU(2) NN* reciprocal bootstrap
is stable under all conditions is incorrect. G. Shaw and D. Wong
(Ref. 5) have pointed out to us that 4; has a unit eigenvalue when
D has the straight-line dependence D= (W — M) and the parameter
¢ of the text is taken equal to unity; this is a special case of a general
theorem by I. Gerstein and M. Whippman, Ann. Phys. (N. Y.) 34,
488 (1965). As discussed in Ref. 2, however, there is no reason to
believe that these conditions for a unit eigenvalue of A3 should
actually be realized. (v) In Ref. 3, Table I, the entries for 10 and
10* should each be multiplied by 2. The 10 and 10* eigenvalues of
A remain small, so the discussion of the text is still correct.
(vi) In Ref. 2, Table I, the 8; — 8, element should read (—3-9A2)/
(104-18)?%). Again, the misprint was confined to the table, and the
resulting eigenvector was correctly stated in the text.

(3.1)
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Tasre II. A list of the perturbations on coupling constants
which are considered in this paper. 8Gs(IV) refers to the coupling
for B— B+II, where the final BII state is in the IV representation
and the whole coupling transforms like the .S representation.
8Gg*(IV) similarly refers to ABII coupling. For S=27, N=27 and
27’ refer to the two ways in which the baryon octet and BII with
N =27 are combined into S =27 by Chilton and McNamee (Ref. 29);
for S=8, N=8s(s) and 8;(a) refers to the two ways in which the
baryon octet and BII with V=8 can be combined into S=8, and
8¢+ (s) and 8p+(a) have a similar significance.

S N in 6G N in 8G*
89
1 o 10
1 8s
89(5) 80*
8pi(s) 10
8 8y(a) 27
8¢+ (a)
10
10
27
8s 89
8o (8)9*
10 1
27 10 -
27 10
27 27

where N’ labels the SU(3) representation of the initial
IIB states (N'=1, 8y, 8¢+, 10, 10, 27), N labels the final
I1B states, and the subscript S on the perturbed residue
labels the SU(3) representation which the symmetry
violation transforms like.

From (2.7) one sees that R(NV’,N) has the form

R(N',N) = —on+8,0n8,G*. (3.2)

Equation (3.2) exhibits explicitly the general property
of factorizability: The residue matrix always factors
into the product of two couplings, one connecting the
entrance channel to the intermediate baryon state and
the other connecting the baryon state to the exit chan-
nel. The perturbed residue matrix also has this property.
Therefore, in the study of the A matrix where one con-
siders only first-order perturbations, the perturbed
residue is a product of an unperturbed coupling dxs,G
or 8y5,G times a perturbed coupling. Thus, the elements
of R we need for a complete specification of perturbed
baryon couplings are

3Rs(80,N)=—GoGs(N), N8,

R s(86,80) = — 0G 5(8s)G— G3G 5(8s)
=—2G6Gs(8s).

3.3)

(3.4)

[For given time-reversal and charge-conjugation pro-
perties of the perturbation, 8Rs(V,8s) can be deduced
from 6Rs(84,/V); these properties are discussed in the
next section.

In a completely analogous fashion, we write for the
residue matrix in the J=$2+ channels

R*(N',N)+8Rs*(V',N), (3.5)
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where N’, N, and S are as previously defined. Here we
have

R*(N',N)=— 8y 100n,10G*? 3.6)

and we note that 6Rg*(V/,V) =0, unless at least one of
N or N’=10. The elements of 6R* needed for a specifica-
tion of perturbed ABII couplings are

SR*(10,N) = —G*sGs*(N)
SR*(10,10) = — 2G*5Gs*(10).

N#10 3.7)

(3.8)

Among the various possible values of S (namely, any
representation in 8X8X8 or 10X8X8), we shall con-
sider only S=1, 8, and 27. For strong perturbations
(i.e., AI=0, AY=0) the only other possibility is S=64,
which in practice is not driven by any mass shift and
therefore, as we shall find in Sec. IX, probably could
not compete with the doubly enhanced S=8 term, even
if an eigenvalue of 444 were near one. S=1, 8, and 27 are
also the only cases with driving terms Dg in electro-
magnetic effects of order e?, and in weak nonleptonic
interactions (if a current-current interaction symmetric
in the currents is assumed). The various possible éG(V)
and 6G*(N) for S=1, 8, and 27 are listed in Table II.
Since there are 12 independent coupling perturbations
with S=8 in our model, the matrix 4 g_s?¢ which gives
their effect on one another will be a 12)X12 matrix.
Similarly, 4s_19¢ is a 3X3 matrix, A9 is an 11X 11
matrix, 4,9¥ is 3X2 (mass shifts with S=1 occur once
in M3 and once in 6M2), Ag?M is 12X 3, and Ay?™
is 11X2.

The relation of 6Gs(V) and 6Gs*(N) to couplings
among individual particles is as follows. The perturba-
tion on the coupling for II;4B;— Bs, for a specific
symmetry-breaking transforming like the ¢ component
of representation S, is

S N><8 8 N

8
aiji=§ ZNaG,g(N)Z(k ) . (3.9)

o v/\i j§ v
Equation (3.9) is easily obtained: The second Clebsch-
Gordan coefficient represents the projection of II;B; onto
representation N, the first Clebsch-Gordan coefficient
represents the combination of B; with the same repre-
sentation N to form a coupling transforming like .S,
8Gs(N) gives the strength of this coupling, and Zy is a
normalization factor to be specified in Table IV. Simi-
larly, the perturbation on the coupling for IT;+ B; — A is

5ij*i= Z ZN*aGs*(N)
N

10 S N\/8 8
<, .
»\k o v/\i j
Having specified the perturbations to be studied, we
now turn to the dispersion relations which will be used

to calculate them. The relevant dispersion relations for
the S-matrix treatment of perturbations on masses and

]j) . (3.10)
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coupling constants have been developed in Ref. 4. The
relations are exact for first-order perturbations. For
shifts in BBII couplings they read

d 1 D7sTDaw’
et o[ L [T )|
aw i Jg W —W W=M?

(3.11)

where C is a contour running clockwise around the right-
and left-hand cuts of T (but not around the bound-
state pole at M%),

= i — MB)D!
A WIL%B(W MEDY(W), (3.12)
and the amplitude 8T and denominator function D
refer to IIB scattering in the Py state.

Now the unperturbed D function for the Py/; channels
has the form

D, 0 0o 0 0 0

0 Dys, Dsg 0 0 0

0 Dspsy Dsgs 0 0 0
DW)=|o 6" 0" pe o o G

0 0 0 0 Dy 0

0 0 0 0 0 Dy

when the matrix elements are taken between states of
definite N’ and N. In the neighborhood of the baryon
pole, we approximate this general form by

1 0 0000

0 Ds, 0000

0 0 1000
D=1y 9 01 0 0 (3.14)

0 0 0010

0 0 0001

with Dy, passing through zero at W=M?2. Actually, in
the simplified model of the present paper, only singulari-
ties near the baryon pole are considered in Eq. (3.11),
and the approximation (3.14) will be used throughout
this paper. The form used for D, is discussed below.

With the approximate form (3.14) for the D matrix,
Eq. (3.11) for 6R takes the explicit form*

1 Dgy0T g, nd W’
5R(89, N;é 80) = I ; , )
2wiDgy (MB) J¢ W'—ME

18 Since the physical-coupling shifts and mass shifts are inde-
pendent of the normalization of the denominator function, there
is no loss of generality in setting D(M5)=1 in the nonresonant
channels. The approximations in (3.14) are: (i) keeping D=1 for
W near MB in nonresonant channels; (i1) taking Dggsge = Dggrsy=0.
The justification for (i) is that the low-energy phase shifts are small
in the nonresonant channels and D is slowly varying. As far as (ii)
is concerned, Dg has the form Dy(W)=1— /S oNs(W'—W) dW’.
We can diagonalize D at some energy, such as the energy of the
A exchange pole. Dg then remains nearly diagonal over the low-
energy region, because the dominant term in N for the Py state
is A exchange which by itself would give an energy-independent
F/D ratio (i.e., it would allow an energy-independent diagonaliza-
tion of Dg).

(3.15)
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D26 sy 5,dW'
OR(85,80) = /‘ 8901 89,84
2mi[Dg/ (MB)J2 e (W'—MB)2
— Dg,/'(M?) Dig26T s, W’
(3.16)

2mi[Dg/ (MB)Je W' —MB

We shall also need the dispersion relation for §M3, in
order to study 47 in Sec. VII. Here, one is interested in
the masses of individual baryons 2, 7=1- - -8. The exact
dispersion relation for the mass shift of the ith baryon is*

) -1 DT ;DydW’
Mpi= , (3.17)
2miG[D{(ME) 2 Je W' —MB

where D; and 67'; all refer to the channel in which the
ith baryon occurs. In the approximation (3.14), D; is
simply Ds,.

For the J=35* channels, the unperturbed D function
again has the form (3.13). We approximate it by

100 0 00
010 0 00
001 0 00

DWW)=15 0 0 Dy 0 o> ©18
000 0 10
000 0 01

where Dyo has a zero at W=M?*. The dispersion rela-
tions for 6R* have the same form as (3.11), (3.15), and
(3.16), with D and 6T now referring to the P3/, channels,
Dg, now replaced by Dy, and ME replaced by MA.
Similarly, the dispersion relations for 6M %, i=1---10,
have the same form as (3.17) with G replaced by G*,
MZE by M4, and Ds, by Djo.

We now return to the choice of Ds, for /=34, and Do
for J=4%*. The form which will be used, for reasons
analyzed in Appendix B, is

Ds,=(W—MB)(Wo—MB)/(Woe=W), (319
Dyy=(W—M2)(We*—M2)/(W*—W), (3.20)

where Wy and Wo* are additional parameters in the
subsequent calculations. The sensitivity of our results to
these parameters will be discussed in Secs. VI, VII, and
VIII. It is found that 499 is relatively insensitive to Wy
and Wo* especially in the case of dR(8s, N5%8;) and
dR*(10, N5£10), since Dg, and Dso are found only once
in the dispersion relation for these quantities [Eq.
(3.15)7]. The sensitivity of A# to Wy and Wo* has been
studied in previous papers®!® and is somewhat greater.
We shall find in Sec. VIII that 4 9™ is extremely sensitive
to the exact form of the D function, so that we cannot
calculate the over-all magnitude of 49 reliably.

In the above discussion, we have restricted ourselves
to 6G’s which do not violate parity. Since we will also
be interested in the parity-odd violations of SU(3)
induced by the weak interactions, we now discuss the

19 R. Dashen, Phys. Rev. 135, B1196 (1964).
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changes that must be made in the above formulas for
nonparity conserving (P=-—1) 8G’s, To study the
(P=—1) 6G’s, we consider the residue matrix of the
direct-channel baryon pole in the amplitude for IILB
(J=% P wave) —» IIB (J=1 S wave). The unperturbed
residue vanishes in this case and since the parity viola-
tion occurs in the coupling of the final state to the pole,
we can write the residue as

SRs(N,N")=—by5,GoGsy» (P=—1) (3.21)

for N=1, 8, 8+, 10, 10, and 27. Note that for N'=38,,
the relation between 6R and G does not contain the
factor of 2 which is present in the P=1 case [cf., Egs.
(3.3) and (3.4)]. The relation between 8Gs(NV) and
8Gy;t is still given by (3.9), but on account of the above-
mentioned factor of 2, we use the Zy’s given in Sec.
XI [following Eq. (11.3)] rather than those of Table
IV.

To treat the (P= —-1) 8G*’s, we look at IIB (J=
wave) — (IIB) (J=% D wave). In analogy to the 8G’s,
the relation between 8Gr;** and 6Gs*(NV) is given by
(3.10), where the Zy™s are to be taken from Sec.
XI.

Next we must specify the S- and D-wave denominator
functions. We assume that in the low-energy region
under consideration, the 3~ and §— denominator func-
tions can be set equal to unity in all SU(3) channels.
Equation (3.11) then gives

1 Dgo&TSg'NdW,
SR (86,V)=—
2wiDs,' (MB) W'—M?B
(P=—1) (3.22)

and an analogous equation for 8R*, where 87T is, of
course, the parity-violating amplitude for

=1 —_1—
]—§+-—>]——§ .

Note that we no longer have to write a special equation
for N= 80.

To conclude this discussion of the general method
used in this paper, we comment briefly on two of the
most flagrant omissions in our treatment: vector meson
exchange, and effects on 49#3M of shifting the external
pseudoscalar-meson mass. These omitted terms, while
not negligible, are expected to be somewhat smaller than
the B- and A-exchange terms for the following reasons:

(i) Vector-meson exchange is a rather short-range
effect and should therefore be less important for per-
turbations than it is in the strong interactions.

(ii) The effect of shifts in external II mass can be
studied explicitly. On the right cut in Egs. (3.15)~(3.17),
the kinematic factor ¢=3 in the definition (2.1), (2.2)
of T is modified in a calculable way. On the left cut, the
“short cuts” for B and A exchange are modified in a
calculable way. (One has to leave the pseudopole ap-
proximation and go back to the short cuts to study this
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effect.) In each case, the effect of 6M™ is multiplied? by
MU/M3 and the numerical results are rather small.2

(iii) In any case, an omitted term such as
ASBBIOMIEXt) jg an  “off-diagonal” part of the A4
matrix. As such, it can influence eigenvalues of 4 only
through the combination A&BBIDMIAMUg(BED  Thyg
the eigenvalues of 4 studied in this paper are not sensi-
tive to pseudoscalar mass effects unless 6M™ strongly
influences baryon properties and baryon properties
also strongly influence 6/ ™. The same statement applies
to vector-meson effects.

IV. EQUATIONS FOR A7

The purpose of this section is to provide the specific
equations needed to calculate A99.

The elements of 499 to be considered were described
in Sec. I1T; they include the effects of shifts in B-exchange
and A-exchange couplings on the BBII and ABII cou-
plings in the direct channel. The interactions which are
involved, written in terms of fields, are the BBII
interaction

Hppn= 3 Gag"avsysdr (4.1)
afk

(it is understood that one takes the commutator of ¥
and ¢ to avoid infinities), and the ABII interaction

Husu=2 Gag*"P,,¥8s0,b%

afk
+ Zﬂ:k Gog * "l 0a,0,0%. (4.2)

Geg® is the sum of the SU(3)-symmetric coupling (2.9)
and the perturbation (3.9); Gas** is the sum of the
SU(3)-symmetric coupling (2.10) and the perturbation
(3.10). By standard methods,?* one finds that Her-
miticity of the interaction Hamiltonian implies the
conditions

Gag"=(—1)%Gp.F,

Gog®= (=)0 as'™,

where the bar over G denotes complex conjugation and
Qr refers to the electric charge of particle k.

In studying the weak interactions, we shall be inter-
ested in couplings with various properties under C, T,
and P. For P=+, one finds that

4.3)
(4.4)

aﬂ —C( I)QkGﬁa ’ (4~5)
Gpa**=C(—1)%UGyg'** (4.6)
and that
G, G* G'* real}T=+, P=+,
real} 7=+ + @

G, G*, G’* imaginary}T'=—, P=+,

where C== and T=d= refer to the behavior of the
interaction Hamiltonian under charge conjugation and

20 F, Henyey (private communication).
21 See, for example, S. Schweber, An Introduction to Relativistic
Quantum Field Theory (Harper & Row, New York, 1961)
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time reversal, respectively:

CHC-'==+H,
THO)T'=+H(—1).

If parity is violated, one finds by studying the relevant
analogs of Egs. (4.1) and (4.2) that the Hermiticity and
charge-conjugation conditions (4.3)-(4.6) are un-
changed, whereas the time-reversal condition becomes

G, G* G'* imaginary}T'=+, P=—, (4.8)
G, G* G* real}T=—, P=—. 4.9)

We now describe in some detail how to calculate a
typical element of A9, namely, the effect of 6R(84,X)
and 8R(X,8p) shifts in baryon exchange on the direct-
channel residue 6R(84,X’) (Fig. 1). X and X’ can take
on any values in Table II. If X’#8y, for example, the
dispersion integral to be evaluated is

1 D89<W,) 6T89.X'dWI
R )= [ 2
2mwiDgy/ (M®) J ¢ W'—MB

The main job is to calculate 67's,,x+. First we shall cal-
culate 87T, and then project out the contribution to
8Ts,,x-. To obtain the contribution to 87),,,, from
coupling shifts in baryon exchange, one evaluates the
Feynman diagrams, Figs. 1(a) and 1(b), by standard
methods. As usual,?* 8T divides into a factor involving

. (3.15)

COUPLING SHIFTS IN BROKEN SU(3). II

(a) (b) (c)

P

2.7

F1c. 1. Diagrams representing residue shifts (a) sR(X,8,) and
(b) 3R(8,X) in baryon exchange, and the residue shift (c) 6R(85,X")
in the direct-channel baryon pole term. The coupling shift occurs
at the vertex with the blob. Baryons are represented by solid
lines and pseudoscalar mesons by broken lines.

products of SU(3) Clebsch-Gordan coefficients, and a
dynamical factor which is the same for all SU(3) states.
(It depends on the nucleon-exchange pole and ordinary
spin crossing.)

We evaluate the SU(3) factor first. For II,,+B,, —
11,,+ B,,, the contribution to 6T from exchange diagrams
1(a) and 1(b) is

0T ya w304 = 2 (T a0Gary”Gia”+ T'60G 00s"3Gria™) . (4.10)

Here, T, and T’ are the SU(3)-independent “dynamical
factors” for Figs. 1(a) and 1(b), respectively. To obtain
the correct SU(3) labels on the couplings, one notes that
¥ in Eq. (4.1) creates particles, ¥ destroys particles, and
¢, destroys % and creates k. By use of condition (4.5),
Eq. (4.10) can be re-expressed as

(4.11)

6Tv1vz,v3v4= Z (TaaGavthauﬂ(* 1) Q”1+ TbCGayznaGauh( - 1) Q"x)

(we take C=+ automatically for G but leave both possibilities, C=+ and C= —, open for 6G). It is convenient
to express G and G in terms of SU(3) Clebsch-Gordan coefficients by means of Eqgs. (2.9) and (3.9). Equation
(4.11) then becomes

8 § X
5T wammwe=GOG5(X)Zx(— 1)@ Z( >

ary\& O 14

8 8 X\/8 8 & 8 8 8\/8 8 X
LI e e s M T
Vg Vo 14 Vi V4 «© Vg Ve o Vi V4 Y
for perturbations that transform under SU(3) rotations like the o component of representation .S. Next we need to
perform a suitably weighted sum over »1, vy, v3, v4 to project out 67s,, /. In this connection, note that the amplitude
for Fig. 1(c) is
- (Z GﬁvzvlaGuﬁﬁa) (W"' M B)*l .
8

It can be re-expressed with the help of Egs. (4.5), (2.9), and (3.9) as
— (X Gpu0G, ) (W—MB)™= — (T Gpyy"10Gpy*(— 1) C) (W — ME) 1
] ]

c Vv

__Gacs(v);’)_zﬂji—l)avac%(s S X’)(S 8 89>(8 8 X:’) 4.13)

vi va B/\vs vg »

Here we have Fig. 1(c), which is pure 8 — X’, written in terms of individual particle states. Evidently the factors
depending on vy, vs, vs, and v4 in (4.13) can be used as a projection operator for 8 — X’. Indeed, letting N g and Ny
denote the dimensions of the S and N representations, respectively, multiplying (4.13) by N gN x—Zx~2 times the
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coefficient of — GG s(X')(W —MB)1 in (4.13), summing over all indices and using the orthonormality relations!®

8 8 X\s8 8 X
Z( )( )=5XX,5W,, (4.14)
vve\y1 Vg ¥V Vi V2 v
8 § X\? Nx 8 X' S\? Nx
S et
By g v ]Vs B ﬁ v (4 Ns

one obtains —GdG ¢(X")(W —ME)~1, which is precisely the contribution of Fig. 1(c) to 6T, x . Multiplication of
(4.13) by an operator of the same form but with (X»)# (X’»"), or (X",8)5% (84,8), or (S’,0") % (S,0), gives zero be-
cause of the orthogonality relation (4.14). Thus we have found the suitably normalized projection operator

8 § X'\/8 8 8\/8 8 X
5T80,X'=NS‘/\7X,_1ZX’_1CZ Z (-—I)Q"s(ﬁ )( )( )5T,,1y2,,,3y4. (4.16)

7
By’ vvaravs g vV/\v1 ve B/\vs vy v

Applying this projection to the exchange terms (4.12), one obtains

GﬁGs(X)ZxIVs 8 8 80 8 8 X’ 8 8 X\s/8 8 &
tue=— =2 = (0 L)
Zx'Nx: apw’ vyvwws\vy ve B/ \vs vy V' v3 ve v/ \i1 vs «

8 8 8\s8 8 X 8 S X\ S X
A0 () S AR A R
Vg ve a/\vy vy v a o v g v

The only factors in (4.17) which depend on the energy W are the “dynamical factors” T', and T'. Therefore, the
result of plugging (4.17) into the dispersion relation (3.15) for X'8 is

_GaGs(X)ZxN,g 8 8 8\s8 8 X 8 8 X\/8 8 8
B T o L W
afvy’ vivavavs ’ - _

x'Nx: vi v2 B/\vs ws v 93 ve v/\i1 vs «
8 8 8\/8 8 X 8 S X\/8 S X
s N el )G ) el
b3 ve a/\P1 vy v a o v/\B o V
where 1 Day(W) T o(W")dW"
058 A (4.19)

2wiDgy'(MB) J ¢ (W—ME)
and 788 is similarly defined.

For parity-conserving couplings, the dynamical factors T, and T', are evaluated as follows. Evaluation of the
Feynman diagrams, Figs. 1(a) and 1(b), gives the coupling factors of Eq. (4.10) times the projection of the nucleon-
exchange pole onto the Py /s state. The projected nucleon-exchange pole gives the usual “short cut” around W=M3
and the long cut along the imaginary W axis. Our approximations involve keeping only the “short cut” and re-
placing it by an equivalent pseudopole (W — M Z)~1. The pseudopole is also multiplied by the usual static-spin cross-
ing factor —% for crossing the Py); state into the Py, state. Thus, for parity-conserving couplings,

To=Ty~—1/3(W—MBE). (4.20)

In the present case, the contour C in (4.19), which generally encloses the left- and right-hand singularities (but
not the bound-state pole), shrinks to a clockwise circuit of the exchange pseudopole (which we displace from the
direct-channel pole by e for this purpose). Since at this pole Dg,(W")(W’'—MB)~! is just Dg,'(M3), we obtain

naBB=nBB=—1. (4.21)

The foregoing results applied to X’8,. For X'=38y, all relations are unchanged through Eq. (4.17), which now
(in the parity-conserving case) must be plugged into (3.16) rather than (3.15). One again obtains (4.18), but 7,58

is now given by -1 / D802TudW, ' DBe”(MB) D892TadW/
 2mi[Dey (MY ) o (W —MB)2 ' 2mi[ Dy (MB) 2 S0 W— 1B

and 7338 satisfies a similar equation. Inserting (4.20) into (4.22), one obtains the same value as (4.21) for nB8
[the second term in (4.22) contributes nothing when the zero of D overlaps the exchange pole].

BB

(4.22)
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TasrE II1. Values of the quantity s for couplings with P=+-. K is defined by K(W)=D(W)[(W—-M)D'(M)]™.
The quantity 7e is the same for all C and 7. For P=+, 53=1,.

71q for linear-D

na for general D approximation
1aBB(X 7 8) —3 —3
1aP5(X =8y) —% —%
noP4(X58,) $Ksy(2MB— M%) 5
7aB4(X =8p) $Ks92MB—M*){Ks9(2M5—M*) — Dg(2ME— M2) Dsg” (MB)[ Dy’ (MZ) 1%} 5
7a2B(X 5£10) 3K 10(ME) H
7a*F(X =10) $K10(MB){K10(MB) — D1o(MP) Dro” (M4)[ D1’ (M *) %} 3
724 (X 10) 1K10(2MB—MA) 3
744(X=10) 1K10QMB—MA){K10(2MB—M2) —D1o(2MB —M2) D1o” (M2)[Dyo (M2) ]2} 3

It is straightforward to derive the effects of R* shifts in A exchange on the direct-channel residues 6R and 6R¥,
and of OR shifts on 6R*, by the same methods used above for the effect of 6R shifts on 6R. One finds, for the effects
of A exchange,

—G*5Gs*(X)Zx*N g 8 8 8\/8 8 X’ 8 8 X\/8 8 10
SR s(80,X") = > z( )( )[n.,m( )( )
afw! vivavgra

Zx'Nx vi v2 B / 3 ve v/\P1 vs «

Vs V4 14
8 8 10\/8 8 X 10 § X\ S X
e A T AR R
3 ve a/\p1 vy v a o v/\B o V
and

—G*Gg*(X)Zx*N g 8 8 10,/8 8 X’ 8§ 8 X\s8 8 10
i 10.0)= 220 0 e G
afvy’ vivevavy Vg ve v

Zx*Nx/ vi v2 B ! V1 ovs o«

vy Vs ¥
8§ 8 10\/8 8 X 10 S X\s10 S X’
s G ()G L) e
s ve a/\Py vy w a o v/\B o V

and, for the effect of B exchange on the A residue,

—GGs(X)ZxN g 8 8 10/8 8 X' 8 8 X\/8 8 &
om0 =2 2 o LG )
afvy’ vivovgra v

Zx*Nx v vy B ! 3 ve v/\bh1 vs «

V3 V4 14
8 8 8&\s8 8 X 8 § X\s10 S X
+776ABC< >< >:|(_ 1)Qv1+QV3( >< > . (4,25)
vg ve a/\v1 vse v a o v B o Vv

The coefficients n, for the various cases of positive-parity couplings are listed in Table III. These coefficients are
independent of T and C, which affect only the coupling factors. The coefficient 75 equals 7, in each case as we
found for 55B. The 7 coefficients for negative parity couplings are quite different and will be discussed in Sec. XI.

We are now finally in a position to evaluate 499, which is essentially given by the coefficients of G 8G on the right
side of Eqgs. (4.18), (4.23), (4.24), and (4.25). Of course, we are free to evaluate 499 in terms of any convenient set of
basis states we like; for example, either 8G’s or 6R’s may be used and their normalization factors Z and Z* are at
our disposal. We choose Z and Z* and the states connected by 4 in such a way as to make 4 symmetric.??

A9 can be symmetrized exactly only when the linear-D approximation is made in 5, so let us consider that case
first. ACEICE) for example, will be deduced from Eq. (4.18). The sum over Clebsch-Gordan coefficients in (4.18)
is symmetric between X and X’, and the factor in front also becomes symmetric if we take Zx=(Nx)~V/2 and
Zxr=(Nx/)~2 Similarly, Eq. (4.24), from which 4%*X7¢*X) wi]l be deduced, becomes symmetric if Zx* is taken
proportional to (Vx)~'/2. Next we look at (4.23) [ASE¢*®) 7 and (4.25) (4¢* &), Once again, the sum over
Clebsch-Gordan coefficients is symmetric—that is, the sum in (4.25) equals the sum in (4.23) with X and X’ inter-
changed. The inequity in the coefficients, n%4= 2928, can be offset by dividing Zx* by an overall factor V2 rela-
tive to Zx. If 6G and 6G* were used as the basis, the factors G and G* would provide another asymmetry; this is

221In this way we are guaranteed that the eigenvectors of 4 form a basis in our space of states. Also the numerical procedure is
simplified. (For example, the Caltech Computer Center subroutine for determining the eigenvalues and eigenvectors of a matrix
happened to work only for symmetric matrices.)
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avoided by using 6R(8¢,X) = —G8G(X) and 6R*(10,X) = —G*3G*(X) as the basis. In other words, we shall actually
calculate a matrix 4 %2 which differs from 499 by a change of basis. The eigenvalues, which are the solutions of
det(4—\I)=0, are unaffected by this change of basis. Symmetry would now prevail, were it not for the fact that
8R(84,80) = —2G3G(84) and §R*(10,10) = — 2G*3G*(10) [Egs. (3.4) and (3.8)]. This last asymmetry is overcome by
letting Zg,=V2(8)~'/2 rather than (8)~'2, and by letting Z10*=Vv2(10)~"/2. Our final choice of Z’s and Z*s is sum-
marized in Table IV.

With this choice of Z’s, the expressions for the matrix AEE come out with a factor Ng(NxNx/)~/? in front,
modified by various square roots of two. In order to absorb most of these v2’s and give the results in a more unified
form, we define #nx and #x* to have the values in Table IV, and replace Nx or Nx- by #nx when they refer to BBII
couplings, and by #x™ when they refer to ABII couplings. The elements of 4 Z% are now given by the coefficients of
R on the right side of Eqs. (4.18), (4.23), (4.24), and (4.25). They have the values

Ng 8 8 8\/8 8 X’ 8 8 X\s8 8 &
ARGLXRG)=— ¥ 3 ( )( )[naBBC( )( )
(anX;)l/z apw’ vvwwi\vy ve (3 v g vy v/ \P1 vs4 «
8 8 8\/8 8 X 8 § X\/8 S X'
o Ko v )G L ) e
a o v/\B8 o V

Ng 8 8 8\s/8 8 X’ 8§ 8 X\s8 8 10
ARGLXVRK 0= ° 3 < >< >|:,7am< >< )
Qux*nx: )2 apw’ vowwpa\vy vy B ove a

8 8 10\/8 8 X 10 § X\/8 S X
T ( ( ]evere ) ), @

a o v/\B o V

NgV2 10 8 X’ 8§ 8 X\s8 8 &
e armesar o (Y (Y L (R (R
(nxnx *)V2 apw’ vowwa\vy ve B/ \p3 1 vy o«

8 8 & 8 X 8 S X\s/10 S X’
nonc( ) ]eeve” " 7N ), @9

73 ve o o v/\B ¢ V

(8

71
Ng 8 8 10\/8 8 X’ 8§ 8 X\s8 8 10
T TS B s
(nx*nx:*)”? afw’ vvvara\vy ve 7/ \p3 v/\i1 vy «

8

8 8 10 8 X 10 § X\/10 S X’
_I_,”bAA< )( )](—I)QV1+Q”3< )< ) . (4.29)
g ve a/\iy vy v a o v/\B o V

As we have already said, the eigenvalues of AE® are bers 8R(8¢,X), 6R*(10,X) with X running over the
the same as the eigenvalues of 497 which we started out  values listed in Table II. The corresponding coupling
to calculate. A little work is needed, however, to obtain  shifts, in the same basis, are

the physically interesting ratios of coupling shifts _
8Gr;* and 8G;*¢ that correspond to a given eigenvector 8G (X #85)=—08R(8s, X>8,)/G, 3.3)
of ABE, Each eigenvector resulting from diagonaliza- 8G(84)=—06R(84,80)/2G, (3.4)

tion of AEE as defined by (4.26)-(4.29) is a set of num-
5G*(X#10)=—R*(10, X5210)/G*,  (3.7)

TasLe IV. Values of the normalization factors Zx and Zx*
and the factors #x and nx* used in defining ARE for P=+ 8G*(10)=—8R*(10,10)/2G*. (3.8)
couplings.

The individual-particle coupling shifts 6Gx;* and 8G;**
X Zx Zi* nx  nx*  are given in terms of 6G, Z, 8G*, and Z* by Egs. (3.9)
and (3.10). Using Egs. (3.3), (3.4), (3.7), (3.8), and the

80, 8 (sl) 8(a) ; 1 1; 3 specification of Z and Z* in Table IV, one obtains
8px, 8ok 8 8)~1/2 L 8 8 —
e (1% @ (1(0;—1/2 (10)-1/2 10 20 6Gk;’=—0‘1§(nx) 1125R 5(89,X)
i0 (10)—1/2 (20)~172 10 10 8 § X\s8 8 X
27,27 @nme (s 21 27 z( )(«a y) (4.30)
v\k o v/\i § v
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and
G*1

0Gy*i=—

2 (nx*)1%Rs*(10,X)
X

(LG5 e

for symmetry breaking transforming like the ¢ com-
ponent of representation S. Note that G~ is numerically
about equal to G*-1/v2 [Eq. (2.5)].

The basic equations we have just derived all hold for
any D function. The convenient property that 4®Z as
defined by (4.26)—(4.29) is symmetric, however, holds
only for the linear-D approximation because otherwise
the differences between 7,84(X8y) and 7,23(X=8,),
etc., in Table IIT introduce asymmetric terms into 4.
For example, setting Wo=7M /3 in Dg, (3.19), one ob-
tains 7,54(X5£85)=0.8X 4 in place of the linear value %.
By taking W¢*~8M /3 in Dy (3.20), one obtains the
same reduction,? 7,28(X>£10)=0.8X% in place of Z.
The symmetry between AEZ* and AR*E can thus be
maintained readily enough, except for 7,52(8s) and
7,2%(10) which come out ~0.95X% and 0.95X%, re-
spectively. Similarly, for the value of Wo* considered
above, 7,44(X#10)=~0.7X% in place of the linear
value §, but 7,24(10)~0.9X%, introducing an asym-
metry. In studying nonlinear D, we ignored the asym-
metry from this source by using, for example, the 0.8
rather than the 0.95 reduction through 42%* and 4 E*E,
Evidently, this approximation could introduce errors
of order 159, into the results for nonlinear D. The
errors in 724 are less important because 742 is a small
term to start with (this can be traced back to the cross-
ing matrix for ordinary spin, which is responsible for
making ##4 and 5AZ the biggest terms in Table III).

The basic formulas (4.26)-(4.31) define the eigen-
values and eigenvectors of 499 for all P, C, and T. The
C dependence is explicit in (4.26)—(4.29). The P de-
pendence is contained in the factors 5, #, and n*. (The
values of these factors for P=— are given in Sec. XI.)
Av9 is independent of T, which affects only the reality
properties of the couplings connected by A99.

In practice, both the evaluation of the elements of
AER (4.26)—(4.29) and the diagonalization to determine
its eigenvalues and eigenvectors were performed by
computer. The following checks were made on the com-
puter results:

(i) The elements of AER giving the effect of 6Rg(8,36)
and 8Rs*(10,10) exchange terms on 8Rs(86,8s) and
0R5*(10,10) possess certain simplifying features. Ordi-
nary conservation laws ensure that only a=» and g=»
contribute to the sums over products of Clebsch-Gordan
coefficients in Egs. (4.26)—(4.29). Furthermore, since
for a given .S there is only one 6R and one R* term of

]

% We take this value of Wo* only by way of illustration. If a
different Wo* is used, the reduction of 74 and %45 can still be kept
symmetric by another change in the basis vectors.
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this type [except for 6Rs(8¢,85), where the two terms
that arise, X=28¢(s) and X=28(a), are easily distin-
guished by their symmetry properties], each of these
elements of 4 can be evaluated by considering a single
value of 8. With these simplifications, it is easy enough
to evaluate these elements of 4 %% by hand. The results
are already available in Ref. 2, where precisely the same
sums over products of Clebsch-Gordan coefficients?*
were needed to calculate 4¥M (exchange) Thyg we were
able to check the computer results for these elements of
AZEE against results obtained earlier by hand.

(ii) The elements of AR connecting parity-violating
couplings also possess simplifying features, especially
when expressed in terms of a different basis (see Ref. 3
and Sec. XI of the present paper). These simplifications
made it possible to determine by hand the eigenvalues of
AEE for parity-violating couplings in Ref. 3, and these
eigenvalues provided another check on the computer
results.

V. VERTEX SYMMETRY

In a fully satisfactory calculation, the couplings ob-
tained would naturally satisfy the Hermiticity condition

Gagh=(—1)4Gg,F. 4.3)

This condition says, for instance, that the coupling of
the A bound state to the Z—#* channel should equal the
coupling of the 2~ bound state to the A=~ channel, up
to a known phase factor. Our approximate calculation
fails to ensure this result, however, because it fails to
enforce unitarity of the S matrix in all channels fully,
and one knows from

S=eiSHit

(5.1)

that the unitarity of S'is related to the Hermiticity of H.
This is a well-known problem.®? Approximations
which automatically possess correct Hermiticity proper-
ties have been constructed, but always at the cost of
some other desirable property which the theory should
also have.
We handled the problem as follows:

(i) The couplings with the wrong Hermiticity pro-
perty [a minus sign in Eq. (4.3)] were projected out of
AZERE, All eigenvalues and eigenvectors of 42 listed in
the rest of the present paper have been so treated,?s
except for Table VIII, which is presented for comparison.

(ii) The eigenvalues and eigenvectors obtained after
the projection were compared with those obtained be-
fore projection in order to see how serious the incon-

24 A similar connection between the Clebsch-Gordan coefficients
in elements of ARE and AME will be worked out in detail in
Sec. VII.

2 Couplings with the wrong Hermiticity should also be projected
out of 40 and A9, This was not necessary in the present paper,
however, because all we do with A#¢ is to show it is very small
(Sec. VII), and we use A9 only to estimate the effect of mass
shifts on several of the enhanced eigenvectors for coupling shifts
(out of which, terms of the wrong Hermiticity have already been
projected).
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Tasre V. Couplings with P=+4-, T=+, C=—. Each coupling is expressed as a vector with
components 8Rg(84,X). The vectors listed here are not orthonormalized.
S=8 S=27
V18 VZs Vas V127 V227
SR (8,,1) -1 0 -1 3R (84,80) —2V2 cosf —VZ(cosf+4/5 sind)
SR (8,84(s)) £ cosf —sing/v2 —cosf/10 3R (84,86+) 4 sinf 2(sind—+/5 cosb)
SR (85,80+(s)) —42 sinf —cosf sin6/5v2 3R (85,10) —+/5 —4/5
8R(84,84(a)) 0 cos8/v2 sinf/2 5R(8,10) /5 0
5R(84,8¢%(a)) 0 —siné cosf/V2 8R(80,27) —(14)112 —(7/2)12
8R(84,10) 2/(10)1/2 1 1/(10)/2 8R(80,27") 0 —(15/2)12
3R (85,10) 2/(10)1/2 -1 1/(10)1/2 8R*(10,85) 0 0
SR (8,27) v3/5 0 3V3/5 SR*(10,84+) 0 0
S3R*(10,8,) 0 0 0 8R*(10,10) 0 0
SR*(10,8¢%) 0 0 0 8R*(10,10) 0 0
3R*(10,10) 0 0 0 8R*(10,27) 0 0
SR*(10,27) 0 0 0

sistencies of the model are. Many eigenvalues changed
by 0.1 to 0.2 and the eigenvectors changed even more.
The leading eigenvalue 4 s—3?¢=0.93, which is what we
use exclusively to determine strong and electromagnetic
coupling shifts, changed only from 0.96 to 0.93, however,
and the associated eigenvector only by 5%,. (By this we
mean that the inner product of the eigenvector before
projection with the eigenvector after projection is
0.95.) Other eigenvalues which play a leading role in
weak couplings are also quite stable under projection.
The leading eigenvalues for P=-4, C=—,2%6 §=8§
couplings change from 0.92 to 0.89 and 0.85 to 0.82,
with the associated eigenvectors changing by 79, and by
5%, respectively, and the leading eigenvalue and eigen-
vector for P=—, S=8 couplings are unchanged by the
projection for reasons mentioned in Sec. XI. Thus the
lack of Hermiticity in our model does not appear to
have any serious effect on our main conclusions.

In the rest of this section, we give the technical de-
tails of the projection. Note that, since AII external
states were not considered, the problem of consistency

TasLE VI. The nonzero elements of t? 2: 2:) foro=(¥'=0,

I=0 member of 27). For this value of o, the « and » of nonzero
elements have the same (Y,I,/5). The choice of over-all sign is

arbitrary.
10 27 27
a o v

(1/14)172
(1/14)1/2
(1/14)112
(1/14)112
—(3/35)12
—(3/35)112
—(3/35)1/2
—(8/35)1/2
—(8/35)1/2

Y,1,1;fora and »

W N = O b 10je0 B M) e

OO O ke
Ol R e 1900 B9fe0 N0 000

2 For a self-charge conjugate representation, € is equal to the
charge-conjugation parity of the I =0, ¥ =0 member of the repre-
sentation. M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).

between couplings for A,— Bgll; and Bg— Allx
did not arise in our model. Thus we can confine our
attention to the consistency between B, — Bgll; and
Bs— B,lI;.

For parity-conserving couplings with 7=+ (i.e., real
couplings), condition (4.3) for Hermiticity is the same
as condition (4.5) for C=-.2" Thus, the spurious terms
to be projected out in this case are the C=— couplings.
The number of such terms for each S can be determined
by considering some SU(3)-charge-conjugation proper-
ties of BBII couplings. The BB states Y=1, 8,, 8,, and
27 with J=0all have €= 4-,* and the states ¥ =104-10
and 10—10 provide one €=+ and one €= — combina-
tion. The J=0 II state has C=-. The total @ of the

BBII interaction is C(BB) X €(IT) X [phase factor under

2 I: i)] One finds
that both S=1 couplings (¥ =8, and 8, combined with
the octet of II’s to make S=1) are @=- since 1 is one
of the symmetric terms in 8X8. This is the reason why
SU(3)-symmetric bootstraps automatically produce
Hermitian couplings: there is no €=—, S=1 coupling.
Three of the eight S=8 couplings have €= — however,
and two of the six S=27 couplings have €= —.2 For
strong perturbations transforming like the ¥=0, I=0
members of representation S, C is equal to @, so we need
to project out three S=8 couplings and two S=27
couplings. The same result holds for electromagnetic
perturbations (Y=0, Iz=0, I=0, 1, 2 members of
representation .S).

Now AEZ js calculated in terms of couplings labelled
by the representation of the IIB state, rather than the
BB state [the IIB labeling is most convenient because

interchange of ¥, 7, and 8, & in (

27 The effects of T, C, P, and Hermitian conjugation are linked
through the 7’CP theorem.

8 For S=8, the three €= —couplings are the antisymmetric
octet formed from ¥ =8; and II, the antisymmetric octet formed
from ¥=8, and II, and the_octet formed from II and one of the
combinations of ¥=10 and 10. For S=27, the two € = — couplings
are one of the 27’s formed from IT and ¥ =27, and one of the 27’s
formed from IT and a combination of ¥'=10 and 10.
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the D functions in Egs. (3.15)-(3.17) refer to definite
representations of IIB7]. To obtain the @= — couplings
in the IIB labeling, we write the condition for C=—

coupling i
3Gt = — (—1)3G,F (4.5)
and express both sides in terms of 6R’s by means of
Eq. (4.30):
8 § X\/8 8 X
s rss0z( )7
X v\a o v/\k B v

= — (= 1)% xR (8, X')

X}:<8 S X’><8 8 X’). 5.2

v g vV/\k a V

We take for ¢ the I=0, ¥ =0 component of S so that @
will have the same value as C. Then we simply apply
(5.2) to various values of , $, k until the required num-
ber of linearly independent €= — couplings is obtained.
The P=+4-, T=+, €=— couplings obtained in this
way for S=8 and S=27 are listed in Table V. To pro-
ject out spurious €= — couplings from A4 s_s®%, for ex-
ample, one first orthonormalizes the V¥s in Table V
(denote the resulting vectors by V%), and then forms

(A 5=s'BR) ;=3 Pir(A4 5=s"F)iP1j, (5.3)
kl

Pij=d;— 23: (VeS=90u(V,5=5);. (5.4)

r=1

It is the eigenvalues and eigenvectors of 4’%® which we
will actually apply to strong and electromagnetic and
(the P=+, T=+4, @=+ part of) weak interactions.

In Sec. XI, in connection with weak interactions, we
will give the alternative procedure to be followed when
one is interested in €= — couplings, and wishes to elimi-
nate spurious €= couplings which got mixed into
AREE@=) a5 a result of approximations.

VI. RESULTS FOR AEE

We are now ready to determine the eigenvalues and
eigenvectors of 4£% by calculating the elements in Eqgs.
(4.26)-(4.29), “purifying” with the projection of Sec. V,
and then diagonalizing the resulting matrix. The values
of nx and 9 needed to calculate (4.28)—(4.29) are given
in Tables IIT and IV. The requisite SU(3) Clebsch-
Gordan coefficients are given explicitly in convenient
tables by McNamee and Chilton,?® who followed the
conventions of de Swart.!® The only coefficients that
could not be obtained directly from these references
were

<1o S=27 X=27)
84 g 14 ’

2 P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 1005
(1964).

8 couplings calculated with §=—28° and linear D functions, before the projection of Sec. V is made.

=+,S

=+, T

=+,C

TaBLE VII. The matrix 42E for P

8R(85,27)  SR*(10,8)) 8R*(10,85:) 8R*(10,10) 8R*(10,27)

3R (84,10)

3R(85,85(s)) SR(85,86+(s)) 6R(86,86(a)) 8T(S5,80¢(a)) 8R(84,10)

SR(85,1)

—0.064

—0.138 0.259 0.027 0.000
—0.237 —0.456

—0.067
—0.138

—0.161

—0.017 0.021 0.045 —0.048 0.048
—0.086 —0.064 0.037
—0.000

0.050
—0.078

SR (8,1)

0.000
—0.000

0.126
—0.220

0.044

—0.078

0.019

0.050
—0.017

SR(84,86(s))

0.117

0.415

0.061

0.082

0.073
—0.000

0.019
—0.086

—0.064

SR (80,86%(s))
8R(80,80(a))
SR(84,8+())

0.744
—0.161

0.000

0.
—0.389

0.105

—0.000

0.199
—0.001
—0.395
—0.220

0.006
0.090
0.043
0.009

—0.111

0.083
—0.146
-0.077
—0.016

0.070
—0.000
—0.139
—0.077

0.000
0.000
—0.000

0.082

0.021

I

000

0.000

0.070

0.061
—0.078
—0.000
—0.161
—0.220

0.045
—0.048

0.284
0.284
0.000
—0.100

0.000
—0.328
—0.232
—0.000
—0.039
—0.021

0.044
0.037
—0.138

3R (85,10)

3R (85,10)

0.389
0.275

—0.146

0.083

0.048
—0.067
—0.138

0.123
0.139

—0.000

0.009
—0.220
—0.328

0.043
—0.395

0.090
—0.001

—0.000

0.006
0.199
0.105
0.000
0.744

SR (86,27)

0.137
—0.021

0.123
—0.232

0.126
—0.237
—0.456

3R*(10,85)

0.015

0.000

—0.389

0.415

0.259

3R*(10,8%)
3R*(10,10)

0.060

0.000

0.137

0.117 0.000 0.389 0.275
—0.161 —0.100

—0.000

0.027

0.060 0.066

0.015

0.284 0.000

0.284

0.000

0.000

8R*(10,27)

1139
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which are needed for S=27 perturbations on the ABII
couplings. Actually, since the 4 matrix is independent
of the “direction” the perturbation takes in SU(3)
space, we only need the coefficients for one value of o.
With the aid of the Casimir operators, we calculated by
hand the coefficients for o= (¥'=0, I=0 member of
representation S=27). The coefficients are given in
Table VI (note that the overall sign is arbitrary).

As an example, we give AEE for P=-+,C=+4, T=-},
S=8 couplings in some detail. First consider §=—28°
(F/D=0.4) and linear D functions. The 12)X12 matrix
A s—3%E before the projection of Sec. V is given in Table
VIL® The eigenvalues and eigenvectors obtained by
diagonalizing it are given in Table VIIIL. This table is
included mainly for comparison with Table IX, where
we give the eigenvalues and eigenvectors of the matrix
A s—s®® that remains after the projection of Sec. V. It
is this latter table which is used in the ensuing discus-
sions of strong and electromagnetic perturbations. Note
that, as mentioned in the previous section, the leading
eigenvalue and eigenvector of Table IX are almost
unchanged from Table VIII, although other eigenvalues
and eigenvectors change considerably. The reasons for
this fortunate behavior are not understood.

Next we present two tables which illustrate the degree
of sensitivity of A®® to the parameters of our model.
Table X gives the eigenvalues and eigenvectors of 4 &%
for the same conditions as Table IX, except with

=—28° changed to 6=—40°. This corresponds to
changing F/D from =~ 0.4 to ~0.6. One sees in particular
that the leading eigenvalue and eigenvector are quite
insensitive to this change.

Table XI gives the eigenvalues and eigenvectors of
AZRE for the same conditions as Table IX, except with
some effects of nonlinear D taken into account. Speci-
fically, the D functions discussed following Eq. (4.31)
are used. The factors 5 are taken to be nBB=—%,
7B2=0.8X$%, n28=0.8X%,and n22=0.67 X }. The asym-
metries introduced by nonlinear D are not taken into
account here; their effect was estimated in Sec. IV. The
striking result obtained in Table XTI is that the eigen-
values are uniformly reduced by about 20%, while the
eigenvectors are essentially unchanged. This reflects the
fact that 4 is dominated by the ofi-diagonal terms
ARR* and AR*E| which are uniformly reduced by 209,
when nonlinear D is taken into account. The dominance
of ARE* and AR*E can be traced to the spin crossing
matrix contained in the factor 5, which has the values %
for B2, 2 for 928, but only —% for #%5, and } for 24,
The dominance can be seen clearly in Table VII, where
all the individual elements of 4 are displayed.

To summarize the results of varying the parameters of
our model: The leading eigenvector of A4 s—s®%, which
controls the ratios of strong coupling perturbations and
electromagnetic coupling perturbations, is not very

30 We are greatly indebted to Barbara Zimmerman, who pro-

grammed and performed the computer calculations of all elements,
eigenvalues, and eigenvectors of A%Z given in this paper.
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sensitive to reasonable variations of the F/D ratio and
the form of the D functions.

The calculation of elements of 4®Z connecting other
types of coupling proceeds in a similar way. The results
for weak couplings will be given in Sec. XI. The results
for P=+, C=+4, T=+4, S=27 couplings, calculated
with linear D functions are given in Tables XII (eigen-
values and eigenvectors of the A2F% obtained before
the projection of Sec. V) and XIII (eigenvalues and
eigenvectors of A4;%E after the projection of Sec. V).
The point to note here is that 42, 2E does have an eigen-
value near one, although the precise values of the eigen-
value and eigenvector are changed substantially by the
projection of Sec. V and are therefore rather unreliable.

VII. CALCULATION OF AME

The dispersion relation for first-order mass shifts has
been given in Sec. III:

-1 DT:D;

M= aw’.
20iG DI (M) ) e W—M

(3.17)

In studying the effects of coupling shifts on mass shifts,
one considers expressions of the form

8T~ CydR;/(W—M?), (7.1)

where M ®is the position of the exchange singularity and
C;;is a numerical coefficient. Inserting (7.1) into (3.17),
one finds

5M,-~ Ci;j0R; [Di(M=)J
M G [D/M)PMM—M)

(7.2)

For linear D, the factors to the right of éR reduce to
(M=—M)/M, and AMiEi which is the coefficient of
OR;, takes the form

AMiRi=Cu(M*—M)/G*M . (7.3)

In Ref. 2 it was observed that A% is small in the static
model because (M*—M)/M is a small factor (e.g., for
the baryon-exchange contribution to Mg, M*=Mg=M
and the factor vanishes; for the A-exchange contribu-
tion to Mp, M*=2Mp—Mx and the factor is about
—%). As mentioned in the Introduction, we took ad-
vantage of this fact and ignored 4 M, This allowed us to
study mass shifts before coupling shifts were studied,
and then made possible solutions of the form (1.3) and
(1.4) for coupling shifts.

In the present section we shall estimate 4%% more
carefully and show that it is indeed very small, its ele-
ments not exceeding about 0.1.

The method for calculating C;;in Eq. (7.1) has already
been described in detail in Sec. IV. For example, we can
take over Eq. (4.17) for the effect of a coupling shift on
the amplitude 67(8y — X’) with only the following
minor changes: (i) For baryon mass shifts, the final state
is specialized to X’=8,, since in our formalism a mass
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TasLE VIII. The eigenvalues and eigenvectors obtained by diagonalizing the unprojected matrix ABE of Table VII. The components of
each eigenvector are listed in the column under the corresponding eigenvalue. The eigenvectors are normalized to 1.

Eigenvalues
0.962 0.839 0.691 0.478 0.199 -—0.010 -—0.040 -0.305 —0.617 —0.726 —0.751 —0.890
Eigenvectors
SR (84,1) 0.031 0.117 0.206 —0.085 —0.122 —0.859 0.100 0.234 —0.109 0.028 0.287 —0.143

SR(80,84(s)) —0.110 0.230 —0.361 0.120 —0.464 —0.013 0.406 0.349 0.133 —0.293 —0.178 0.387
SR(84,84%(s)) 0.081 0.205 0.521 —0.108 —0.213 0.484 0.318 0.354 —0.089 0.090 0.296 —0.236
0R(84,84(a)) 0.557 0.032 0.036 0.410 0.064 —0.014 0.140 —-0.079 —0.335 0.363 0.098 0.482
5R(80,8sx(c)) —0.148 —0.004 0.129 0.044 0.477 —0.089 0.767 —0.308 0.149 —0.068 —0.099 —0.040

3R (8,10) 0.163 0.398 —0.245 —0.129 0.388 0.048 —0.118 0.167 0.554 0.091 0.451 0.149
8R(84,10) 0341 -—0.261 —0.122 —0.438 —0.336 —0.053 0.206 —0.112 0.370 0.492 —0.216 —0.098
SR (84,27) 0.024 —0.342 -—0.120 -0.015 0.441 —0.000 0.039 0.738 —0.109 0.150 —0.296 —0.060
5R*(10,85) —0.129 —0.365 —0.032 0.700 —0.177 —0.005 0.023 0.058 0.405 0.145 0.252 —0.270
SR*(10,84%) 0.016 0.277 0.573 0.194 0.018 —0.110 —0.232 0.071 0.402 0.060 —0.538 0.171
5R*(10,10) 0.166 —0.571 0.324 -—0.196 -—0.001 -—0.000 -—0.024 0.036 0.204 —0.455 0.241 0.438
SR*(10,27) 0.676 0.091 —0.106 0.139 0.032 —0.010 0.015 —0.008 0.048 —0.512 —0.168 —0.456

Tasre IX. The eigenvalues and eigenvectors obtained by diagonalizing the matrix AB® afier the projection of Sec. V. Here, 4R
again refers to couplings with P=+, C=+, T=+, 5=8, and = —28° and linear D functions were used. The three eigenvectors with
zero eigenvalue refer to C= — couplings.

Eigenvalues
0.931 0.655 0.489 0.000 0.000 —0.000 —0.018 —0.062 —0.259 —0.493 —0.706 —0.761
Eigenvectors
SR (84,1) 0.070 0.076 —0.199 —0.441 —0.082 —0.504 0415 —0.145 0.500 —0.042 -—0.178 0.122

SR(84,84(s)) —0.251 —0.268 0.030 0.562 —0.270 —0.158 0.280 —0.294 0.258 0.033 0.441 —0.146
0R(80,8s+(s)) —0.024 0.507 0.282 0.068 —0.550 --0.238 0.129 —0.066 0.041 0.436 —0.169 0.232
6R(86,80(a)) 0.564 0.011 0.271 0.239 0.064 —0.318 0.020 —0.166 —0.107 0.192 —0.317 -—0.517
0R(84,84x(a)) —0.086 0.255 0.099 0.032 0.482 0.173 0.571 —0.431 -—0.338 —0.117 0.009 0.112

3R (84,10) 0.048 0.224 -—0.284 0.651 0.187 —0.160 —0.019 0.247 0.143 —0.162 —0.357 0.380
3R (84,10) 0.298 —0.186 —0.307 0.024 —0.425 0.472 0.240 -—0.097 —0.032 —0471 —0.254 —0.144
SR(8¢,27) 0.119 —0.079 0.010 0.025 0.404 0.532 0.026 0.006 0.650 0.296 —0.036 —0.135
SR*(10,8y) —0.021 —0.446 0.681 0.000 0.000 0.000 -—0.039 —0.086 0.128 —0.261 —0.285 0.400
SR*(10,84%) 0.005 0.543 0.340 0.000 0.000 0.000 —0.129 0.095 0.290 —0.589 0.243 —0.267
8R*(10,10) 0.300 —0.103 0.182 —0.000 —0.000 —0.000 0.523 0.696 —0.092 0.056 0.300 0.073

5R*(10,27) 0.639 0.042 —0.083 0.000 0.000 0.000 -—0.232 -—0.319 0.024 —0.003 0.467 0.454

Tasre X. The eigenvalues and eigenvectors of AEE for the same conditions as in Table IX, except with §= —40° instead of 6= — 28°.

Eigenvalues
0.944 0.598 0.524 0.059 0.000 —0.000 -—0.000 —0.082 -—0.318 —0.476 —0.738 —0.746
Eigenvectors
SR (84,1) 0.100 —0.008 0.142 0.537 —0.587 0.331 0.003 —0.252 0.348 0.111 0.073 0.151

8R(80,84(s)) —0.235 —0.393 —0.081 0.218 0.313 0.217 —0.452 -—0.280 0.099 0.114 —0.242 —0.473
SR(8¢,86¢(s)) —0.037 0.459 —0.205 0.179 0.475 0.442 0.138 —0.110 0.205 —0.438 —0.028 0.157
8R(84,84(a)) 0.555 —0.039 —0.232 —0.209 -—0.047 0.149 —0.380 0.020 0.088 —0.170 0.576 —0.229
8R(84,84+(a)) 0.076 0.253 —0.205 0434 —0.042 —0471 -—0.164 -—0427 -—0481 -—0.170 0.059 —0.020

5R(8,10) 0.053 0.144 0.343 0.110 0.287 —0.128 —0.619 0.166 0.108 0.211 0.034 0.526
8R(86,10) 0.325 —0.244 0.206 0.238 0.445 0.154 0.417 —0.139 —0.265 0.397 0.296 0.053
8R(80,27) 0.092 -—0.110 -—0.019 0.151 0.213 —0.601 0.214 —0.052 0.687 —0.071 0.096 —0.111
dR*(10,8)) —0.062 —0.403 —0.712 —0.034 —0.000 0.000 —0.000 —0.058 0.030 0.130 —0.012 0.550

SR*(10,84+) 0.015 0.556 —0.342 —0.082 —0.000 —0.000 -—0.000 -—0.019 0.139 0.705 —0.043 —0.216
8R*(10,10) 0.299 —0.047 —0.208 0.487 —0.000 0.000 0.000 0.714 -—0.096 —0.039 —0.283 —0.155
8R*(10,27) 0.638 —0.014 0.067 —0.246 0.000 -—0.000 -0.000 -—0.313 0.046 —0.027 —0.646 0.089




1142 DASHEN, DOTHAN, FRAUTSCHI, AND SHARP 151
TaBLE XI. The eigenvalues and eigenvectors of ARE for the same conditions as in Table IX, except with
linear D replaced by curved D functions, as described in the text.

Eigenvalues
0.748 0.529 0.370 0.000 0.000 —0.000 —0.015 —0.050 —0.242 —0.416 —0.571 —0.633

Eigenvectors
SR(8s,1) 0.070 0.043 —0.212 —0.596 —0.201 —0.245 0.367 —0.226 0.502 0.056 —0.130 0.180
R(80,84(s)) —0.252 —0.254 0.072 0.358 0.244 —0475 0234 —0.324 0.258 0.037 0.372 —0.290
SR(84,80+(s)) —0.027 0.553 0.193 —0.020 0.603 —0.018 0.113 —0.092 —0.032 0.452 —0.066 0.241
3R (84,84(a)) 0.572 0.069 0.260 0.116 —0.164 —0.349 0.006 —0.152 —0.134 0.160 —0.447 —0.412
8R(89,80+(a)) —0.090 0.287 0.061 0.236 —0.350 0.291 0491 —0.513 —0.297 —0.189 0.043 0.096
5R(84,10) 0.047 0.163 —0.315 0.574 —0.153 —0.362 —0.000 0.223 0.160 —0.089 —0.227 0.500
5R(85,10) - 0.302 —0.231 —0.271 0.062 0.587 0.236 0.211 —0.139 0.051 —0.465 —0.303 —0.020
SR (84,27) 0.121  —0.080 0.014 0.335 —0.126 0.564 0.022 —0.002 0.587 0.405 —0.063 —0.133
SR*(10,8y) —0.012 —0.329 0.756 0.000 0.000 —0.000 —0.055 —0.092 0.161 —0.188 —0.149 0.472
SR*(10,84+) 0.003 0.582 0.235 0.000 —0.000 —0.000 —0.140 0.143 0.409 —0.551 0.118 —0.281
3R*(10,10) 0.296 —0.060 0.180 —0.000 0.000 0.000 0.637 0.608 —0.075 0.018 0.304 0.001
§R*(10,27) 0.631 0.029 —0.085 0.000 —0.000 —0.000 —0.284 —0.281 0.012 —0.002 0.599 0.270
TaBLE XII. The eigenvalues and eigenvectors obtained by diagonalizing the unprojected matrix ARE for P=+, C=+4, I'=+, §=27

couplings. Linear D functions and §= —28° were used in the calculation.

Eigenvalues
0.963 0.796 0.583 0.180 0.086 0.014 —0212 —0.342 —0.551 —0.762 —0.887

Eigenvectors
3R (84,86) 0.010 0.093 —0.280 0.127 0.025 0.840 0.054 0.099 0.349 0.223 —0.056
SR (86,84%) 0.028 0.195 —0.435 —0.342 0.086 —0.303 —0.289 —0.451 0.444 0.260 —0.042
SR (8,10) —0.328 0.208 0281 —0.607 0.039 0.255 —0.092 0.001 —0.009 —0.158 0.546
8R(85,10) 0.457 0.175 0277 —0.033 0.324 0250 —0.058 —0.494 —0.056 —0.445 —0.252
SR (84,27) —0.026 —0.588 —0.001 —0.255 0.212 0.209 —0.239 —0.207 —0.458 0418 —0.115
8R(86,27") 0.391 —0.036 0.065 —0.438 —0.259 0.012 —0.376 0.545 0.106 —0.093 —0.349
SR*(10,8¢) —0.259 0.169 0.227 0.413 0.345 —0.026 —0.725 0.165 0.063 0.051 0.001
S3R*(10,8p%) —0.056 —0.124 —0.357 —0.164 0.745  —0.107 0.213 0.375 0.035 —0.266 —0.030
3R*(10,10) 0.067 0.544 0.295 —0.137 0.244 —0.077 0.293 0.143 —0.183 0.573 —0.240
8R*(10,10) —0.027 —0.433 0.551  —0.026 0.142  —0.087 0.199  —0.020 0.645 0.142 —0.046
dR*(10,27) 0.672 —0.045 —0.015 0.141 0.131  —0.059 —0.067 0.109 0.001 0.227 0.660

TasLE XIII. The eigenvalues and eigenvectors obtained by diagonalizing the matrix A% for P=+, C=+, T'=+-, S=27 couplings
after the projection of Sec. V. Linear D functions and §= —28° were used in the calculation. The zero eigenvalues refer to the two

C=— couplings.
Eigenvalues
0.878 0.627 0.465 0.085 0.000 —0.000 —0.086 —0.326 —0.392 —0.519 —0.862
Eigenvectors
53R (84,80) —0.061 0491 —0.247 —0.052 0.544 —0.029 -—0.113 —0.113 —0.433 0.392 —0.157
SR (80,84+) 0.125 0.244 0.272 0.101  —0.143 0.771 —0.102 —0.300 0.219 0.274 —0.019
3R (85,10) 0.392 —0.205 —0401 —0.025 0.220 0.356 0.252 0.009 —0.220 —0.154 0.574
8R(8,10) —0.214 0072 —0.441 0296 —0.464 —0.006 —0.071 —0.537 —0.292 —0.250 —0.081
SR (84,27) —0.384 —0.285 0.004 0.176 0.573 0.303 —0.066 —0.100 0.135 —0.457 —0.277
SR (84,27") —0.285 —0.031 —0.182 —0.285 —0.299 0.429 0.012 0.587 —0.341 —0.016 —0.258
8R*(10,8y) 0319 —0.131 —0.097 0.384 0.000 0.000 —0.797 0.288 —0.060 —0.007 0.004
SR*(10,8¢+) —0.047 0.118 0.328 0.736  —0.000 —0.000 0.399 0.273 —0.311 0.017 0.043
§R*(10,10) 0.291 0.170  —0.528 0.228 —0.000 —0.000 0.293 0.196 0.498 0.051 —0.423
8R*(10,10) —0.204 —0.655 —0.157 0.151  —0.000 0.000 0.071 —0.112  —0.000 0.678 —0.045
8R*(10,27) —0.566 0.280 —0.231 0.139  —0.000 0.000 —0.128 0.208 0.382 0.100 0.557




151

COUPLING SHIFTS IN BROKEN SU(3). I1I

1143

TaprLeE XIV. The matrix A¥E for P=+-, C=+4, T= -+, S=8 couplings calculated with = —28° and linear
D functions, using Table VII and Eqs. (7.9)-(7.12).

SR(86,1) 6R(89,86(s)) SR(89,86%(s)) 6R(86,80(a)) 8R(84,8¢*(a)) SR(84,10) 3R(8¢,10) 8R(8,27) 8R*(10,8¢) 5R*(10,8¢%) SR*(10,10) 8R*(1,27)

SMB(s) 0.00 0.00 0.00 0.00 0.00
M B(a) 0.00 0.00 0.00 0.00 0.00
oMA 0.00 —0.08 0.02 0.00 0.00

0.00 0.00 0.00 0.02 —0.04 —0.08 0.00
0.00 0.00 0.00 0.03 0.02 0.00 0.12
—0.06 0.06 0.05 0.05 —0.01 0.00 0.02

shift changes the position of the direct-channel pole,
but not the residue which controls its coupling to the
final state. (ii) In deriving the operator for projecting
out the reaction 8 — X’ in Sec. IV, we started with the
direct channel amplitude

- (Z GﬂvzylaGnﬁis)(W—MB)—l .
B

The 6G factor was expressed as

S X\/8 8 X’
X ), 69
o v/\iz B v
which, by (4.5), can be re-expressed as
0G5 =2Zx/ (— I)Q”ﬁaGs(Xl)
8 § X\/8 8 X
al ST o
v [ 14 V3 V4 14
(we are only considering couplings with C=- here).
For mass shifts, the direct-channel amplitude changes to

(71.5)

8
0Gyg3=Zx0Gs(X ’)Z(
V4

v

- (Z GﬂvzvlaM ﬁvBGwﬁ“) (W_ M B)—Z )
By
where

8 § 8
6Mg,B=Z’6Ms( ) (7.6)
o v

is the baryon mass-shift matrix for a given S, and Z’
is an arbitrary normalization factor. For mass shifts,
then, factor (7.4) is replaced by

)]

12

8 8
ok
vy v

which, by (4.5), can be replaced by

8 S
Z 6MﬂvBGv4via=Z I:Z,aMS<
v v ﬂ [
8s\"
>J 7.7)
V4

> Mp,BG, =2 (—1)¥0M G

oy )0

The projection operator resulting from (7.8) is, of
course, the same as that resulting from (7.4), except that
Z' replaces Zx in (4.17).

In view of the foregoing, one can obtain the elements
of AME from the corresponding elements of 422 [Eqs.
(4.26)-(4.29)] by the following prescription (we confine
our remarks to linear D for simplicity):

(i) AR(S@.X’ =8p)R and AR(SB,X’ =8p)R* ive A MBR
and AMPR* respectively, while AR*10X'=10R and
AR =10R* oive AMAE and AM°E*) gubject to the
modifications below.

(i) Z’ and Z* replace Zs, and Zyo*. In order to make
contact with the results of Ref. 2 for mass shifts, we
must use Z'=(8)"1/2 and Z*=(10)"'/2, which corre-
spond to the convention of Sec. V, Ref. 2. These values
are to be compared with Zs,= (4)71/2 and Zo*=(10)~%/2
(Table IV). As a result of the change from Z to Z/,
AMEE and AMPR* are multiplied by V2 relative to AEE
and ARE*,

(iii) Expression (7.1) for 87 is fed into Eq. (3.17) for
6M; rather than Egs. (3.15) and (3.16) for §R. For
linear D, one finds (7.3) AMiBi=Cy(M*—M)MG™?
as compared with AiRi=—C,; Therefore, A**E is
multiplied by zero relative to 4%, 4M®E* js multiplied
by (MA—MB)(MP)G=2 AME by (MA—MP) (M)
X(G*)2, and AM°R* by 2(MA—MB)(MA)(G*)
Putting all the factors together, we have

AMPREX) = ()

AMER*(10,X) [2( MA— MB) /G2 MB] | 4 R(80,80) R*(10,X) ,

(7.9

(7.10)
AMAR(80,X) [(MA_MB)/G*2MA:|AR*(IO.IO)R(Sa.X) s
(7.11)
AMAR*(10,X) [z(MA__MB)/G*ZMA]AR*(IO,IO)R*(10,X) .
(7.12)

The numerical values of the coefficients in (7.9)—(7.12)
are, using (2.4) and (2.5), about 0, 3, 3, and %, respec-
tively. The matrix 4 #E obtained with these coefficients
is tabulated in Table XIV. One sees that the largest
element has magnitude 0.12, and for nonlinear D the
value would be even smaller. Thus the approximation of
neglecting AME was quite well justified.

It is instructive to see how the dominant coupling
shifts drive the mass shifts by forming f;=>_; 4 ;;EX,E,
where X;% is the leading eigenvector for coupling shifts
(the first column of Table IX). We find

F(MB(s))=—0.023,
F(MB(a))=0.078,
F(M2)=0.049.

(7.13)
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TaBLE XV. The matrix ARBM(exch) for P=+4 C=+4, T=+,
S'=1 couplings estimated with #= —28° and curved D functions of
the form Eq. (8.6) with W~ (7/3)M2 for J=3%*, Wo=~(7/3)MB

for J=4%%.
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TaABLE XVI. The matrix ARM(exeh) for P=+ C=+4, T=+,
§'=8 couplings estimated with 9= —28° and curved D functions of
}.he}on;_Eq. (8.6) with W=~ (7/3)MA for J=45*, Wo=(7/3)MB

or J=4%*.

oMB sMA SMB(s) SM3B(a) oMA
3R (85,80) 0 0.29 3R (85,1) 0.08 0.03 0.03
3R (84,85%) 0.02 —0.19 3R(86,8:()) 0 0 —0.21
3R*(10,10) 0.32 0.04 3R(8,80x(s)) 0.03 0.12 0.13
0R(84,80(a)) 0 0 0
SR (84,84%(a)) —0.10 0 0
By comparison, the leading mass eigenvector [Eq. 8R(84,10) 0.07 0.11 —0.44
(5.58) of Ref. 2] is X, with 8R(8,,10) 0.06 0.13 044
SR (84,27) —0.21 0.01 0.31
X(M3(s))=—0.15, 3R*(10,85) 0.19 0.30 0.16
_ SR*(10,85x) —0.36 0.16 —0.02
X(M%(a))=0.60, (7.14) SR*(10,10) o8 o 0
X(M4)=0.78. 8R*(10,27) 0 1.12 0.07
Since the ratios in (7.13) and (7.14) are similar, the main
effect of the coupling shifts is to drive the leading mass . s
shift. The magnitude of the effect is small, > ;; X In the linear-D approximation, we have
X A4;;MEX £=0.09, but even if we have underestimated Dy(W')=(W'—M)Dyy' (M*), (8.3)
the magnitude of 4#E, the fact that it drives mainly
the leading mass shift ensures that including it would not Doy(W')=Dg(M*), (8.4)
change the determination of the mass-shift ratios by
much. and, as a result, Eq. (8.1) gives
VIII. CALCULATION OF AE¥ CoM aw’
. SR*(10 — 27)= / =0. (8.5)
Our remaining task, before turning to the experimen- 2 J (W—M)?

tal consequences of the model, is the study of the
influence of changes in the mass of exchanged and ex-
ternal particles on the coupling shifts.

Like the other elements of 4, A% is composed of a
product of Clebsch-Gordan coefficients and dynamical
factors. Proceeding in close parallel to Sec. VII, we
consider first changes in the mass of an exchanged par-
ticle and find that the Clebsch-Gordan product for
ARBe=X)M(Bexch) ig the same as for ARGIDREo-8)
while AR*(10-X)M(aexch) jg  the gsame as for
ARFA0-XR(10-10) Consequently, 4RM (ex<h differs from
ARE by (a) normalization factors, and (b) dynamical
factors. One finds, in the present case, that one must re-
place the normalization factor Zx by Z’, as in Sec. VII.
This replacement has no effect on the elements of 4 2¥*,
while decreasing the elements of 4Z£¥® uniformly by a
factor V2.

To estimate the dynamical factors in 4RM(exh)  one
may consider as an example the equation

SR*(10—> 27)=——
D1 (M) Dor(M2)
i W' — MA o

In the study of the effect of a mass shift on 6R, 6T
has the form

8T (10 — 27)~CM /(W — M)?. (8.2)

As usual, we must check the sensitivity of this
result to the form of the D function. Using the better
expression,

Dy(W')=(W'—M*) (M —Wo)/(W'=Wo), (8.6)
with Wo=2M?2, one finds a relatively large value for
dR*. We conclude that, in contrast to 4 %% and A #E the
elements of 42 are strongly model-dependent and, in
particular, that they are sensitive to the details of the
denominator function. Consequently, in this paper, we
shall not place any reliance on results that depend on
the absolute magnitude of the elements of 4%Z¥. We
shall, however, draw some conclusions from ratios of
elements of 42¥ which are less model-dependent.

Bearing this proviso in mind, one may proceed to
calculate the dynamical factors which appear in
ARM(exeh) Gince the calculations in the present case are
so involved, the results so model-dependent, and the
method similar to that used in previous sections, we

TaBLE XVII. The matrix ARM(ext) for P=+ C=+4, T'=+,
S=1 couplings, expressed in terms of the dynamical parameters
Cs and Cho.

oMB
SR (85,80) Cs/V2
SR (8¢,84%) 0
8R*(10,10) W$)Co
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TasLE XVIIL. The matrix ABMExt for P=+ C=+4, T=+,
§=8 couplings, expressed in terms of the mixing angle 6 and the
dynamical parameters Cs, Cg’, C1o, and Cio'.

SMB(s) 8M*(a)
SR (8,1) (cos8/2V2)Cy’ (sing/2v2)Cy’
SR(84,84(s)) (sin%0/2v2 — 3 cos?0/10v2)Cy (sinf cosd/v2)Cs
SR (84,80%(s)) — £ sinf cosfCys’ $(sin20—cos?0)Cy’
SR (84,84(a)) (sind cosd/v2)Cs Cs/2V2
SR (80,80%(a)) $(sin?0—cos20)Cy’ 0
8R(84,10) (—sin8/24-cos8/4/5)Cs’ % cosfCy’
8R(85,10) (sinf/2+-cos8/4/5)Cs’ —3% cosfCs’
8R(84,27) —15(v/3) cosbCy’ —(v/%) sinfCy’
8R*(10,8s) (sinf/2—cos8/4/5)C1¢’ —% cos6C1’
SR*(10,84x) (—cos8/2—sinf/+/5)C1o’ —% sinfCyo’
8R*(10,10) Cio/4 (W'5/4)Cuo
6R*(10,27) (34/30/20)C1o’ —(3)Cuw'

shall content ourselves here with merely presenting the
results.

The results for the exchange mass shifts 4 gR¥ €xch) gre
presented in Tables XV and XVI.

We now turn to the effect of the external mass shifts.
There are four independent elements of ARMZ(ext)
whose determination requires dynamical calculations;
these can be chosen to be Cs, Cio, Cs’ (describing
8¢ — X#8;) and Cy¢ (describing 10 — X£10). The
remaining elements of ARM*©) may he expressed in
terms of these four through the group-theory ratios
given in Tables XVII to XIX.

To illustrate how these group-theory ratios were cal-
culated, consider ARGaXME(ext)  The group-theory
ratios are the same as for the bubble diagram of Fig. 2,
and can be expressed as

AR(Sg,X)MB(exch)=___S_zz<8 8 80)
(NsNX)1/2 ijk af j 1 a

8 8 X\/8 § & /8 S X
Gl o) e

j k B/\i ¢ k/\a o B
where C is a dynamical factor. Here, the first two factors

TasLe XIX. The matrix ABMs(ext) for P=+ C=+4, T=+,
§=27 couplings, expressed in terms of the mixing angle ¢ and the
dynamical parameters Cs, Cs’, Cio, and Ci¢'.

8R(86,80) (cos? /5—sin?0/3)Cs/V2
S8R (86,80%) (8/15) sinf cos8Cq’
3R (8,10) (sin8/3+4-cos8/~/5)Cs’
8R(85,10) (sinf/3—cos6/+/5)Cs’
SR(80,27) —[(14)1/2/57 costCs’
SR (89,27") —(v/%) sin6Cy’
S5R*(10,85) (sinf/3+cos8/4/5)C1o’
8T*(10,84%) (—cos8/34-sin8/+/5)C1o’
8R*(10,10) #V%Co
3R*(10,10) —[(10)172/61C:o’
SR*(10,27) —[(W7/15]C’
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Tasre XX. The matrix ABM(Gxt) for P=+4 C=+4, T=+,
S'=8 couplings estimated with = —28° and curved D functions of
;he }orr;l_Eq. (8.6) with Wo=(7/3)M2 for J=3%+, Wo=(7/3)MB

or J =%+

SMB(s) SMB(a)
SR (8,1) —0.53 0.28
SR(84,80(5)) 0 0.12
SR (86,84%(s)) —0.57 0.48
SR (86,80(a)) 0.12 —0.14
SR (80,84%(a)) 0.48 0
SR (8,10) —1.08 —0.75
5R(84,10) —0.27 0.75
SR (85,27) 0.55 —0.49
S§R*(10,8p) 1.08 0.40
SR*(10,84%) 0.75 —0.40
86R*(10,10) —0.11 —0.25
8R*(10,27) —1.40 1.05

project ILB onto the appropriate initial and final states,3!
the third factor represents the external mass splitting,
and the fourth factor projects onto the desired type of
coupling shift.

The dynamical parameters Cs, C1o, Cs’, and Cy¢’ were
estimated by two different methods:

(1) Scale invariance gives conditions on the “diagonal
elements” Cs and Cip which enter into S=1 shifts,
although it does not determine Cy’ or Cyo'.

(2) The reciprocal bootstrap used in this paper
gives an explicit model for the amplitude, with two poles
on the left. Using this model, we can estimate all four
of the dynamical parameters.®? The results of the two
methods differ, but do agree as to sign and order of
magnitude. The dynamical factors estimated in this
way, plus the group theory factors, lead to the results
for ARM(ext) presented in Table XX.

\

k \

]

F16. 2. Bubble diagram which con- :
tains the group-theory factors needed [P

for AR ®eX)MB(ext), |

|

/

/.

i P

al|8

31 The phase of the projected state depends on whether the
meson index j is placed first or second in the Clebsch-Gordan
coefficients. We place it first for consistency with the convention
employed in calculating 4 ®E,

32 Tn addition to the left-hand poles, one must integrate over the
right-hand cut in equations such as (8.1). This is most important
for Cio where the factor (W —M4)~2 is large near threshold (the
average A mass lies only slightly below the average IIB threshold).
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TaBLe XXI. Strongly perturbed xB,II:B couplings. The first
column gives the unperturbed couplings Gx*/G. The second
column gives the coupling shifts 8G;?/G corresponding to the
leading eigenvector of 4497 in Table IX, in an arbitrary normaliza-
tion defined in the text. The final column gives the total unper-
turbed coupling (Gri*+%8Gr;®)/G. The strength parameter x=
—13.4 is obtained from the ratio I'(¥V1* — Arx)/I'(E* — Exr), as
explained in the text.

By B; II; Gri'/G 106G /G (Gry*—13.48G1i®) /G
P P 70 0.477 —0.195 0.739
P 7 0.037 0.009 0.025
" xt —0.675 0.276 —1.046
=t K° —0.292 0.000 —0.292
20 K+ 0.206 0.000 0.206
A K+ —0.432 0.025 —0.465
n ? L 0.675 —0.276 1.046
” 0 —0477 0.195 —0.739
n 7 0.037 0.009 0.025
=0 K —0.206 0.000 —0.206
=z K+ 0.292 0.000 0.292
A K° —0.432 0.024 —0.465
=t 4 K° —0.292 0.000 —0.292
>+ w0 0.271 —0.020 0.297
=+ 7 0.395 0.111 0.246
=0 xt —0.271 0.020 —0.297
=0 K+ —0.675 —0.138 —0.490
A at 0.395 —0.077 0.498
z0 P K- —0.206 0.000 —0.206
n K° —0.206 0.000 —0.206
=+ T 0.271 —0.020 0.297
=0 n 0.395 0.111 0.246
z- at —0.271 0.020 —0.297
ol K9 —0.477 —0.098 —0.347
o K+ —0.477 —0.098 —0.347
A 0 0.395 —0.077 0.498
= n K- —0.292 0.000 —0.292
>0 L 0.271 —0.020 0.297
2z~ 70 —0.271 0.020 —0.297
== Il 0.395 0.111 0.246
o Ko —0.675 —0.138 —0.490
A T 0.395 —0.077 0.498
o z+ K- 0.675 0.138 0.490
>0 K° —0.477 —0.098 —0.347
ol 0 —0.206 0.000 —0.207
=0 7 —0.432 —0.126 —0.264
o at 0.292 0.000 0.293
A Ko 0.037 —0.009 0.050
= =0 K- 0.477 0.098 0.347
== K° —0.675 —0.138 —0.490
& T —0.292 0.000 —0.292
o 0 0.206 0.000 0.206
= bl —0.432 —0.126 —0.264
A K- 0.037 —0.009 0.050
A P K- 0.432 —0.025 0.465
n K° —0.432 0.025 —0.465
=+ T —0.395 0.077 —0.498
%0 0 0.395 —0.077 0.498
P xt —0.395 0.077 —0.498
ol K° 0.037 —0.009 0.050
o K+ —0.037 0.009 —0.050
A n —0.395 —0.043 —0.338

Now let us see what conclusions can be drawn from
these results.

(i) To get a clear idea of the way in which 4E¥
affects our calculations, it is useful to evaluate the
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quantity
l Z X,;R(A inM (exch) +A inM (ext))XjM (leading) [ (8_8)
i

[X MUeading) jg given by Eq. (7.14)]. The numerical re-
sults show that the term in AZ¥ connecting the en-
hanced eigenvector of 4 to the leading eigenvector
ARE is =1.1, Although the over-all strength of 4%¥ is
admittedly not reliable, this result of order unity indi-
cates that the leading eigenvector of 4 %E will acquire a
double enhancement according to Eq. (1.4);

0R= (1 -4 RR>_1A RM(&M/M) l M enhancement (89)

(ii) The numerical results show that the elements of
AEBM connecting the enhanced mass shifts to the second
and third eigenvectors of 4% are =0.2 and =0.0, re-
spectively. Thus the leading eigenvector is much more
strongly enhanced than the others. In view of the un-
certainties in the calculation of 4EM we remark that
the dominance of the leading eigenvector does not de-
pend on any delicate cancellations. It comes about be-
cause the largest term in A2 turns out (in agreement
with the calculations of Wali and Warnock®) to involve
8R*(10 — 27), which happens to be strongly present in
the leading eigenvector of 45%E, but not in the next two.

(iii) Since 6M is very small, the eigenvalue of 4 97%%
lying near one receives only a single enhancement.

These conclusions depend on the relative values of the
various elements of AR and are not too sensitive to
the model employed or to the details of the D function.
When in the next section we start to extract experimen-
tal consequences from the results of the foregoing sec-
tions, we will find that we need to have the absolute
value of the elements of 42, This over-all scale param-
eter will then be regarded as a physical parameter, and
will be determined by fitting to the data.

IX. APPLICATION TO STRONG
INTERACTIONS

In Sec. VII, we found that 47 is small. Approxi-
mating it by zero, Egs. (1.1) and (1.2) for M and é&g
have the solution (matrix equations are understood
here)

M= (1—AMM)"1DM (1.3

Sg=(1— A09)=1(49M5}[+ Dv). (1.4)

In Sec. VI we found that 497 has several eigenvectors
with eigenvalues near one, which should dominate (1.4).
Finally, in Sec. VIII we found that 4¢§M, with éM
taken from experiment and A9 from theory, strongly
favors the leading eigenvector of 4 g—s?¢ over the other
eigenvectors with eigenvalues near one. Assuming that
the already-enhanced term A¢M5M dominates D¢, we
can conclude that the strong-coupling shifts follow the
leading eigenvector of A s—s?9(499=0.93). This eigen-
vector was printed out in the first column of Table IX.
The individual particle couplings are obtained from it
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by applying Egs. (4.30) and (4.31) with S=8 and ¢
equal to the /=0, ¥=0 member (which we call “8”)
of the octet:

0Grt=—G™1 2 (nx) M6 Rs(89,X)
X

8 8 X\/8 8 X
x=(C 0 O)C 7)o
v\t 8 v/\i 7 v
G*1
0Gr o= ——— 3 (nx*) 1?6 Rs*(10,X)
V2 x
10 8 X\»8 8 X
0
v\k 8 v/\i j »

Our predictions for the strongly perturbed couplings
will have the form (G+x8G);?, where Gy;* is the SU(3)-
symmetric coupling, 8G;® is given by (9.1) or (9.2)
with the eigenvector 6Rs (arbitrarily normalized to 1)
taken from Table IX, and x is an over-all strength
parameter for the perturbation. Gx;i/G and Gi*?/G* are
obtained from (2.9) and (2.10), and the nonzero ele-
ments are listed in the first columns of Tables XXT and
XXTI, respectively. The perturbations 6G;?//G and
0Gr*i/G* are listed in the second columns of these
tables.

The strength parameter x could, in principle, be esti-
mated from (1.4) by using the eigenvalue A447¢=0.93,
the physical 6, the calculated 49, and by dropping
Dre. This estimate is highly uncertain, both because
small changes in the eigenvalue of 4¢¢ produce large
changes in (1—A499)~! and because, as explained in Sec.
VIII, the magnitude of A4¢¥ is highly sensitive to de-
tails of the D function. For these reasons, we preferred
to estimate « from the experimental ratio of §* resonance
decay widths. Of these, the decay V,*— Zr is too
poorly known experimentally. The N* decay width is
well known experimentally, but the static model we are
using does not reproduce its shape well and thus does
not give an accurate estimate for its width. (The static
model greatly overestimates the width of the high-
energy tail of this resonance; such energy-dependent
effects may be less for the other, considerably narrower,
members of the decimet.) Thus we used the ratio
T(YV1*— Ar)/T(E* — Ex) to determine x. The result
obtained in Ref. 1 was x=—13.4.3 The total couplings
(G+x6G)r;t/G and (G*4x8G*):;%/G*, obtained using
this value of x, are listed in the third columns of Tables
XXI and XXII, respectively. In view of the uncertain
situation in the $*+ decay widths, the precise value of «
used here should not be taken seriously, but the sign and
order of magnitude appear to be reasonable.

Table II in our previous writeup of these results' was
constructed by squaring (G+x3G)x;%/G and, for a given

33 The value of x obtained from the theoretical (1—A499)~! and
A9M has the same sign and order of magnitude. This can be taken
as evidence that the leading eigenvalue of 499 is a little less than,
rather than a little greater than, one.
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TasLe XXII. Strongly perturbed AxB;I; couplings. The first
column gives the unperturbed couplings Gr;*?/G*. The second
column gives the coupling shifts 8G;*i/G* corresponding to the
leading eigenvector of 499 in Table IX, in an arbitrary normaliza-
tion defined in the text. The final column gives the total perturbed
coupling (Gr;*+x8Gr;*?) /G*. The strength parameter x=—13.4
is obtained from the ratio I'(¥1* — Ax)/T(E*— =Er), as ex-
plained in the text.

Ar Bj T Gi*/G* 106Gi*/G* (Gi*i—13.45Gi™)/G*
N*+ p ot 0707 —0.398 1.241
>t K+ —0.707  —0.235 —0.392
N* p o 0577 —0325 1.013
n at 0408  —0.230 0.716
>+ K0 —0408 —0.136 —0.226
> K+ —0577  —0.192 —0.320
N*  p o~ 0408 —0.230 0.716
w w0577 —0.325 1.013
K0 —0577  —0.192 —0.320
> Kt —0408 —0.136 —0.226
N* u a 0707 —0398 1.241
> K° —0707 —0.235 —0.392
r** p Ko 0408 —0.144 0.602
>t @0 —0289  —0.007 —0.280
=t 7 —0500 —0.185 —0.252
= xt 0289 0.007 0.280
=0 K+ —0408  —0.135 —0.228
A xt 0500 —0.185 0.748
Y p K- 0280  —0.102 0.425
n KO 028  —0.102 0.425
=t o —0280  —0.007 —0.280
2 n  —0500 —0.185 —0.252
> ot 0289 0.007 0.280
= K0 —0280  —0.095 —0.161
= K+ —0280  —0.095 —0.161
A w0500 —0.185 0.748
Y* u K- 0408 —0.144 0.602
2 o —0289  —0.007 —0.280
> o 0289 0.007 0.280
= n —0500 —0.185 —0.252
= K —0408 —0.135 —0.228
A = 0500 —0.185 0.748
% 3t K- —0408  —0.095 —0.281
= K0 0.289 0.067 0.198
2 om0 —0289  —0.006 —0.281
= n —0500 —0.183 —0.254
2 ot 0408 0.008 0.397
A R° 050  —0.080 0.608
2= %0 K- —0280  —0.067 —0.198
> R° 0408 0.095 0.281
= o~  —0408  —0.008 —0.397
= om0 0289 0.006 0.281
= o —0500 —0.183 —0.254
A K- 0500 —0.080 0.607
Q@ B K- —0J07 —0.163 —0.489
= R 0.707 0.163 0.489

k, summing over the ¢ and j within a given isospin
multiplet. For example, the NNII coupling strength is

(Gan++x66pn"+) 2/G+ (Gppwo"‘xaGpp’ro) /G2,

The physical implications of the results were discussed
in Ref. 1: The “medium strong” coupling shifts are very
large, and have the right sign to suppress K couplings
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TaBLe XXIII. Electromagnetic perturbations on BiB,II;
couplings. The first column gives the unperturbed couplings
Gii*/G. The second column gives the coupling shifts 8G*/G
defined in Eq. (10.1), calculated using the leading eigenvector of
Ag99 in Table IX. The final column gives the total perturbed
coupling (Gr;*+°3Gr;%) /G. The strength parameter x= —0.25 is
obtained from universality and the experimental electromagnetic
mass shifts among baryons, as explained in the text. This table
does not include the effects of strong symmetry breaking on Gy’

By B; II; iji/G 105Gkﬂ'/G (ij‘—O.ZSEiji)/G
? P 0 0.4775 —0.013 0.4778
P 7 0.0373 —0.078 0.0393
n 7w+ —0.6753 0.000 —0.6752
=t K° —0.2920 0.000 —0.2919
=0 K+ 0.2064 —0.066 0.2081
A K+ —0.4322 0.078 —0.4341
n P Lo 0.6753 0.000 0.6753
n 0 —0.4775 —0.013 —0.4772
n 0.0373 0.078 0.0353
=0 K° —0.2064 —0.065 —0.2048
- K+ 0.2920 0.000 0.2920
A K° —0.4322 —0.078 —0.4302
=t ? Ko —0.2920 0.000 —0.2919
z+ 0 0.2711 —0.115 0.2739
=t ] 0.3949 —0.137 0.3983
z0 xt —-0.2711 0.036 —0.2720
o K+ —0.6753 0.239 —0.6813
A 't 0.3949 —0.058 0.3963
0 P K- ~—0.2064 0.066 —0.2081
n Ko —0.2064 —0.066 —0.2048
z* 7 0.2711 —0.036 0.2720
=0 0 0.0000 —0.043 0.0011
z0 1 0.3949 0.000 0.3949
- xt —-0.2711 —0.036 —0.2702
c K° —0.4775 —0.032 —0.4767
on K+t —0.4775 0.032 —0.4783
A 0 0.3949 0.000 0.3949
A n 0.0000 —0.077 0.0019
= n K- —0.2920 0.000 —0.2919
z0 7+ 0.2711 0.036 0.2702
P 0 -0.2711 —0.114 —0.2682
- 7 0.3949 0.137 0.3915
o KO ~—0.6753 —0.239 —0.6693
A T 0.3949 0.058 0.3934
O =+ K- 0.6753 -0.239 0.6813
20 Ko ~0.4775 —0.032 —0.4767
=0 70 —0.2064 0.122 —0.2095
ol n —0.4322 0.117 —0.4351
o + 0.2920 0.000 0.2920
A Ko 0.0373 —0.020 0.0378
o =0 K~ 0.4775 —0.032 0.4783
b K° —0.6753 —0.239 —0.6693
&9 L —0.2920 0.000 —0.2920
on w0 0.2064 0.122 0.2034
on Ul —0.4322 —0.117 —0.4292
A K- 0.0373 0.020 0.0368
A P K- 0.4322 —0.078 0.4341
n K° —0.4322 —0.078 —0.4302
=+ L —0.3949 0.058 —0.3963
>0 w0 0.3949 0.000 0.3949
>0 7 0.0000 -0.077 0.0019
=z at —0.3949 —0.058 —0.3934
0 K° 0.0373 —0.020 0.0378
on K+ —0.0373 —0.020 0.0368
A L 0.0000 0.111 —0.0028
A il —0.3949 0.000 —0.3949
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relative to = couplings, in agreement with experiment,
and generally decrease the coupling strengths to high-
mass channels. The latter feature makes it reasonable to
neglect certain high-mass channels in approximate
dynamical calculations® even though they might appear
to enter in an important way from SU(3)-symmetry
considerations.

It is interesting to see how the near self-consistency of
the dominant symmetry breaking works out in terms of
specific attractions and repulsions in the broken-SU(3)
bootstrap. We cite two examples:

(i) According to Tables XXI and XXII, N and N*
couple almost exclusively to =V, rather than 2K, etc.,
in the broken-SU(3) bootstrap. Thus, one is led back to
the original self-consistent SU(2) model for N and N*.%

(i) In SU(3), the potential for 72 scattering in the
JP=3§+ state receives a repulsion from A exchange, and
an attraction from = and Y,* exchange.?® In broken
SU(3), the strength of A exchange is enhanced relative
to 2 and Y* exchange, leading to a more repulsive =2
potential. This repulsion provides the detailed mecha-
nism by which the Vy* decay into the 2w channel is
reduced.®

X. ELECTROMAGNETIC APPLICATIONS

Since the 4 matrix is independent of the “direction”
taken by the symmetry violation in SU(3) space,! we
can estimate that the first eigenvector of A4g_s?¢ in
Table IX dominates electromagnetic perturbations of
order ¢? as well as strong perturbations on the B and A
couplings. The individual-particle couplings are again
obtained from it by applying Egs. (4.30) and (4.31) with
S=8. This time, the interesting couplings involve o
equal to the I=1, I3=0, ¥=0 rather than the 7=0,
¥=0 member of the octet (¢="3" rather than “8”):

0Grit=—G"1 Y (nx)"20Rs(84,X)
X

8 8 X\/8 8 X
XZ( >( . ), (10.1)
v\k 3 v/\i 5 v
G*-1
0G¥i=— > (nx*)"12%5Rs*(10,X)
V2 x
10 8 X\/8 8 X
xz( )< 7). w2
v\k 3 v/\i 7 »

Our predictions for the perturbed couplings now take
the form (GSt°"8-x*™5G*™),;¢ where (G5'*°"8),;¢ is the
outcome of Sec. IX, (6G*™)y;* is given by (10.1) or (10.2)

3 See, for example, B. Kayser, Phys. Rev. 138, B1244 (1964);
F. Gilman, ¢bid. 147, 1094 (1966).

3% G. F. Chew, Phys. Rev. Letters 9, 233 (1962).

36 E. Golowich, Phys. Rev. 139, B1297 (1965).

3 B. Kayser and E. Bloom, Phys. Rev. 144, 1176 (1966). The
authors are indebted to Dr. P. Carruthers for an informative dis-
cussion on this and related points.
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with 6R taken from Table IX, and #°™ is an over-all
strength parameter for the electromagnetic perturba-
tion. As a further consequence of the fact that the 4
matrix is the same for electromagnetic and strong
perturbations, we can estimate that the same ratio
0G/6M holds for both. If this is true, we can take
aem /gStrone equal to SMBem/sMBstrone which is known
experimentally. (By 6% we mean the coefficient of the
normalized octet mass matrix as defined in Ref. 2;
this coefficient is the “strength parameter” for mass
shifts, just as « is the strength parameter for couplings.)
By such means we obtain x*m=—0.25. The results ob-
tained for BBII coupling shifts, using this value of x°=,
are presented in Table XXIII. ABII coupling shifts can
similarly be calculated from Eq. (10.2).

There are no firm data on any electromagnetic shifts
in BBII or ABII couplings, but at least a few cases have
some experimental interest. One sees from Table XXTII
that the corrections 6Gyy- due to the leading octet
eigenvector are extremely small, a point which is rele-
vant to possible violations of charge independence in
nuclear physics, where one-pion exchange is an im-
portant part of the two-nucleon potential. Similarly, a
calculation of electromagnetic shifts in N*Nx coupling,
using (10.2), yields results relevant to the recent ex-
perimental search for differences between N*++— p+-nt
and N*~— n-+7.%8 For the A/=1 couplings which
participate in octet SU(3) breaking, we estimate crudely
T(N*— n+7")—T(V¥*t+ — p+7t)=1 MeV.

XI. APPLICATIONS TO WEAK NONLEPTONIC
INTERACTIONS

In this section we discuss the coupling shifts induced
by the weak interactions. We will work under the
assumption that CP is conserved; some discussion of
CP-violating couplings will be given in Sec. XIII.

As usual, we specify the character of a weak violation
of SU(3) by o, S, €, and P, which stands for the ¢
component of a representation .S whose I=0, ¥Y=0
member has charge conjugation € and parity P. To
avoid possible confusion, we would like to stress that for
the strangeness-violating weak interaction, € and C
may be different, a situation which did not arise in our
previous studies of strong and electromagnetic correc-
tions to SU(3). That is, @ remains the same for all com-
ponents o of the representation .S, while C equals @ for
the /=0, ¥=0 component, but is negative for some of
the other components. For example, the K;° meson has
@=++1 and C=+1, while the K,* has @=-1 (since it
belongs to the same octet), but C=—1. Similarly, a
strangeness-changing weak Hamiltonian with C=+-1
can contain a piece which acts like the K,° from an
octet with @=-1, or a piece which acts like the
“K%” from an octet with @=—1, or both. Concerning
this point, the current-current interaction in the Cabibbo

# G. Gidal, A. Kernan, and S. Kim, Phys. Rev. 141, 1261
(1966).
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form predicts @=+1 for the parity-conserving part of
the nonleptonic weak interaction and €=-—1 for the
parity-violating part.?® Apart from this attractive
hypothesis, however, there is little evidence either for or
against these @ assignments. Furthermore, whatever
properties the weak interaction has in the SU(3) limit
are likely to be modified by the large strong violations of
SU(3). For these reasons, we have studied weak cou-
plings with @= =1 for each of the cases, parity conserva-
tion and parity nonconservation.

It is important to note that the 4 matrix refers
to a definite @€ and does not connect violations with
different @.4° We can therefore treat G=-41and C=—1
separately.

We now proceed to outline our calculation and results
for the four cases P==41 and @==1, remaining al-
ways with CP=1. We begin with P=1, @=1, then pro-
ceed to P=1, @=—1 and take up P=—1 in the latter
part of the section. In our discussion of the parity-
conserving weak interaction, we restrict ourselves to the
strangeness-changing AV 0 part; the tiny strangeness-
conserving, parity-conserving couplings induced by the
weak interactions are, at most, of academic interest.

Our treatment of P=1, @=1, AV 0 coupling shifts
follows along the same lines as the treatment of the
strong and electromagnetic 6G’s, but differs in one im-
portant way: There are no strangeness changing mass
shifts 6.

That the AV 0 weak interaction produces no first-
order mass shifts is quite obvious from a physical point
of view, but it is instructive to see formally how this
comes about. To this end, let us consider a calculation of
dg and 8M correct to first order in strong-SU(3) viola-
tions, electromagnetism and weak interactions. For
simplicity, we suppose that 4#¢=0 and write

sM=[1/(1~AMM)]DH,
sg=[1/(1—A05)](Do+AsM5}1),

(1.3)
(1.4)

where DM and D¢ each contain three terms, one from
each of the strong, electromagnetic, and weak interac-
tions. We now wish to isolate the strangeness-changing
(AY #0) perturbations, which is equivalent to picking
out the perturbations which point in a direction per-
pendicular to the 3 and 8 axes in SU(3) space. One
must, however, be rather careful here. In a totally
SU(3)-symmetric world, the orientation of the 3 and 8
axes would be arbitrary. It is only because SU(3) is
violated that we can give a unique meaning to the 3 and
8 axes. The direction of these axes is, in fact, defined
solely by the requirement that the physical particles
have definite values of I3 and ¥, which is equivalent to

8 M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).

4 For the /=0, ¥'=0 component of a given representation .S,
@ is the same as C, and 4 connects only couplings of the same
C=e. Under SU(3) rotations to other components o of S, 4, and
@ remain unchanged, so 4 continues to connect only couplings of
the same @. It also connects couplings of a given C only to them-
selves, but whick C is involved varies with the component o.
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TasLE XXIV. Eigenvalues of 499 for parity-conserving couplings of various C and S, and the contributions of the associated eigen-
vector to the observable B — B+ decay amplitudes. The evaluation was made at = —28° and only eigenvalues >0.5 are included.
The normalization and over-all phase of each column are arbitrary; it is the ratios which are significant.

N S 8 8 8 8 8 27 27 27
+ + + - = + + — ,
Decay\ Eigenvalue  0.93 0.66 0.49 0.89 0.82 0.88 0.63 0.83 Experiment®
Jp 040  —0.20 0.00 0.10 013 —0.14 0.18 003  —14+06
Ao tp —0.56 0.28 000  —014  —0.18 019 =025  —005  +2.0+0.3
ot dn —040  —033  —051 0.20 0.14 007  —023  —041 41301
o0 tp 0.42 043 0.05 036  —023  —0.09 0.00 0.06 {:f‘;ig";
- atn 0.19 028  —044 071  —019  —003  —023  —032  —04%0.6
HO—> LA —0.11 006  —0.18 011  —032  —0.03 0.24 019  —1.0+0.2
B — 1A —0.16 008  —025 015  —046  —0.04 0.34 027  —14%0.1
& See Ref. 50.

saying that the mass matrix 6}/ has no components per-
pendicular to the 3 and 8 axes. (This is somewhat easier
to see if one imagines a world in which the = meson is
sufficiently massive so that decays like A— =V are
energetically forbidden even though strangeness is not
conserved.) Thus, by definition, there are no AV #0
mass shifts and for the strangeness-changing corrections
to SU(3), we havet

SG(AY #0)=[1/(1—A99) IDay .  (11.1)

The matrix A9 in (11.1) is (for the €=41 &¢’s
under consideration) the same as the 497 which appears
in the strong violations of SU(3) (since 4 is independent
of o). We know that 499 has several eigenvalues near
one, so that there is no lack of enhancement for these
couplings. Specifically, there are five eigenvalues or
order % or greater, three for S=8, and two for S=27;
the contributions of each of these five eigenvectors to
the seven observed hyperon decay amplitudes is given
in Table XXIV.

One will recall that for the strong and electromagnetic
violations of SU(3), the mass shifts drove mostly the
one leading octet eigenvector, thus singling it out as
doubly enhanced. The absence of AV 0 mass shifts,

41 Although we have shown that 6M Ay is rotated away, one
might wonder whether the effect of M sy« on 8¢ is not simply re-
placed by the effect of the rotation. After all, the rotation does
change the wave functions at a vertex such as 2 apr Gag*Vavs¥sdr

by an amount
81=[{1|Hveax|2)/(Ea—E1) W,

where E;—E; is the energy splitting introduced by the strong
symmetry breaking. (The way in which mixing of this type appears
in our formalism was described in footnote 14 of Ref. 45.) We have
not estimated this effect for the following reasons: (i) To the ex-
tent that the strong and weak mass shifts (before rotation) are
dominated by a single eigenvector of 4, a single SU(3) rotation
removes M ayxo for all supermultiplets. A uniform SU(3) rota-
tion of all supermultiplets leaves couplings which were initially
SU(3) scalars unchanged, as stressed by Coleman and Glashow
(Ref.9). (ii) Actually, the mass shifts contain small admixtures of
other eigenvectors as well. Therefore, somewhat different SU(3)
rotations are needed to remove M ay o from different supermulti-
plets, and this leads to coupling shifts. But the leading effects of
the rotation do cancel as indicated above, and the small residual
shifts, not being controlled by the leading eigenvector, are hard to
predict. (iii) Since the effect depends on bot/ the weak and strong
mass shifts, it is “nonlinear” and technically is part of the driving
term rather than the A matrix.

however, prevents us from singling out a unique eigen-
vector for the weak interactions. In this sense, the parity-
conserving weak interactions do not share the single-
enhanced-eigenvector ‘“universality” which seems to be
present in the strong and electromagnetic corrections
to SU(3).

We now turn to P=1, €= —1 perturbations. Again,
there will be no strange mass shifts and we deal with an
equation like (11.1). The matrix 477 is, however, dif-
ferent in this case.

To calculate 497 for €= —1, we note that since 4 is
independent of any direction in SU(3) space. We may
as well? construct it by considering a violation in the
I=0, Y=0 direction which has C=€=—1, even
though we will ultimately be interested in a direction
where C=—C=+1. We may proceed, then, exactly as
in the construction of 4¢¢ for €=+1, except that:

(i) Cis now equal to —1, where it appears explicitly
in the equations of Sec. IV.

(ii) As a result of taking C=—1, the “diagonal”
coupling shifts 6R(8¢,8¢(s or @)) and 6R*(10,10) do not
contribute to Egs. (4.26)—-(4.29). Thus the projection
procedure of Sec. V operates on the reduced basis of
“off-diagonal” coupling shifts. The diagonal components
[6R(8¢,8¢(s or @))] must be removed from the C=—
vectors of Table V before they are employed in the pro-
jection procedure.

(iii) In Sec. V, we are now instructed to project out
the couplings with C=+-1 rather than C=—1, as we
did to obtain 499 for €=+1. If P;; is the projection
matrix which removes the C=—1 BBII couplings
[modified in accordance with (ii) above], then the
complementary projection P;;/=8;;— P;; (for BBII cou-
plings) and §;; (for ABII couplings) will remove the
C=-1 BB couplings. Again, we have to check the
sensitivity of the leading eigenvectors to this projec-
tion procedure.

Numerically, we found that for @=—1 there are
three eigenvalues near one, two for S=8, and one for
S=27. These eigenvalues and the contributions of
their associated eigenvectors to the observed hyperon
decays are shown in Table XXIV.
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The sensitivity of these eigenvalues and eigenvectors
to the parameters, 6 and the curvature of D, in our
model was roughly the same as for the @=--1 case. The
sensitivity to the projection which enforces vertex
symmetry was also comparable to the G=-1 case.

Since we have a total of eight enhanced eigenvectors
for P=+, five for @=+-1, and three for @=—1, com-
parison with experiment is difficult. Some pheno-
menology was discussed in Ref. 1; here, we simply note
that the numbers quoted in Ref. 1 were derived from
Table XXIV.

We turn now to the parity-violating (P=—1) weak
interaction.

The static Chew-Low approximation which we em-
ploy has the special feature that orbital angular mo-
mentum is preserved under the operation of crossing
from the s to # channel. It will turn out that this fact
greatly simplifies the treatment of parity-violating
couplings.

The crossing properties of orbital angular momentum
are determined by the relation between the scattering
angles cosf,=14-£/2¢,*> and cosf,=141¢/2¢,2 in the
two channels, where ¢ is the momentum transfer and g,
and ¢, are the cm. momenta in the two channels.
Clearly, if the two angles are equal, orbital angular mo-
mentum is the same in both channels. Now, in the static
region around W =M 5, one readily verifies that to order
(W—MB)(2MB), ¢2 and g¢,2 are equal so that
cosf,=cosf, and, within our approximation, orbital
angular momentum is preserved under crossing.

The importance of this result is seen as follows: To
study the parity-violating BBII couplings, we look at the
scattering amplitude for II4+B (J=% P wave) — I+ B
(J=% S wave). It follows from the discussion of the
above paragraph, that the cross reaction which deter-
mines the nearby part of the left cut must be .S waves —
P waves. Such a reaction must proceed through a J=3%
state, which tells us that /=% B-exchange contributes
to the left cut, but not J=$§ A-exchange. Similarly, if we
want to study the P=—1 ABII coupling, we look at
(J=% P wave) —» (J=% D wave) which has only J=%
in the cross channel, and B-exchange does not con-
tribute. Thus, in the notation of Sec. IV, we have
n*B=yB2=0 for parity-violating couplings.

The previous paragraph may be summarized by the
statement that for parity-violating processes, total
angular momentum J as well as orbital angular mo-
mentum is preserved under crossing. This is not, of
course, the case for parity-conserving processes where we
have, for example, (J=% P wave) > (J=3% P wave)
which crosses to P waves with both /=% and J=3%,
thereby complicating the treatment of parity-conserving
processes.

There is still a further simplification in the P=—1
case. Returning to the reaction I+ B*(J =1 P wave) —
II*4-B+(J=1% S wave) which crosses to II7s+4B2(J =3
S wave) — I+ B“(J=% P wave), we note that II*s
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in the direct channel and its crossed partner II?s both
are in .S waves and couple to the baryon pole with the
parity-violating coupling 6G while II"* and II?* both are
in P waves and have the symmetric coupling G. Refer-
ring to Fig. 1, we see that, for P=—1, diagram (1b)
does not appear, which means 7#8=75,24=0.

Thus, we have found that for P=—1 all the “dynami-
cal” factors vanish except 7,82 and 7,24. The calcula-
tion of these factors is straightforward and we obtain

188 =Dy, (MB)~[Dg,(W)/(W—ME) Jyp=prz=1 (11.2)

and

1q*4 =Dy’ (M*) ]
X[D1o(W)/(W—M2) 1w —2048—psa. (11.3)

Given the knowledge of the dynamical factors 5, the
remaining task is to evaluate the Clebsch-Gordan fac-
tors. We shall discuss two ways of doing this. The first
way is to proceed exactly as in Sec. IV, obtaining Egs.
(4.26) and (4.29) with the following modifications:

(i) The 7 factors are now to be taken from above.
Note that, unlike the »’s for parity-conserving couplings,
there is no distinction between 2,24(X=10) and
7422(X#10) because all parity-violating couplings are
“off-diagonal.” This “off-diagonal” nature is also re-
sponsible for the remaining modifications, which involve
factors of 2.

(ii) In Table IV, relating to the Zx and #nx factors,
the 8 row now takes on the same “off-diagonal” value
as the 84« row, and the 10 row takes on the same values
as the 10 row.

(iii) In Table V, relating to the C=— projection, the
components 0R(84,8p), 6R(84,84(s)), and 6R(84,84(a))
are to be multiplied by V2 (note that these components
are now present in 4 both for C=+- and C=—). Tak-
ing the appropriate values for all these factors, we
evaluated (4.26) and (4.29), obtaining the eigenvalues
and eigenvectors of 4%*E* and verifying the eigenvalues
and eigenvectors previously reported by 4% in Ref. 3.

The second way of evaluating the Clebsch-Gordan
factors involves a different set of basis states than Sec.
IV, but is ultimately easier and yields more insight. By
using this second method in Ref. 3, we were able to ob-
tain 4 %E without resorting to machine calculation (un-
fortunately, these advantages of the second method
apply only to parity-violating decays).

To see why a different choice of basis state yields
simpler equations, recall that only Fig. 1(a) contributes
t0 ORyyv,v50, for the Py — Sye reaction. Projecting vy,
onto the incoming state 8, &, we can express the con-
tribution of Fig. 1(a) to 6G diagrammatically by Figs.
3(a) and 3(b). For comparison, diagrams expressing the
Clebsch-Gordan content of Ajssexty are presented in
Figs. 3(c) and 3(d). One sees that if in the coupling
calculation, II; and S, (expressing the transformation
property of the symmetry breaking) are combined into
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F1g. 3. Figure 3(b) represents the effect of baryon exchange [Fig.
1(a)] on the parity-violating reaction By — II,;+B,, in Fig. 3(a).
In each case, the wavy line represents the SU(3) violation, trans-
forming like the o component of representation S. Figure 3(d)
represents the group-theory factors in the contribution of the ex-
ternal baryon mass shift to the baryon mass shift [Fig. 3(c)]
transforming like the ¢’ component of representation .S'.

the nth member of representation N, then N, n plays
the same role in A% ity violatingy as S, ¢’ plays in
AMME) Thus we can read off the group-theoretical
factor for 4 %% urity.violating) from the relatively simple
factor for AMM(€x) nhrovided we express the coupling
shifts in terms of the basis where B,,B; are combined
into representation N instead of the basis of Sec. IV,
where B,II,, are combined into representation X.

We now proceed to work out the equations for the
new basis in detail. We wish to calculate

5iji= Z A ki k'3 ii'&Gk’ji’-l—iji .

i3k

(11.4)

In the parity-conserving case, we changed from the
6G;* basis to the 6R g(84,X) basis by means of the trans-
formation (4.30). In the present case, it is more con-
venient to remain in the 8Gy;? basis for a time, before
transforming to the new basis.

The basic equation from which 4 can be deduced is
(3.22). Since the form of Eq. (3.22) is independent of X,
the conversion of (3.22) from the X to the individual-
particle basis is trivial; we obtain

1 D30T spt, 30, 8W’
BG“kﬁ’= - ’ ’
GDs,(MB)2xi )¢ W'—ME

(11.5)

where we have used 8R=—G6G, 6Ts;x,i; is the ampli-
tude for IIB in the & component of the 8 state to go to
B+-1I'3, and the labeling on 6G then follows from Eq.
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(4.1). Specifically, 6T sk, is given by

8 8 &
5T89k.vau= Z( >6Tuvz,uu- (11-6)
V1 k

viv2 123

Evaluating the exchange diagrams according to (4.10)
and taking account of the fact that 7;=0, we obtain

-1 8 8 8
o L)
GDyg, (MB)2wi vwea\v1 v2 k
DgyT 180G 0073Gy > d W'
X / : (11.7)
c W'—M®B
Writing

8 8 &
ol 1),

V1 Q V4

and using (4.19) and our previous result that »,28=1 to
eliminate the dispersion integral, we reduce (11.7) to

8 8 83\/8 8 8
aGMkﬁs=Z( )( )aG.,,;a. (11.8)

vivza \Y1 V2 k V1 V4

Comparing (11.8) with the 4 term in (11.4), we finally
obtain

N 8 8 8\/8 8 8
Auk,avszz‘ 6531’ Z( >< ) ) (11-9)

1 \V1 V2 k Vi o V4

which will be recognized as Eq. (6) of our previous

paper.?
We now turn to the new basis, where

5iji= Z ZNaGs(N)
N

8 S N\/8 8

x=(C ")

“\i o n/\j k

Equation (11.10) is analogous to (3.9), with the second

Clebsch-Gordan coefficient representing the projection

of B;Bs onto representation N, the first Clebsch-Gordan

coefficient representing the combination of N with II;

to form a coupling transforming like .S, 6Gs(IV) repre-

senting the strength of this coupling, and Zy repre-

senting a normalization factor. The projection necessary

to invert (11.10) can be derived from (4.14) and (4.15)
and turns out to be

]:) (11.10)

5G,s(N) EP(Siji

Ng 8 § N\/8 8 N )
(00 L D
NyZyiikn\i o n/\j k n

(11.11)

Replacing 6G4,7 by (11.10) on the right side of (11.8),
and multiplying both sides by the projection operator of
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(11.11), we obtain
Ns 8 8 &
2201
NNZNvlvzan' vgrakn \yy Vo k
)(<8 8 89)(8 S N)(S 8 N)
vi @« v/ \pg o n/\k 94 n

xz(s s N’>(8 ? ;v,)ZN'aGs(N’). (11.12)

N\p3 o w'/\», & !

8Gs(N)=

Equation (11.12) is analogous to, and essentially as com-
plicated as, (4.18). The simplification comes when we
recognize that the indices »3 and o appear only in the
Clebsch-Gordan coefficients involving .S. Now we know,
in general, that A4 is independent of . Therefore, we
may write the part of (11.12) that depends on S, o,
and »; as

8 § N\/8 S N
2 ) )
3\V3 o0 n vy O N

12(8 S N)(S S N’)
_—N,gm"s 93 ¢ n/\p3 o u

1
=——0nwlnn, (11.13)
so that 5
1 8 8 8\/8 8 &
Gs(V)=— 3 Z( )( )
Novm2arvka\py v R/ \v1 a vy
8 8 N\/8 8 N
X( >( >Z SuwdGs(N').  (11.14)
k s n/\ve @ n/nN

Thus the 4 matrix for parity-violating couplings is
diagonal in &. For a given N, it is the same for all .S
contained in 8XN.

The analogy between (11.14) and the equation for
AMMExt) hecomes even clearer if we recognize that each
n contributes the same amount to (11.14). This allows
us to deduce that

8 8 &
AFMEE =gpn, T Z( )

vee vak\yy  pe k

8 8 8\s/8 8 N\s8 8 N
x( )( )( ) (11.15)
vi @ v/ \k vy n/\v, @ n

This is just the group theory factor appearing in 4 (ext)
[Fig. 3(d)], provided one replaced N, # by S, o.

The comparison between the leading eigenvector of
A% arity-violating and experiment is excellent, as de-
scribed in Refs. 1 and 3. All six ratios among the ob-
served parity-violating B — B--r amplitudes are well
accounted for, which makes this our “best case.” It is
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therefore interesting to note that 4 for this case is less
parameter-dependent than usual.
Note that:

(i) The part of 4 which affects parity-violating BBII
couplings is independent of the form of the denominator
functions, since the BBII decay decouples from the
ABII decay and the B pole lies at the same energy in the
direct and crossed channels.

(i) The form of 499, ity.violating €DSUres that vertex
symmetry holds in this case. To see this, it is easiest to
start with Eq. (11.8):

8 8 8\/8 8 &
0G, 7%= Z( )( )6Gm’3. (11.8)
wwea\vy w2 k/\v1 a vy

We recall that vertex symmetry holds if the coupling on
the left side of (11.8) has the same Hermiticity property,

8Gagh=C(—1)%5Gs% (4.3)

as the coupling on the right side of (11.8). This motivates,
us to compare (11.8) with the corresponding relation

- 8 8 8\s/8 8 &\ _
8Gu 3= z( )( )6Ga,,,"a, (11.16)
viv2a\pyy Vg V4 V1 a k

where the reality of the Clebsch-Gordan coefficients has
been used. Since d and v, are summed over, we can inter-
change them in (11.6) to obtain

8 8 8\/8 8 8
8Gy 3= Z( a)( k’)a@,,.,,va. (11.17)

vv2a \V1; Q V4 V1 V2

Next we employ the Hermiticity property (4.3) of the
input 5G on the right side of (11.7) to obtain

8 89)
o vy
8 8
«(
V1 V2
Comparing (11.18) with (11.8), we see that
5Giswk output = Cinput(_ 1)Qi36@yakw output » (11°19)

vea

~ 8
5Gk“l'a= Cinput(“" 1)0'73 Z <
V1

8¢
k)aG,,,,ﬁs. (11.18)

0 that 6Goyepyt retains the same Hermiticity property
as 5Ginput'

It is also interesting to compare the parity-violating
BBII couplings, associated with the leading eigenvector
of 466, with the predictions obtained from SU(6)
under the assumption of 35 dominance.

Leading eigenvector. As described in Ref. 3, the lead-
ing eigenvector of A%%,. ity violating 8aVe BB in the
dominantly antisymmetric octet state 8,418, (the
analogy with AMM@xt) and the fact that AMM(ex®)
dominates 4#»* explains why this is the same com-
bination that occurs in the leading eigenvector for the
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baryon mass shift). This placement of BB in the octet
state determined five ratios among the observed
B — B+ decays, and the assumption of €= — for the
parity-violating decay determined the sixth ratio.

SU(6). In the SU(6) treatment, it is found*? that the
35 representation dominates the parity-violating BBIT
coupling which can thus be thought of as a unitary
singlet (B5sBssIl35 spurionss) coupling. Since

56 % 56 = 14354052695 (11.20)

and

35x35=1,435,435,
+189,+-280,+280,4-405,, (11.21)

there are four independent ways to construct an over-all
unitary singlet. However, the singlet in 56X 56 cannot
produce observable strangeness-changing decays. More-
over, if we assume @=— for the spurion, then since
€=+ for 5656 and for II, an over-all €=+ can be
obtained only from the antisymmetric products of
35X35. This last condition singles out 35, from 35X35.
Then 56X56 must be in 35, and since this is the ad-
joint, ‘BB is in 8,, which is close to our 8,418, above.

In addition to AGBBIDG(BBI) we have also evaluated
ACGHABIGHABI [ywhich is relevant to @~ decays. For the
parity-conserving amplitude, we recall there were
several eigenvalues near one, so O~ decay was enhanced
but the ratios could not be predicted. For the parity-
violating amplitude the largest eigenvalue of A46*¢*
was 0.5 if linear D was used, and less if the curved
Balazs D was used. Thus we are again unable to pre-
dict ratios, but we do expect the parity-conserving
amplitude to predominate somewhat.

XII. COMPARISON WITH OTHER STUDIES

The present work is descended from the initial work
on octet enhancement by Cutkosky and Tarjanne,*?
and the study of strong BAII coupling shifts by Wali
and Warnock.®” Roughly speaking, Wali and Warnock
estimated 49 but not 499.4¢ Since the largest term in
A9MsM feeds the same eigenvector that is favored by
Av9, their results obtained using only 4 ¢ are in qualita-
tive agreement with ours. By including 499, we obtain a
somewhat fuller picture of strong coupling shifts, as well
as the new results we have enumerated for the weak
interactions.

Technically, the method of Wali and Warnock?
is somewhat different from ours. They use the N/D
method, keeping the numerator SU(3) symmetric

2 G. Altarelli, F. Buccella, and R. Gatto, Phys. Letters 14, 70
(1965); K. Kawarabayashi, Phys. Rev. Letters 14, 86 (1965); 14,
169 (1965); P. Babu, ibid. 14, 166 (1965); S. P. Rosen and S.
aagl%\gz)xsa, sbid. 13, 733 (1964); M. Suzuki, Phys. Letters 14, 64
" ;36% E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1355

4 Afwther paper in which mass shifts are used to derive BAIL
coupling shifts is that of E. Johnson and E. R. McCliment, Phys.
Rev. 139, B951 (1965).
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but putting the physical masses into p in
D=1—/Np(W’—W)—1dW’.

This procedure varies the position and residue of the
direct-channel singularities, but not the position of the
exchange singularities. The resulting equations are con-
siderably simpler than ours. In terms of parts of the 4
matrix, external mass effects on the direct channel are
well taken into account, the (numerically less important)
exchange-mass shifts are neglected, external mass-shift
effects on the left cut are neglected, and exchange-
coupling shifts are not systematically accounted for by
their method.

Ernst, Wali, and Warnock? have stressed two difficul-
ties common to all these studies: (i) The approximations
do not guarantee “vertex symmetry” (Sec. V); and
(ii) The shifts are so large that higher order effects repre-
sent an important and interesting correction to the linear
perturbation theory we have been using.

Difficulty (i) does not happen to be serious for our
leading eigenvectors—it was shown in Secs. V and XI
that they possess the required symmetry to within a
few percent. Difficulty (i) would become really im-
portant if higher order effects drove eigenvectors of 4¢¢
with eigenvalues far from one much more strongly than
the eigenvector with eigenvalue near one, or if they
drove the leading 27 eigenvectors as strongly as the
leading octet eigenvector. It is not known whether this
happens for strong coupling shifts. Empirically, we have
seen that the linear theory gives good results for mass
shifts and parity-violating decays, and that higher order
effects on parity-conserving nonleptonic decays (pro-
ducing abnormal @ through the combined action of
strong symmetry breaking and weak interactions) are
comparable to but not dominant over the linear effects.

In another recent study, Diu, Rubinstein, and Van
Royen® have calculated A¢ for BBII and ABII
coupling shifts by the same approach as ours, and ob-
tained eigenvalues in complete agreement with ours.

Another approach to symmetry breaking is the
“tadpole” theory,? involving octets of 0" mesons. In a
previous paper®® it was shown that if a low-mass Ot
octet exists, 4 can easily have an eigenvalue near unity,
so that tadpole theory and the methods of the present
paper may actually be related. The connection does not
necessarily hold, however; 0* particles do not reguire an
eigenvalue of 4 near one or vice versa.*” Now in the

4 B, Diu, H. Rubinstein, and R. Van Royen, Nuovo Cimento
43A, 961 (1966).

46 R, Dashen and S. Frautschi, Phys. Rev. 140, B698 (1965).

47 In Ref. 45 we showed that low-mass 0" hadrons would imply
an eigenvalue of X, the matrix expressing the self-consistent effects
in Ot emission, near unity at ¢2=0. They do #ot, however, imply
that the submatriz of X(g>=0) connecting monopole couplings
(couplings which persist in the limit g,— 0) has an eigenvalue
near unity, and it is this submatrix which has the same eigenvalues
as A. Thus the statement made in that reference that low-mass 0%
hadrons ensure an eigenvalue of A4 near one is not correct.
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present paper we calculated, and made physical use of,
several different eigenvalues of 499 near one. They in-
cluded positive-parity octets of either charge conjuga-
tion, and a negative-parity octet of charge conjugation
opposite to the 7K 7 octet. It is possible that an octet of
Ot particles corresponding to one of these eigenvalues of
A exists. But it seems unlikely that separate octets of
tadpoles exist corresponding to eack eigenvalue of 497
near one as well as the eigenvalue of 4#™ near one
(which requires a separate set of tadpoles according to
Coleman and Glashow?).

XIII. CP-VIOLATING COUPLINGS

The recent discovery of CP violation in K decays?
has opened the possibility that CP is violated in weak
BBII and ABII couplings, or perhaps even in semistrong
couplings.®® The method of the present paper cannot
tell us whether or not CP violations occur, or their
over-all strength, but does give information on the ratios
of couplings if such violations do occur.

The procedure for calculating the 4 matrix for P=+-,
C=—, and P=—, C=+ couplings has already been
given in Sec. XTI, where we were interested in terms with
abnormal €. The only change comes in Eqgs. (4.30) and
(4.31) for obtaining the couplings corresponding to an
eigenvector of 4: the P=+, C=—, S=8 coupling
comes from the eighth component (¢=8) for strong
interactions, ¢=3 or 8 for electromagnetic interactions,
and o=6 for strangeness-changing weak interactions—
instead of o=7 for “abnormal” C- and P-conserving
weak interactions.

As discussed in Sec. XTI and Ref. 3, there is no lack of
eigenvalues of 499 near one for CP-violating couplings.
For P=+, C=—, §=8, eigenvalues 1.0 and 0.7 are
found, for P=—, C=+-, S=1 or 27, the eigenvalue 0.7.
Thus if CP violation exists, it can readily become en-
hanced and competitive with CP-conserving couplings.

The only possible consequence of CP violation we
shall discuss here is the question: What happens to our
predictions for the weak interactions if CP is violated?
We can make the following comments:

(i) The phase relations between amplitudes for re-
actions like A— p+7— and p — A4+ depend on C
[Eq. (4.5)]. If both reactions could be observed, these
relations would give information on C. In practice,
however, due to the mass spectrum of the baryons, only
decays with AV =1 are observed (£ — Amr, A— N,
2 — Nr), so C cannot be determined in this way. (¢=6
cannot be directly distinguished from o=7 in the ob-
served decays.)

(if) According to Ref. 3 and Sec. XI, the leading
eigenvector for P= — decays predicts 2, =0, the ratios
of H¢® to Z¢® to Ay, and the ratios of Z_~to Z_~ to A_,

48 J. Christenson, J. Cronin, V. Fitch, and R. Turlay, Phys. Rev.
Letters 13, 138 (1964).

49 T, D. Lee and L. Wolfenstein, Phys. Rev. 138, B1490 (1965);
J. Prentki and M. Veltman, Phys. Letters 15, 88 (1965).
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independently of charge-conjugation properties. CP
conservation implies only one further relation® (which
can be taken as the A7=4% rule for A decay). This last
relation is well-satisfied experimentally but might have
some other explanation; thus the success of our theory
for P=— decays does not tell us much about CP
properties.

(iii) The usual phenomenological analysis of non-
leptonic baryon decays® is made with the simplifying
assumption 7'=+-. If CP-violating terms are present in
the amplitude, they have 7’=— by the 7CP theorem
and would be 90° out of phase with CP-conserving terms
according to Eq. (4.7). What the experimental “asym-
metry parameter” in baryon decay gives us, then, is the
interference between the S-wave amplitude and that
part of the P wave which has the same time-reversal
properties as the S wave (assuming final-state inter-
actions are small). Redoing the phenomenological
analysis with 7" violation in mind, one finds that the
magnitudes of the S wave are essentially unchanged and
the “in-phase’ part of the P waves not much changed,
although there is room for “out-of-phase” P waves com-
parable to the “in-phase” P waves. The considerations
of Sec. XI still apply to the “in-phase” P waves: Both
“normal” and “abnormal” C are required for us to fit
them, independently of CP conservation.

To summarize, then, the possibility of CP violation in
baryon decays affects our conclusions very little.
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APPENDIX A. CONVERGENCE OF
THE DISPERSION INTEGRALS

As discussed in Ref. 2, the integrals (3.15) and (3.16)
for 8R and (3.17) for 6M converge well when the D
functions (3.19) and (3.20), which approach a constant
as W —w, are used. In fact, the convergence of the
integrals for 6R and éM is better than the convergence
of appropriate dispersion integrals representing the un-
perturbed strong interactions in many practical situa-
tions. To see this, it is best to change temporarily from
the static amplitude [ Egs. (2.1) and (2.2)] to kinematic,
singularity-free amplitudes. For the J=34* amplitude,
for example, we have

2 82737’_ 1

T(W)= (A1)

LW—=MP)y—(M)*] 2iq

80 See, for example, M. Stevenson, J. Berge, J. Hubbard, G.
Kalbfleisch, J. Shafer, F. Solmitz, S. Wojcicki, and P. Wohlmut,
Phys. Letters 9, 349 (1964); R. Dalitz, 1964 Varenna lectures (to
be published).
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Now consider some specific term such as the contribution
of A exchange to the 3t channels. It is well known that
spin-3* exchange is divergent, contributing a term

TW) 2 (constant)

(we ignore Inl¥’s) which exceeds the unitarity bound by
one power of W at large W. A perturbation on this
term, 67, will generally also approach a constant at
large W, but this behavior combined with the behavior

D(w) =2 (constant)

produces only logarithmic divergences in Egs. (3.15)-
(3.17) for 6R and 6M. Thus the convergence at large W
is better by one power of W for first-order perturbations
than it is for iterations which one usually makes in
treating the strong interactions.

This advantage applies only to first-order perturba-
tions; in second order, the unitarity relation Im7'=TpT,
with input 7'~ constant at large W and the phase factor
p~W at large W, introduces a worse asymptotic
behavior.

Another difficulty with N/D calculations of strong
interactions is that when correct threshold behavior is
imposed, divergences develop at high energy for all but
the lowest partial waves. Again, no difficulty of this
type occurs in our treatment of first-order perturba-
tions: e.g., in the above example,

STY W) 2 constant and DY(IV) -2 constant

for all 7 so (3.15)—(3.17) converge for all /.

We believe that the good convergence of the perturba-
tion integral is responsible for the relatively successful
results of calculations on perturbed bootstraps. Con-
tributions from W which are far from M are usually
approximated or left out of bootstrap calculations, both
perturbed and unperturbed. For normal unperturbed
bootstraps, the resulting errors are serious; the method is
quite successful in showing which channels have strong
attractions and therefore resonances or bound states,
but quantitative success in predicting such things as
the positions of resonances is generally not achieved.
Our studies of perturbations on the B-A reciprocal
bootstrap, on the other hand, keeping just the usual
singularities near W= M, but with the advantage of im-
proved convergence, have yielded results within 309,
of the data for: (i) the neutron-proton mass difference,*
(i) the ratios of mass differences within the B and A
multiplets,? (iii) the ratios of parity-violating nonlep-
tonic decay amplitudes of baryons,'? (iv) the ratios of
various electromagnetic couplings of B and A, such as
the D/F ratio for baryon magnetic moments,”* and
(v) the ratios of various weak couplings of baryons to
leptons.5!

81 R. Dashen and S. Frautschi, Phys. Rev. 143, 1171 (1966).
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APPENDIX B. CHOICE OF D FUNCTIONS

In the present study of perturbations, as well as in
the earlier treatment of B and D mass shifts,? only terms
appearing in the static limit have been considered. Also
the form used for the D function, Eq. (3.19), did not
contain physical effects (such as the Roper resonance)
which take one beyond the static model. Thus our re-
sults are to be interpreted as results of the static model.

While the connection of (3.19) (or its linearized ver-
sion) to the static model is the most straightforward
reason for using this form of D, it is interesting to
consider what D function would be appropriate if one
went beyond the static model and attempted a more
exact calculation. In the present Appendix we give some
arguments on this difficult question.

For a single-channel amplitude, there is a unique de-
nominator function which has the phase of the ampli-
tude along the right cut and no Castillejo-Dalitz-
Dyson (CDD) singularities. This unique D function was
prescribed®? for use in relations such as

1 1 DAW"eT(W")

M= — aw’
RIDM)2wile W—M

(B1)

which occur in the study of perturbations on the
amplitude.

In practice, however, strong interactions always
couple many channels together. Any one channel can
be described in terms of various phases, such as the
phase Rey occurring in the S matrix 2, or the phase of
the single-channel amplitude

T=p[e 2 mngi Ren—17/24 (B2)
which differs from Ren in the presence of absorption.
Corresponding to each choice of phase, a different D
function can be defined.’

Thus we are unavoidably faced with a decision; which
D function, among various possibilities, will we use in
equations such as (B1)? This problem was not noticed
in the original single-channel derivation of Eq. (B1),
but we wish to bring it out into the open now. The de-
nominator function (3.19) used in this and previous
papers? will emerge from this discussion as an especially
convenient choice, although it is certainly not “the
physical D function.”

Lest the reader become too nervous about this
apparent arbitrariness, we hasten to add that the main
results of this paper are not so sensitive to the details
of the D function. Among the various parts of the 4
matrix, 4 E® is not very sensitive to details of D, as dis-
cussed in Sec. VI. The overall magnitude of AZ¥ is

82 R. Dashen and S. Frautschi, Phys. Rev. 135, B1190 (1964).

8 For an excellent discussion of the two choices mentioned in
this paragraph, see J. Hartle and C. Jones, Ann. Phys. (N. Y.)
38, 348 (1966).
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highly sensitive, so we used the theoretical estimates of
AEM only to estimate ratios. AME and AMM are again
less sensitive in our model.*

Let us now review the properties required of D.

(i) Singularities of D on the physical sheet are con-
fined to the right-hand cut and possible CDD poles
[note that if D has a CDD pole, the pole gives rise to
an additional term in the contour integrals of Egs.
(B1) and (3.15), and (3.16)].

(if) D(W) should be suitably bounded at large W to
allow the integrals (3.15) to (3.16) and (B1) to converge.
This implies that the representation for D must in-
clude any CDD poles that are present, instead of
multiplying both N and D by a (divergent) factor
(W—Wepp).

(ili) Along the right-hand cut, D has the phase factor
¢~%, where § is the physical phase shift in the case of
elastic scattering but has various possible definitions
(such as the phase of the S matrix or the phase of the
single-channel amplitude) when inelasticity is present.

(iv) D=0 at the bound states or resonances under
study.

These properties are incorporated in the Omnes repre-
sentation for D in the presence of one bound state and
N CDD poles,

Ny (W—M)
et Py
=1 —Wcpb)s

w-M) r= s(W")aw’
Xexp{— ™ /;hres(W’—M><W’—'W) '

(B3)

The open questions here are the choice of §, and the CDD
poles.

One choice which has been studied in detail recently
by Shaw and Wong?’ is the D function one gets by tak-
ing & to be the phase Ren occurring in the S-matrix
e?™, and assuming no CDD poles in the low-energy
region. The =V phase shift Rey for /=%, JP=1* scat-
tering is known to be small and negative at low energies.
Recently, it has been found to turn positive above 150
MeV, becoming large’ or very likely passing through a
resonance’®” by 600 MeV. At higher energies, its behavior
is unknown, so Shaw and Wong let it come back down
again in a smooth fashion to give D(W) a bounded be-
havior as W approaches .

Inserting this phase into the Omnes formula, Shaw
and Wong obtain a D function whose curvature differs
considerably from our Baldzs form (3.19). In particular,

It happens that AMM becomes much more sensitive in the
N —N* than in the B— A reciprocal bootstrap, as stressed recently
by G. L. Shaw and D. Y. Wong (Ref. 5).

5% G. L. Shaw and D. Y. Wong (Ref. 5).

% P. Auvil, C. Lovelace, A. Donnachie, and A. Lea, Phys.
Letters 12, 76 (1964).

5 L. D. Roper, Phys. Rev. Letters 12, 340 (1964).
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the positive sign of  above 150 MeV causes their D to
increase faster than |W—M®| in a sizeable region
around M before settling down and approaching a con-
stant limit. This is in contrast to the Baldzs D function
(3.19), which increases slower than |W—MZ| at all
points along the left cut. As a result, use of the Shaw-
Wong D would require a careful evaluation of DéT and
DT in the integrands of (B1) and (3.15), and (3.16)
out to considerably larger values of | W —MB| than when
the Baldzs form, which damps the integrand at large
|W—MB|, is used.’® This would be a serious disadvan-
tage because only the singularities of 67" near W=M32
are somewhat well understood.

We prefer to use the Baldzs D function rather than the
Shaw-Wong form for two reasons. The first reason has
to do with the fact that the 7=4%, JP=}" scattering be-
comes highly inelastic in the region of the Roper reso-
nance’®—if there is a resonance here, it is not primarily
associated with the 7V channel. Thus it is very likely
that the Roper phenomenon behaves like an “effective
CDD pole” in the wNV channel.’® The statement of
Levinson’s theorem for this channel would then become

Ren()—n(0)=m(Ncpp—Nbouna)=0.  (B4)
[The sum over eigenphases of all the coupled channels
would, of course, still go to — if there is no elementary
particle involved,® but this condition does not prevent
the single-channel phase from behaving as in (B4).]
In this case, the large W behavior of (B3),

D(w)NwNB—NcDD-i-[«S(w)—5(0)]/1’ (BS)

must be brought down to a constant limit by including
the CDD pole. Since the 7V amplitude has a zero about
150 MeV above threshold, it is natural to place the CDD
pole of D at this point.®! Replacing the Shaw-Wong D
function by one with this pole, one finds that it grows
considerably less rapidly along the left cut and behaves
more like the Baldzs D. [Essentially the convergent
factor (W—Wepp)~! is almost cancelling the divergent
factor (W —WReper) along the left cut.] Roughly speak-
ing, the Baldzs D can be obtained by the approximation
(W —Wwoper)/(W—W cpp)=1, which is not so inaccur-
ate on the left and avoids the new term that would have

8 For example, Shaw and Wong point out that A exchange
gets multiplied by a considerably larger factor when their D
1s used. Exchange of the higher ITB resonances would also gain in
importance.

8 This type of situation has recently been discussed by a number
of authors; for example, J. Hartle and C. Jones, Phys. Rev. 140,
B90 (1965); M. Bander, P. Coulter, and G. L. Shaw, Phys. Rev.
Letters 14, 270 (1965); E. Squires, Nuovo Cimento 34, 1751
(1964); D. Atkinson, K. Deitz, and D. Morgan, Ann. Phys.
(N.Y.) 37,77 (1966).

€ 1., Cook and B. Lee, Phys. Rev. 127, 283 (1962).

61 Tn their paper, Shaw and Wong present two different models,
one of which involves a CDD pole. Their CDD pole, however, is
placed 8m, above threshold and therefore affects the D function
differently.
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to be evaluated on the right-hand cut in (B1) and (3.15)
and (3.16) at an (uncancelled) CDD pole.5?

Next we turn to the second reason for preferring the
Baldzs D which applies even if the CDD pole was in-
correctly identified in the first argument. The second
argument runs as follows: The dispersion relations
(B1) and (3.11) hold exactly for any D that satisfies
conditions (i), (i), and (iv) above, independently of
how the phase of D is defined and its CDD poles are
located, as one can verify by reviewing the derivation of
the equations. Thus if we knew 67" exactly, it would not
matter what phase we gave D or how we located its
CDD poles. In practice, however, only the nearby
singularities of 67" in the dispersion relations (B1) and
(3.11) can be evaluated. The problem, then, is to choose
from among various exact equations (corresponding to
various choices of D) one which weights the known
nearby singularities heavily compared to intermediate
and distant singularities of D767D. Now as we have
already pointed out, the Baldzs D damps intermediate
and distant parts of the left cut much better than the
Shaw-Wong D, and this makes it far preferable. The
philosophy here is somewhat analogous to the recent
evaluation of matrix elements of current commutators
by Fubini and Furlan,® where the kinematic conditions
are chosen partly with an eye to improving the con-
vergence of the sum over intermediate states.

As was stated above, Egs. (B1) and (3.11) are still
exact, even if D does not have the Shaw-Wong choice of
phase along its right cut. The price that is paid for using
a different phase is an additional right-hand singularity
of DT6TD. To see what happens, it is sufficient to

62 We are thinking of the Roper phenomenon as a resonance or
large phase shift mainly associated with inelastic channels, rather
than as an elementary particle. It is worth commenting, however,
on what the situation would be for real elementary particles.
Elementary particles introduce arbitrary parameters into the cal-
culation of mass and coupling perturbations. If D is defined to in-
clude any CDD poles, the arbitrary parameters arise from the
contour integrals around the CDD poles in (3.15) and (3.16). On
the other hand, if the CDD terms are inserted as zeros in IV
rather than poles in D, the arbitrary parameters arise from the
subtractions required to make (3.15) and (3.16) converge. In the
previous discussion of this subject in Sec. III, Ref. 2, we omitted
the possibility of including the CDD poles in D.

63'S. Fubini and G. Furlan, Physics 4, 229 (1965).
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consider
T=p[e*—1]/2¢ (B2)
and
D=|D|e . (B6)

In terms of these parameters, the perturbation on 67" is
0T = dp[e*"— 17/ 21+ pdne?in B7)
and one finds

Im[ DT ]=%0p| D|*[cos26—e=2 17 cos2(Renp—6) ]
=+ (6 Imy)| D| 2pe~2 ™7 cos2(Ren— §)

+ (8 Ren)| D|20e2 ™7 sin2(Ren—35). (B8)

The first term, involving the variation of the kinematic
factor p, occurs all along the right cut for any D func-
tion. The second term, involving perturbations on the
absorption cut of the #/V channel, would also be pres-
ent above inelastic threshold for any D function (unless
we considered the matrix problem with all channels
included, which of course has its own complications).
It is the third term which occurs only if a D function with
phase 6% Rey is used.

The status of the three terms along the right cut in our
treatment using the Baldzs D function is as follows. The
dp term is a mass-shift term, and is crudely incorporated
into our treatment either through direct evaluation of
SMB(8p/dM®) along the right cut, or implicitly through
the condition of mass-scale invariance (both methods
are used to estimate A2 in Sec. VIII). The third term
is small until Rey turns positive above 150 MeV, allow-
ing the coefficient sin2(Rep—4) to grow large. (The
Baldzs function corresponds roughly to a phase which is
small and negative at low energies, passes through —90°
at W, and approaches —m as W approaches «.) The
second, inelastic, term begins at about the same place.
Since no good model exists for the Roper phenomenon
and the strong inelasticity above a couple of hundred
MeV in this channel, we have no way to estimate either
the second or third term in this region. Thus we find
that, using either the Baldzs or the Shaw-Wong D
function, the dispersion relation receives a contribution
above inelastic threshold which is poorly known because
of our lack of understanding of 67 there.



