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Self-Consistent Deterinination of Coupling Shifts in Broken SU(3). II*
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In a recent paper, we considered the possibility of dynamical enhancement of 5U(3) symmetry breaking
in baryon couplings. It was found that certain patterns of symmetry breaking are enhanced and tend to
dominate; the results were presented and compared with experiment. In the present companion paper, we
explain in detail the methods by which these conclusions were obtained and give a more complete summery
of the numerical results.

83II= (1 A~~) 'D~— (1 3)

gg=(1 A«) '(As~3M+—Do).-(1.4)

The search for dynamical enhancements in symmetry
breaking thus becomes a search for eigenvalues of A~~
and, A«near one, which from Kqs. (1.1) and (1.2) are
seen to represent nearly-self-supporting instabilities of
the dynamical equations. Of course, the identification
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I. INTRODUCTION

A DETAILED theoretical study has been made by
us of SU(3) symmetry breaking in the couplings

g»II and g»II which connect the J =—,'+baryon octet',
the ~+ decimet 6, and the 0 meson octet II. The idea
was to look for dynamical enhancements in symmetry
breaking, the enhancements being associated with
instabilities or near-instabilities in the symmetric theory.
The main results of this study, and comparisons with
experiment, were presented in a recent paper. ' In the
present companion paper, we wish to explain in detail
the methods by which these conclusions were obtained
and give a more complete summary of the numerical
results, with explicit statements where possible of the
uncertainties in the model used.

The physical parameters brought into play by SU(3)
symmetry breaking include mass shifts 8M; and coupling
shifts bg;. In a bootstrap theory, these depend on other
mass and coupling shifts, as well as "driving terms, "
which include such things as photon exchange (for
electromagnetic shifts) and higher order terms. One
obtains equations of the form

m =A~~m+A~ gg+D~, (1.1)

hg =AojrbM+ A «bg+Do, (1.2)

where it is understood that there are many kinds of 83f
and bg, so that the terms such as A~~ are matrices. Now
in a previous paper' it was argued on dynamical grounds
that A~g is small and can be approximated by zero,
leaving (1.1) and (1.2) with solutions of the form

of the near-instabilities does not provide a complete

specification of 8M and 8g, which also depend on the
harder-to-calculate driving terms. Unless the driving
terms happen to be nearly orthogonal to the eigenvector
corresponding to the instability, however, the pattern
of symmetry breaking will tend to follow the instabilities.

The present paper, then, is mainly concerned with
the calculation of matrix elements of A«and A&~

that aGect g~~lI and g~~lI, and with the eigenvalues of
A«. These complement the previous study' of A~~
which gave a unique instability followed by 8M&
and 8Mg.

The paper is organized as follows. First, we would
like to call attention to two Appendices, which relate to
important questions underlying our whole approach.
Appendix A deals with the convergence of our disper-
sion relations. It is shown that the dispersion integrals
representing erst-order perturbations converge faster
than the dispersion integrals representing strong inter-
actions, by one power of the energy 8'. We believe that
this decreased sensitivity to contributions from large
5', which are poorly known in practice, is the basic
reason why bootstrap calculations of perturbations on
the strong interactions' 'have achieved better quantita-
tive results than ordinary strong-interaction bootstrap
calculations. Appendix B deals with the choice of de-
nominator function. Reasons are given for preferring our
choice of denominator function to that recently advo-
cated by Shaw and Wong. ~

Next we turn to the body of the paper, dealing speci-
6cally with coupling shifts. In Sec. II the SU(3)-
symmetric reciprocal-bootstrap model of 8 and 6,
which we use a starting point for the study of SU(3)-
breaking perturbations, is reviewed. In Sec. III the
possible types of coupling shift are listed, and the dis-
persion relations used to calculate elements of the A
matrix are written down.

The explicit method for calculating 3« is described in
Sec. IV. This is the heart of the paper. A «splits into a
simple "dynamical factor" and a more complicated
"group-theory factor. " If we represent the symmetry
violation by a "spurion" 5„ the group-theory factor

' R. Dashen, S. Frautschi, and D. Sharp, Phys. Rev. Letters 13,
777 (1964).' R. Dashen and S. Frautschi, Phys. Rev. 137, 31318 (1965).' G. Shaw and D. Wong, Phys. Rev. 147, 1028 (1966).
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Ter,E I. Reciprocal bootstrap model of B and A. In T'"+, the first row and column refer to 8„ the second row and column to 8~.

Diagram

B pole in direct channel of IIB scattering

Contribution to T"~
G' cos'8 cos8 sin8)

~ ~

W —iVs cos8 sin8 sin'8 j

Contribution to TIO, IO
I

6 pole in direct channel

B exchange pole
Gs (coss8+ (5/3) sin'8

!
so(w —m~) i 0 (5/3) (cos'8 —sin'8) j

4 cos'8[1—(+5) tan8)G'

&5(W —m~)

d exchange pole
G*' ( 2 g5)

3(W —2Me+Ms) (/5 0 j &2{W—2m&yM~)

involves the overlap between the reaction II~+B;-+Iis
+Bi+S, proceeding via the coupling to a particular
intermediate state in the direct channel, and the reac-
tion II&+B,—+ 11;+Bt+S.proceeding via the coupling
to a particular intermediate state in the crossed chan-
nel. Mathematically, the overlap between two diGerent
ways of combining ive objects (four particles and one
spurion) into a singlet is, apart from normalizations and
phases, a 9j symbol. We have worked. out the appropri-
ate expressions and had them evaluated by computer.

We proceed with a discussion of our treatment of the
consistency (sometimes called "vertex symmetry'"')
between BBII couplings in the direct and exchange
channels in Sec. V. The resulting eigenvalues and eigen-
vectors of A«are given in Sec. VI. The same methods
permit exp1icit evaluation of A~& in Sec. VII, and it is
veri6ed that this part of the A matrix is indeed very
small, as had been argued earlier. ' Section VIII deals
with the evaluation of A &~. From Eq. (1.4), we see that
this allows us to determine which eigenva, lues of A«
are most strongly driven by the dominant mass shift
Qf. Under the assumption that the term A™8M,con-
taining the already enhanced mass shift, dominates D'
in (1.4), one then 6nds that the eigenvalue of A'p

jying nearest unity is strongly favored over all other
eigenvalues.

Results for the strong BBII and ABII coupling shifts
are presented in Sec. IX. Readers who are interested
only in the answers rather than in methods of calcula-
tion may proceed immediately to Tables XXIand XXII
of this section. Section X contains the electromagnetic
coupling shifts; the shifts in BBD couplings are con-
veniently tabulated in Table XXIII. The much more
complicated weak nonleptonic couplings are treated in
Sec.XI.Here couplings of either charge conjugation and
parity are considered. We show that the predictions pn
parity-violating couplings, which agree particularly
well' with experiment, are also on especially strong

6 R. Cutkosky and M. Leon, Phys. Rev. 135, 31445 (1964);
K. Lin and R. Cutkosky, ibid. 140, 3205 (j.965).

'F. Ernst, K. Wali, and R. Warnock, Phys. Rev. 141, 1354
(1966).

theoretical ground: they satisfy vertex symmetry
exactly and are independent of the choice of denomina, -
tor function in our model.

Section XII contains a comparison of our method with
the calculation of Wali and Warnock' and with tadpole
theory. Finally, in Sec. XIII, the possibility of CI'
violation is considered.

We do not provide much comparison with experiment
in the present paper; for such comparisons and for a
bird' s-eye view of the results, the reader is referred to
our earlier paper. '

IL SU(3)-SYMMETRIC MODEL

In this section, we review the SU(3)-symmetric
reciprocal-bootstrap model' " for B and 6, as a pre-
liminary to the study of perturbations on the model.

The SU(3)-symmetric reciprocal-bootstrap model for
B and 6 is essentially an SU(3) generalization of the
Chew-Low model. One considers pseudoscalar meson-
baryon scattering, with B and 6 poles appearing in the
direct channel, and B and 6 exchange in the crossed
channels. As an approximation, only the nearby "short
cuts" from B and 6 exchange are kept in the partial-
wave amplitudes. The short cuts are further approxi-
mated by "pseudopoles. "

We shall de6ne the scattering amplitude for IIB-+ IIB
in the Esis 10 channel by

Typ, tp +(W) =M (8 '" 1)/2sg, —(2.1)

where, as usual, H/' is the center-of-mass energy and q
is the center-of-mass momentum. We take M equal to 1
BeV; the factor M' is included to make the residues of
poles in the amplitude dimensionless. "The amplitude

' K. Wali and R. Warnock, Phys. Rev. 135, 111358 (1964).
P S. Coleman and S. Glashow, Phys. Rev. 134, B671 (1964)."R. Dashen, Phys. Letters 11, 89 (1964).
"In addition to M', (2.1) differs slightly from Eq. (5.1) of Ref.

2 in the choice of kinematic factors. Equation (5.1) avoided some
distant kinematic singularities, which are, however, of no impor-
tance in an essentially static model such as we are using. The
present choice corresponds to the static crossing matrix used in
Table I. Actually, the static crossing matrix was also employed
in Ref. 2, so we electively took (2.1) there as well.
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for IIB~ IIB in the J'~g2 8 channels is similarly de6ned

T"'+= (M'/2iq') (S—I), (2.2)

where, in this case, r is a 2X2 matrix connecting the
channels 8, and 8,.

The various pole terms in the BII reciprocal bootstrap
are listed in Table I. Here, the angle 0 is related to the
usual F/D ratio h by"

X= —(+5/3) tang. (2.3)

We take 8 in the range 0= —25' to —45', corresponding
to the value X=3 to 3 which is indicated by several ex-
perimental and theoretical arguments. " "G' is related
to the usual rrXE coupling f ~~'=0 08 as .follows:

Gs= (20/3)[cosg —(Q5/3) sing] s(M/M~)'f„~~s. (2.4)

The reciprocal bootstrap gives

G*'= (16/55) cos'g[1 —(g5) tang]G' (2.5)

which is consistent with the experimental ratio of
E*Em and EEm couplings.

The residue matrix of the direct-channel baryon pole
may be diagonalized by passing from the octet states
[8,) and

) 8,) to
( Se) and

( See), de6ned by

[ Ss)= cosg) 8,)+sing ] 8,), (2.6)

( Se~) =—sing [8,)+cosg )
8,). (2.7)

In the new representation, the direct-channel baryon
pole has the form

—G' 1 0)
!

W M~ 0 0)—
We shall use the 8y and Sg* representations in our study
of perturbations.

While it is convenient to make calculations in terms
of deanite SU(3) representations and residues of poles,
we will also wish to express the results in terms of cou-
plings among particles. In the SU(3)-symmetric case,
the appropriate coupling for II,+B,~ Be is

tS 8 8, 8 8 8. —

Gs =G cosg~ +sing
u

)8 8 Ss~
(2.9)ui'

"The tangent of 8 is the ratio of the coef5cient of matrices OS~
and Og„each normalized by TrO'=1. The usual X is the ratio of
the coefBcient of matrices F and D, which are proportional to 08,
and 08, but have the normalizations Tr(F') =3 and Tr(D') =~.
The minus sign in (2.3) arises because we take sin8 as the coefficient

of . . &' in Eq. (2.9), where' refers to the meson in 0;B;B&8 8 8,
k

coupling, whereas ) is conventionally proportional to the coeKci-

ent ~ ~
' and ~ ~

' isantisymmetricineachpairof

indices.
"A. Martin and K. Wali, Phys. Rev. 130, 2455 (1963).
'4 R. Dalitz, Phys. Letters 5, 53 (1963).

5 F. Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters
13, 299 (1964).

where the quantities in brackets are Clebsch-Gordan
coeKcients as dined by de Swart. " Similarly, the
SU(3)-symmetric coupling for 1I;+B;-+As is

(2.10)

As we have seen, the input parameters of this model
are the average masses of the B and ~ supermultiplets,
the F/D ratio, and the strong IIBB/IIBA coupling
ratio. The erst two quantities are taken from experi-
ment, while the latter two ratios can be taken from the
reciprocal-bootstrap theory, which gives a range of
values consistent with experiment. These input param-
eters, as well as the form of the denominator function
which is discussed in the next section and Appendix 8,
will be held 6xed in all subsequent perturbations, and
no further parameters will be added to the model.

In spite of its crudity, the model just outlined is the
best available example of a bootstrap. It correctly pre-
dicts strong attraction in the —,'+ octet and —+ decimet
channels, and repulsion or weaker attraction in the
other P wave channel-s, in addition to giving the F/D
ratio of IIBB coupling and the ratio of IIBB to IIM,
coupling. The reason why such a crude model works so
well is not understood. We have nothing to contribute
on this topic, but simply take the point of view that
the success of the model makes it an especially favora-
ble starting point for the study of SU(3)-violating
perturbations.

&(&'P')+ &&s(X',Ã), (3.1)
If' J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).' We would like to take this opportunity to list a number of

misprints and mistakes in our previous work on perturbations.
(i) In Ref. 4, two lines below Eq. {13),there is a misprinted sign
and the text should have read BR;;= —f;5f,—(8f;)f;. (ii) In Ref. 4,
the entire right side of Eq. (22) should be multiplied by, . (iii) In
Ref. 2, Table X, the S=27 term should have read

(—13+18X2—45X4) /3 (5+30X2—2 7X4) .
This misprint was con6ned to Table X, and the numerical results
quoted in Eq. (5.55) of the text are correct. (iv) In Ref. 2, top of
p. 1346, the statement that the SU(2) EE* reciprocal bootstrap
is stable under al/ conditions is incorrect. G. Shaw and D. Wong
(Ref. 5) have pointed out to us that A 8 has a unit eigenvalue when
D has the straight-line dependence D = {W—M) and the parameter
c of the text is taken equal to unity; this is a special case of a general
theorem by L Gerstein and M. Whippman, Ann. Phys. iN. Y.l 84,
488 (1965). As discussed in Ref. 2, however, there is no reason to
believe that these conditions for a unit eigenvalue of A3 should
actually be realized. (v) In Ref. 3, Table I, the entries for 10 and
10*should each be multiplied by 2. The 10 and 10~ eigenvalues of
A remain small, so the discussion of the text is still correct.
(vi) In Ref. 2, Table I, the 8,~ 8.element should read (—3+9'')/
(10+18)'). Again, the misprint was conhned to the table, and the
resulting eigenvector was correctly stated in the text.

IIL SPECIFICATION OF BROKEN-SU(3) MODEL

We now turn to the study of symmetry-breaking per-
turbations'~ on the reciprocal-bootstrap model of Sec.
II. In broken SU(3), the residue matrix for the direct-
channel baryon pole will no longer have the simple
form of (2.7). Instead, we shall write it as
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TABLE II. A list of the perturbations on coupling constants
which are considered in this paper. BG8(Ã) refers to the coupling
for 8~ 8+D, where the final BD state is in the E representation
and the whole coupling transforms like the S representation.
8G8*(Ã) similarly refers to ABII coupling. For 8=27, %=27 and
27' refer to the two ways in which the baryon octet and BD with
E=27 are combined into S=27 by Chilton and McNamee (Ref. 29);
for S=S, fthm =88(s} and 88(o} refers to the two ways in which the
baryon octet and BII with E=Sg can be combined into 8=8, and
Sg*(s} and Sg~(c} have a similar significance.

where E', X, and 5 are as previously defined. Here we
have

R*(N'&N) = ~sr —.Io4.toG*' (3.6)

and we note that SRs*(N',N) =0, unless at least one of
Eor E'= 10.The elements of 8E.*needed for a speci6ca-
tion of perturbed DBII couplings are

SR'(10,N) = —G*hGsa(N), NW10 (3 7)
Pin BG Win BG*

8g
Sg*

1
Sg(s)
Sge(s)
Sg(a)
Sgg(g}

10
10
27

Sg
Sgy

10
10
27
27l

8g
Sge

10
27

Sg
Sgg

10

where 1P labels the SU(3) representation of the initial
IIB states (N'=1, Ss, Ss~, 10, 10, 27), N labels the final
IIB states and thc subscllpt 5 on thc pcltuIbcd rcslduc
labels the SU(3) representation which the symmetry
violation transforms like.

From (2.7) one sees that R(N', N) has the form

R(N', N) = 4"s,4s,G—' (3.2)

R*(N',N)+ hRse(N', N), (3.5)

Equation (3.2) exhibits explicitly the general property
of factorizability: The residue matrix always factors
into the product of two couplings, one connecting the
entrance channel to the intermediate baryon state and
the other connecting the baryon state to the exit chan-
nel. The perturbed residue matrix also has this property.
Therefore„ in the study of the 3 matrix where one con-
siders only first-order perturbations, the perturbed
residue is a product of an unperturbed coupling b~sgG
or B~ 8,G times a perturbed coupling. Thus, the elements
of 5E we need for a complete specification of perturbed
baryon couplings are

SRs(88,N) = —G~Gs(N), Nggo, (3 3)

SRs(Ss,88)= —hGs(Ss) G—GSGs(88)
= —2GSGs(88) . (3.4)

[For given time-reversal and charge-conjugation pro-
perties of the perturbation, hRs(N, Ss) can be deduced
from SRs(88,N); these properties are discussed in the
next section. ]

In a completely analogous fashion, we write for the
residue matrix in the J= ~3+ channels

SR*(10,10)= 2G—*SGs*(10) (3.8)

Among the various possible values of S (namely, any
representation in SXSXS or 10XSXS), we shall con-
sider only 5=1, 8, and 27. For strong perturbations
(i.e., AI= 0, AI'= 0) the only other possibility is S=64,
which in practice is not driven by any mass shift and
therefore, as we shall Gnd in Sec. IX, probably could
not compete with the doubly enhanced 5=8 term, even
if an eigenvalue of 264 were near one. 5= 1, 8, and 27 are
also the only cases with driving terms D8 in electro-
magnetic effects of order e', and in weak nonleptonic
lntelactlons (If a current-current llltelactloll symmetric
in the currents is assumed). The various possible hG(N)
and bGe(N) for S=1, 8, and 27 are listed in Table II.
Since there are 12 independent coupling perturbations
with 5=8 in our model, the matrix 38=~«which gives
their effect on one another will be a 12&&12 matrix.
Similarly, Aa=g« is a 3&3 matrix, A27g~ is an iigij.
matrix, Ato~ is 3X2 (mass shifts with 5= 1 occur once
in SMs and once in RVa), As'~ is 12X3, and Asr'~
is 11&2.

The relation of tiGs(N) and SGs*(N) to couplings
among individual particles is as follows. The perturba-
tion on the coupling for II;+B,~ Be, for a specific
symmetry-breaking transforming like the 0 component
of representation 5, is

(10 S E)(8 8
Z)

Having specified the perturbations to be studied, we
now turn to the dispersion relations which will be used
to calculate them. The relevant dispersion relations for
the 5-matrix treatment of perturbations on masses and

Equation (3.9) is easily obtained: The second Clebsch-
Gordan coefllcient represents the projection of 11&,onto
representation E, the erst Clebsch-Gordan coeflicient
represents the combination of B~ with the same repre-
sentation E to form a coupling transforming like 5,
hGs(N) gives the strength of this coupling, and Zrr is a
normalization factor to be speci6ed in Table IV. Simi-
larly, the perturbation on the coupling for II;+B;-+ hs is

8Gs;*'=Q Zs*hGs*(N)
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coupling constants have been developed in Ref. 4. The
relations are exact for erst-order perturbations. For
shifts in J3J3D couplings they read

bE(8s,gs) = Dg,26TS, 8,DV'

2 st„'(u )7', (W' —M)

4~(W)
2%i

L(W)8"—8'

—D„"(M') D,,sbZ„„dW'
(3.16)

2rrsLDs, '(Mn) 7' o W—bf'&

(3.11)

where C is a contour running clockwise around the right-
and left-hand cuts of T (but not around the bound-
state pole at Mn),

cL= lim (W—AERY)D '(W)
W'~M&

(3.12)

and the amplitude bT and denominator function D
refer to IIB scattering in the I'~~2 state.

Now the unperturbed D function for the X~~2 channels
has the form

Dg
0

D(W)=

0
.0

0

0
0
0

0
Dsf)sy»

Dsf)» Sysc

0
0
0

0 0 0
0 0 0
0 0 0

Dgo 0 0
0 DIO 0
0 0 D2y

(3.13)

when the matrix elements are taken between states of
definite E' and X. In the neighborhood of the baryon

pole, we approximate this general form by"

0
0 D8,

D(W) =
0 0
0 0

0000
0 0 0 0

0 0 0
0 1 0 0
0 0 1 0
0 0 0

(3 «)

with Ds, passing through zero at 8'=M~. Actually, in

the simpliied model of the present paper, only singulari-

ties near the baryon pole are considered in Eq. (3.11),
and the approximation (3.14) will be used throughout
this paper. The form used for D« is discussed below.

With the approximate form (3.14) for the D matrix,

Eq. (3.11) for bR takes the explicit form'

D8,8T8, ,~d8"
bR(8s, EW8e) = (3.15)

2miDs, '(Mn) c.
'8 Since the physical-coupling shifts and mass shifts are inde-

pendent of the normalization of the denominator function, there
is no loss of generality in setting D(3f~) =1 in the nonresonant
channels. The approximations in {3.14) are: (i) keeping D= I for
5' N@zr M~ in nonresonant channels; (ii) taking D8&8&+ =D8~+8f) =O.

The justi6cation for (i) is that the low-energy phase shifts are small
in the nonresonant channels and D is slowly varying. As far as {ii)
is concerned, Ds has the form D&(W) =1—1'y¹(W'—W) 'dW'.
We can diagonalize 98 at some energy, such as the energy of the
6 exchange pole. 98 then remains nearly diagonal over the low-

energy region, because the dominant term in N8 for the I'I/2 state
is 6 exchange which by itself would give an energy-independent
Ii/D ratio (i.e., it would allow an energy-independent diagonaliza-
tion of 98).

We shall also need. the dispersion relation for 8~~, in
order to study A ~& in Sec. VII. Here, one is interested in
the masses of individual baryons ~, i= 1 ~ 8. The exact
dispersion relation for the mass shift of the ~th baryon is4

Mfg'=
DbTDdH'

2 'O' LD (rV )7' W' —M

"R.Dashen, Phys. Rev. 135, 81196 (1964).

where D; and 8T; all refer to the channel in which the
ith baryon occurs. In the approximation (3.14), D; is
simply D,-,.

For the J= ~3+ channels, the unperturbed D function
again has the form (3.13).We approximate it by

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

D(W) 0 0 0 D 0 0 y (3 18)

0 0 0 0 1 0
.000 0 0

where D~o has a zero at tV=M~. The dispersion rela-
tions for bR* have the same form as (3.11), (3.15), and
(3.16), with D and bT now referring to the Es~s channels,
D8, now replaced by D~o, and 3I~ replaced by 3f~.
Similarly, the dispersion relations for Qf~', i = j.. ~ .10,
have the same form as (3.17) with G replaced by G*,
M~ by M~, and D8, by D~o.

We now return to the choice of Ds, for J= ~+, and D~o
for J=~3+. The form which mill be used, for reasons
analyzed in Appendix 3, is

Ds = (W—M )(Ws—Mn)/(Ws —W) (3 19)

Drs= (W—M')(Wee —M')/(W, *—W), (3.20)

where H/'0 and 8'0* are additional parameters in the
subsequent calculations. The sensitivity of our results to
these parameters will be discussed in Secs. VI, VII, and
VIII. It is found that 3« is relatively insensitive to 8'0
and We*, especially in the case of bE(8&, E&8s) and
bR*(10, E/10), since Ds, and Drs are found only once
in the dispersion relation for these quantities PEq.
(3.15)7. The sensitivity of A ~~ to Ws and We* has been
studied in previous papers' "and is somewhat greater.
We shall And in Sec. VIII that 3g~ is extremely sensitive
to the exact form of the D function, so that we cannot
calculate the over-all magnitude of A g~ reliably.

In the above discussion, we have restricted ourselves
to 86's which do not violate parity. Since we will also
be interested in the parity-odd violations of SU(3)
induced by the weak interactions, we now discuss the
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changes that must be made in the above formulas for
nonparity conserving (P= —1) 8G's, To study the
(P= —1) 8G s, we consider the residue matrix of the
direct-channel baryon pole in the amplitude for IIB
(7= 2 P wave) —+ IIB (J=-', S wave). The unperturbed
residue vanishes in this case and since the parity viola-
tion occurs in the coupling of the final state to the pole,
we can write the residue as

8Zs(E,1P)= —8Nk, GSGsk. (P= —1) (3.21)

for %=1, Sg, Sg~, 10, 10, and 27. Note that for E'=Sq,
the relation between bE and hG does not contain the
factor of 2 which is present in the P=+1 case Lcf., Eqs.
(3.3) and. (3.4)$. The relation between bGs(Ã) and
8Gk is still given by (3.9), but on account of the above-
mentioned factor of 2, we use the Z~'s given in Sec.
XI /following Eq. (11.3)] rather than those of Table
IV.

To treat the (P= —1) 8G*'s, we look at IIB (J=-', P
wave) ~ (IIB) (J= 2 D wave) In a. nalogy to the 5G's,

the relation between bGk;*' and 5Gs*(E) is given by
(3.10), where the Z~~'s are to be taken from Sec.
XI.

Next we must specify the 5- and D-wave denominator
functions. Ke assume that in the low-energy region
under consideration, the ~ and ~3 denominator func-
tions can be set equal to unity m all SU(3) channels.
Equation (3.11) then gives

effect. ) In each case, the effect of Mlf n is multiplied' by
Mn/M~ and the numerical results are rather small. "

(iii) In any case, an omitted term such as
is an "OG-diagonal" part of the

matrix. As such, it can inhuence eigenvalues of A only
through the combination A~~ ~~ "A "g( ~~. Thus
the eigenvalues of A studied in this paper are not sensi-
tive to pseudoscalar mass effects unless 53f" strongly
inQuences baryon properties used baryon properties
also strongly influence Bf".The same statement applies
to vector-meson e6ects.

IV. EQUATIONS FOR A«

The purpose of this section is to provide the specific
equations needed to calculate A«.

The elements of A« to be considered were described
in Sec.III; they include the effects of shif ts in 8-exchange
and 6-exchange couplings on the J3BII and ALII cou-
plings in the direct channel. The interactions which are
involved, written in terms of Gelds, are the BBII
lnteI action

(4.1)

(it is understood that one takes the commutator of g
and P to avoid in6nities), and the ABII interaction

8E(gk, iV) =
2siD8, '(M~)

(P = —1) (3.22)

and an analogous equation for bE, vhere bT is, of
course, the parity-violating amplitude for

Note that we no longer have to write a special equation
for Ã=8g.

To conclude this discussion of the general method
used in this paper, we comment briefly on two of the
Inost Qagrant oInlsslons ln oui tleatDlent, :vectol Dleson

exchange, and effects on A &~8M of shifting the external
pseudoscalar-meson mass. These omitted terms, while

not negligible, are expected to be somewhat smaller than
the 8- and 6-exchange terms for the following reasons:

(i) Vector-meson exchange is a rather short-range

effect and should therefore be less important for per-
turbations than it is in the strong interactions.

(ii) The effect of shifts in external II mass can be
studied explicitly. On the right cut in Eqs. (3.15)—(3.17),
the kinematic factor q in the de6nition (2.1), (2.2)
of T is modihed in a calculable way. On the left cut, the
"short cuts" for 8 and 6 exchange are modi6ed in a
calculable way. (One has to leave the pseudopole ap-
proximation and go back to the short cuts to study this

G sk is the sum of the SU(3)-symmetric coupling (2.9)
and the perturbation (3.9); G s*k is the sum of the
SU(3)-symmetric coupling (2.10) and the perturbation
(3.10). By standard methods, " one finds that Her-
miticity of the interaction Hamiltonian implies the
conditions

G k ( 1)okg

G s*k=(—1)okG p'*k,

(4.3)

(4.4)

G 4k C( ])okG &4k

and that
G, G*, G'* real}T=+, P=+,

G, G*, G'* imaginary} T= —,P=+,

(4.5)

(4.6)

(4.7)

where C=& and T=+ refer to the behavior of the
interaction Hamiltonian under charge conjugation and

M F. Henyey (private commurucation).
"See, for example, S. Schweber, An Jntroduction to Relativistic

Quantum Field Theory (Harper 8t Row, New York, 1961).

where the bar over G denotes complex conjugation and
Qk refers to the electric charge of particle k.

In studying the weak interactions, we shall be inter-
ested in couplings with various properties under C, T,
and P. For P=+, one 6nds that
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time reversal, respectively:

CIIC '=+H,
Ta(I)T-'= +a(—«)

/vs v

(c)

V&/g ~ Vy

If parity is violated, one 6nds by studying the relevant
analogs of Eqs. (4.1) and (4.2) that the Hermiticity and
charge-conjugation conditions (4.3)—(4.6) are un-
changed, whereas the time-reversal condition becomes

G, G¹,G'* imaginary}T=+, P= —, (4.8)

G, G*, G'* real) T=—,P= . —(4.9)

8R(8g,X') =
2mDS, '(Ms) o

(3.15)

The main job is to calculate 81'S,,xv. First we shall cal-
culate 8T„„„„„andthen project out the contribution to
ITS,,~.. To obtain the contribution to 5T„,„,,„,„4 from
coupling shifts in baryon exchange, one evaluates the
Feynman diagrams, Figs. 1(a) and 1(b), by standard
methods. As usual, ' 4 ST divides into a factor involving

Ke now describe in some detail how to calculate a
typical element of A«, namely, the effect of 8R(8e,X)
and 8R(X,8&) shifts in baryon exchange on the direct-
channel residue 8R(8y,X') (Fig. 1). X and X' can take
on any values in Table II. If X'&Sg, for example, the
dispersion integral to be evaluated is

1 Da, (W') 8T8, ,x.dW'

Fxo. j.. Diagrams representing residue shifts (a) bE(X,afar) and
(b) bE(8y,X) in baryon exchange, and the residue shift (c) bE(stI,X')
in the direct-channel baryon pole term. The coupling shift occurs
at the vertex arith the blob. Baryons are represented by solid
lines and pseudoscalar mesons by broken lines.

products of SU(3) Clebsch-Gordan coeKcients, and a
dynamical factor which is the same for all SU(3) states.
(It depends on the nucleon-exchange pole and ordinary
spin crossing. )

We evaluate the SU(3) factor erst. For 11„,+B„,-+
II„,+8„,the contribution to bT from exchange diagrams
1(a) and. 1(b) is

~T&1&I»$&4 Z(TO~G&2 'Rie +Tb~GOvm %4a ) (4 10)

Here, T, and T& are the SU(3)-independent "dynamical
factors" for Figs. 1(a) and 1(b), respectively. To obtain
the correct SU(3) labels on the couplings, one notes that
|P in Eq. (4.1) creates particles, f destroys particles, and.

Pa destroys k and creates k. By use of condition (4.5),
Eq. (4.10) can be re-expressed as

hT„,„.,..„,=Q(T.SG.„"IG..."~(—1)o ~+T&CG.„'3SG.„'~(—1)o ~) (4.11)

(we take C=+ automatically for G but leave both possibilities, C=+ and C= —,open for 8G). It is convenient
to express G and. 8G in terms of SU(3} Clebsch-Gordan coeifjcients by means of Eqs. (2.9) and (3.9). Equation
(4.11) then becomes

)8 S Xy
&Turvy, vase= G~Gs(X)~x( 1)

~.~in o v)

p8 8 X~ )8 8 8~~ ~8 8 8y) (8 8 X&-
+T,CI

'
ll I (4,12)

(Pa vn v ) Evg v4 0) EPg v2 o!) EPg v4 v )
for perturbations that transform under SU(3) rotations like the o component of representation S.Next we need to
perform a suitably weighted sum over v&, ~2, s 3, ~4 to project out 82'», x . In this connection, note that the amplitude
for Fig. 1(c) is —(P Gtt "~bG &"~)(W—M')-'

P

It can be re-expressed with the help of Eqs. (4.5), (2.9), and (3.9) as

—(P GP„"'bG. P"')(W—Ms) '= —(P GP.,"'BGP.P(—1)o C)(W—Ms)-'
P P

—G8Gs(X')Zx (—1)o"SC tt'8 S X') 8 8 8e) 8 8
(4.13)8'—3l& P"&P o v') vg v2 P) vs v, v'i

Here we have Fig. 1(c), which is pure 8g -+ X, written in terms of individual particle states. Evidently the factors
depending on vq, v&, va, and v4 in (4.13) can be used as a projection operator for 8& -+ X'. Indeed, letting Xs and N~
denote the dimensions of the S and E representations, respectively, multiplying (4.13) by Essex 'Z» ' times the
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coefEcient of —G8Gs(X ) (W—Ms) ' in (4.13), summing over all indices and using the orthonormality relations"

t8 8 X~ 8 8 X'~
I=~xx ~-,

v&v2 P1 P2 P P& V2 P

8 S X'y' Ex. t 8 I' S~' Nx.

S P o v'J Es s kP v' o& Xs

(4.14)

(4.15)

one obtains —GhGs(X )(W—Ms)—', which is precisely the contribution of Fig. 1(c) to bT33,x . Multiplication of
(4.13) by an operator of the same form but with (X,v) H(X', v'), or (X",p')W(83, p), or (S',o') &(S,o), gives zero be-
cause of the orthogonality relation (4.14). Thus we have found the suitably normalized projection operator

8 5 X' 8 8 8(f 8 8 X')
~T»,x =~styx-'Zx-'CZ Z (-1)~" IaT„,„,„,„,.

Sv' vlv2v3v4 I8 0 P P2 V2 I8 P3 P4 V si

(4.16)

Applying this projection to the exchange terms (4.12), one obtains

~&sy, x =GSGs(X)ZxXs 8 8 83 8 8 X'~- 8 8 X t8 8 8P

, I
T.C

ZXsgXs fsovv vlv223v4 pr p2 I8 V3 p4 p ) p3 V2 p EV2 V4 42 I

t8 8 8(f (8 8 Xq- t8 5 X 8 5 X'
+T! ! I

(-1)'+~"I (4.17)
(P3 P2 42 (P2 P4 PI- k(x o v P o.

The only factors in (4.17) which depend on the energy W are the "dynamical factors" T, and Tb. Therefore, the
result of plugging (4.17) into the dispersion relation (3.15) for X'Wgff is

b&s(83,X') =

where

—Glos(X)Zsli's (8 8 8s 8 I! X' (I! !! Xi(I! Il
8s)

vg ssC!
ZXsiffTXs fs((vv vlv233v4(V2 V2 P V3 V4 p — fsV3 V2 p l 8pr V4 22

t8 8 83 t8 8 X- t8 5 X t(8 5 X'
+nb"I (4.18)

8V3 P2 42 IV2 P4 P Efx o v kP o

Ds, (W') T,(W') dW'

(W—Ms)
~ BB

22ri Dsb'(Ms) c
(4.19)

and p& is similarly dined.
For parity-conserving couplings, the dynamical factors T, and T& are evaluated as follows. Evaluation of the

Feynman diagrams, Figs. 1(a) and 1(b), gives the coupling factors of Eq. (4.10) times the projection of the nucleon-
exchange pole onto the E&~2 state. The projected nucleon-exchange pole gives the usual "short cut" around W= 3f
and the long cut along the imaginary W axis. Our approximations involve keeping only the "short cut" and re-
placing it by an equivalent pseudopole (W—Ms) '. The pseudopole is also multiplied by the usual static-spin cross-
ing factor —

3 for crossing the I'&~& state into the I'1~2 state. Thus, for parity-conserving couplings,

T,= Tb= —1/3(W —Ms) . (4.20)

In the present case, the contour C in (4.19), which generally encloses the left- and right-hand singularities (but
not the bound-state pole), shrinks to a clockwise circuit of the exchange pseudopole (which we displace from the
direct-channel pole by 4 for this purpose). Since at this pole D33(W')(W' Ms) ' is just D33'(Ms)—, we obtain

~
BB ~ BB 1 (4.21)

~
BB (4.22)

22riLD»((Ms)]3 o (W(—M )' 22ri[D»((M )]' W' —MB

and qb» satisfies a similar equation. Inserting (4.20) into (4.22), one obtains the same value as (4.21) for g»
/the second term in (4.22) contributes nothing when the zero of D overlaps the exchange pole).

The foregoing results applied to X'/8(f. For X'=83, all relations are unchanged, through Kq. (4.17), which now
(in the parity-conserving case) must be plugged into (3.16) rather than (3.15). One again obtains (4.18), but g,»
is now given by —1 D3,'T,dW' D3,"(Ms) D 'T dW'
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TAnrz III. Values of the quantity vi for couplings with P=+. E is defined by E(W) =D(W)L(W —M)D'(M)7 '.
The quantity g~ is the same for all C and T. For I'=+, g&= g,.

2ioBB(XP-"Sg)

g,~~(X=St})

g ~~(X~Sy)
gP~(X =Sy)

g,~~(Xg 10)
g ~~(X=10)
g ~~(X~10)
v) ~~(X=10)

q, for general D

-',X, (2M~ —M~)
48Ksg(2M Ms)(Ksg(2M Ms) Dsg(2M M )Ds "(M )t.Dsg'(MB)7 8}

—,'E10(M~)
fE10(3f~)(E1p(3E ) —D1p(M )D10"(M )pDIp'(3l )j '}

~~E1p(2M+ —3f~)

-'K111(2M —M ) (K10(2M —M )—Drp(2M —M )D20"(M )LD20'(M )7 '}

g, for linear-D
approximation

1r
I
3

3

3
2
3
2
3
1
3
1
3

It is straightforward to derive the effects of 6R* shifts in 6 exchange on the direct-channel residues bR and SR*,
and of 8R shifts on 8R*, by the same methods used above for the effect of 8R shifts on 5R. One Ands, for the effects
of 6 exchange,

—G SGs (X)Z svs 8 8 ss1 8 8 X' 8 8 X'1 8 8 10)
!3~B(8g,X') = BA

ZXPXXg ssSvv' vlvpvgv4 Pi PS 18 I PS P4 P VS Ps P s Pl P4

(8
8 10)(8 8 X1 1'20 S

X)(8
S X')

and

3RB*(10,X') =
—6*3GB*(X)Zx*ÃB

Zx *Ex

8 8 10 8 8 X' —
t

8 8 X 8 8 10~

svsvv 21vgvpvs Pi Ps P PS Vs P 8PS PS P Pg P4 Q g

and, for the effect of 8 exchange on the 6 residue,

—G8Gs(X)ZsNs
(8

8 10)(8 8 X) (8
8

X)(8
8 8 1

+s ~C~ )( ) (—1)s +s
( )( ). (4;28)

The coefficients q, for the various cases of positive-parity couplings are listed in Table III. These coefficients are
independent of T and C, which affect only the coupling factors. The coefficient p& equals p, in each case as we
found for p . The p coefficients for negative parity couplings are quite different and will be discussed in Sec. XI.

We are now 6nally in a position to evaluate A «, which is essentially given by the coefficients of G 5G on the right
side of Eqs. (4.18), (4.23), (4.24), and (4.25). Of course, we are free to evaluate A « in terms of any convenient set of
basis states we like; for example, either 8G's or 6R's may be used and their normalization factors Z and Z* are at
our disposal. We choose Z and Z* and the states connected by A in such a way as to make A symmetric. "

A «can be symmetrized exactly only when the linear-D approximation is made in p, so let us consider that case
first. AG, for example, will be deduced from Eq. (4.18). The sum over Clebsch-Gordan coefficients in (4.18)
is symmetric between X and X', and the factor in front also becomes symmetric if we take Zx ——(2Vx) ' ' and
Zx. ——(iVx.) ' '. Similarly, Eq. (4.24), from which AG*ix

)G* xl will be deduced, becomes symmetric if Zx* is taken
proportional to (1V ) ' '. Next we look at (4.23) [A

' ] and (4.25) (AG' G ). Once again, the sum over
Clebsch-Gordan coefficients is symmetric —that is, the sum in (4.25) equals the sum in (4.23) with X and X inter-
changed. The inequity in the coefficients, p ~=2p~, can be offset by dividing Zx by an overall factor V2 rela-
tive to Zx. If 8G and 5G were used as the basis, the factors G and G* would provide another asymmetry; this is

"In this way we are guaranteed that the eigenvectors of A form a basis in our space of states. Also the numerical procedure is
simpli6ed. (For example, the Caltech Computer Center subroutine for determining the eigenvalues and eigenvectors of a matrix
happened to work only for symmetric matrices. )
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avoided by using l)R(83,X)=—G8G(X) and hR*(10,X)= —G*l)G*(X)as the basis. In other words, we shall actually
calculate a matrix A~~ which divers from A«by a change of basis. The eigenvalues, which are the solutions of
det(xf —XI)=0, are unaffected by this change of basis. Symmetry would now prevail, were it not for the fact that
4}R(8(),88) = —2G4) G(82) and BR*(10,10)= —2G*4)G*(10)

I Eqs. (3.4) and (3.8)].This last asymmetry is overcome by
letting Z8, ——v2(8) 2(2 rather than (8) '(2, and by letting Z20 =vT(10) 'I'. Our final choice of Z's and Z*'s is sum-
marized in Table IV.

With this choice of Z s, the expressions for the matrix ARR come out with a factor /(Is(I!IxlVx) '(2 in front,
modified by various square roots of two. In order to absorb most of these V2's and give the results in a more unified
form, we define ex and ex* to have the values in Table IV, and replace Ex or Ex by ex when they refer to BBII
couplings, and by nx* when they refer to ABII couplings. The elements of A ~" are now given by the coefBcients of
8R on the right side of Eqs. (4.18), (4.23), (4.24), and (4.25). They have the values

&s 8 8
QR(83,X')R(83,X)—

(nxnX, )'~' alSvv' vlv2v3v4 V2 V,

(8
+~ BBI

(V8

AR(8g, X')R+(10,X)— &s 8 8 8g 8 8 X' 8 8 X 8 8 10

(1vv"vv )'" v-' ~ ~ ~ 3» ' )( )

(8
8 10)(l! 8

X) (10 S X1(l! S X'1

Eat 8 8 10 8 8 X'- 8 8 X~ 8 8 83~
44 R+(10,X'}R(83,X)—

(nxnxv ) ( a(8vv' vlv2v3v4 P2 V2 p P8 V4 P P3 P2 P / P2 V4 4X I

A R+(10,X')R+(10,X)—
EB 8

(nx~nxv~)'" aSvv vlv23334 V]

l! 10)(8 8 X')
—

(8
8

S X 10 S X'

X 8 8 10

(8
8

10)(8
8

X) (10 S X)(10 S X'1

As we have already said, the eigenvalues of A~~ are
the same as the eigenvalues of A«which we started out
to calculate. A little work is needed, however, to obtain
the physically interesting ratios of coupling shif ts
8G/, and 8G~;*' that correspond to a given eigenvector
of A"~. Each eigenvector resulting from diagonaliza-
tion of A RR as defined by (4.26)—(4.29) is a set of num-

8g, 8g{s), 8g{u)

8gs3)8gs4($)8gg(g)
10
10

27 27'

1

(8)
—1/2

(10)
—1/2

(10)
—1/2

(27) '"

Zx*

{10)—1/2

(20)-1/2
{54)-1/2

1

16
8

10
10
27

nx*

8
8

20
10
27

TAIigE IV. Values of the normalization factors Zx and Zx*
and the factors nx and nx*, used in defining A~ for I'=+
couplings.

bers l)R(833,X), 1)R*(10,X) with X running over the
values listed in Table II. The corresponding coupling
shifts, in the same basis, are

4)G(XN83) = /'}R(83, X/83)/G—, (3.3)

8G(88) = —5R(83,83)/2G, (3.4)

hG*(X&10)= —l)R*(10,XW10)/G*, (3.7)

4}G*(10)= —8R*(10,10)/2G*. (3 8)

The individual-particle coupling shifts RGB„-' and bG~;*'
are given in terms of 4)G, Z, l)G~, and Z8 by Eqs. (3.9)
and (3.10). Using Eqs. (3.3), (3.4), (3.7), (3.8), and the
specification of Z and Z* in Table IV, one obtains

4)G82'= —G ' Q(nx) '~2bRs(8(), X)

8 S X 8 8 X
x&I II

~ I I
(4.30)

~ (u ~ v) I 8 j vi
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and
Gg—]

8Gp ~'= — Q (ex*) "'8R 8*(10,X)
V2 x

for symmetry breaking transforming like the 0 com-
ponent of representation S.Note that G ' is numerically
about equal to G* '/v2 LEq. (2.5)].

The basic equations we have just derived all hold for
any D function. The convenient property that A~~ as
defined by (4.26)-(4.29) is symmetric, however, holds
only for the linear-D approximation because otherwise
the differences between g s~(X&8q) and g ~~(X=Se),
etc., in Table III introduce asymmetric terms into A.
For example, setting Wo= 73II~/3 in D8, (3.19), one ob-
tains gP~(XWSq) =0 8)&+34. in place of the linear value x~.

By taking W0*=83E~/3 in DM (3.20), one obtains the
same reduction, " g,~(X/10)=0.8)&3 in place of 3.
The symmetry between A~~* and A~*~ can thus be
maintained readily enough, except for rl,s~(Sg) and
q.~ (10) which come out =0.95X,'and 0.95)(32, re-
spectively. Similarly, for the value of S"0*considered
above, q,~~(XW10)=0.7XB in place of the linear
value x~, but g ~~(10)=0.9Xxs, introducing an asym-
metry. In studying nonlinear D, we ignored the asym-
metry from this source by using, for example, the 0.8
rather than the 0.95 reduction through A "~*and A~*~.
Evidently', this approximation could introduce errors
of order 15% into the results for nonlinear D. The
errors in g~~ are less important because g~~ is a small
term to start with (this can be traced back to the cross-
ing matrix for ordinary spin, which is responsible for
making g~~ and g~~ the biggest terms in Table III).

The basic formulas (4.26)—(4.31) define the eigen-
values and eigenvectors of A« for all I', C, and T. The
C dependence is explicit in (4.26)—(4.29). The I' de-
pend. ence is contained in the factors g, e, and I*.(The
values of these factors for P= —are given in Sec. XI.)
A« is independent of T, which affects only the reality
properties of the couplings connected by A«.

In practice, both the evaluation of the elements of
A "s (4.26)—(4.29) and. the diagonalization to determine
its eigenvalues and eigenvectors were performed by
computer. The following checks were made on the com-
puter results:

(i) The elements of A "sgiving the effect of ORB(Sg, Se)
and ORB*(10,10) exchange terms on ORB(Se,Se) and
&Ra*(10,10) possess certain simplifying features. Ordi-
nary conservation laws ensure that only n= v and P= v'

contribute to the sums over products of Clebsch-Gordan
coefficients in Eqs. (4.26)—(4.29). Furthermore, since
for a given S there is only one 8E and one 8E* term of

"We take this value of S'0~ only by way of illustration. If a
difFerent S'0* is used, the reduction of q ~ and g~ can still be kept
symmetric by another change in the basis vectors.

gi J'IIdt (5.1)

that the unitarity of S is related to the Hermiticity of B.
This is a well-known problem. '~ Approximations

which automatically possess correct Hermiticity proper-
ties have been constructed, but always at the cost of
some other desirable property which the theory should
also have.

We handled the problem as follows:

(i) The couplings with the wrong Hermiticity pro-
perty (a minus sign in Eq. (4.3)]were projected out of
A "~. All eigenvalues and eigenvectors of A~~ listed in
the rest of the present paper have been so treated, "
except for Table VIII, which is presented for comparison.

(ii) The eigenvalues and eigenvectors obtained after
the projection were compared with those obtained be-
fore projection in order to see how serious the incon-

~4 A similar connection between the Clebsch-Gordan coefIIcients
in elements of A~~ and A~~ will be worked out in detail in
Sec. VII."Couplings with the wrong Hermiticity should also be projected
out of A~~ and A&~. This was not necessary in the present paper,
however, because all we do with A~& is to show it is very small
(Sec. VII), and we use A&~ only to estimate the efFect of mass
shifts on several of the enhanced eigenvectors for coupling shifts
(out of which, terms of the wrong Hermiticity have already been
projected).

this type /except for 8Rs(Se,gg), where the two terms
that arise, X=S&(s) and X=S&(a), are easily distin-
guished by their symmetry properties], each of these
elements of A can be evaluated by considering a single
value of P. With these simplifications, it is easy enough
to evaluate these elements of A~~ by hand. The results
are already available in Ref. 2, where precisely the same
sums over products of Clebsch-Gordan coeflicients'4
were needed to calculate A '"'"'" '. Thus, we were
able to check the computer results for these elements of
A~~ against results obtained earlier by hand.

(ii) The elements of As" connecting Parity ~iolutir-lg

couplings also possess simplifying features, especially
when expressed, in terms of a different basis (see Ref. 3
and Sec. XI of the present paper). These simplifications
made it possible to determine by hand the eigenvalues of
A "~ for parity-violating couplings in Ref. 3, and these
eigenvalues provided another check on the computer
results.

V. VERTEX SYMMETRY

In a fully satisfactory calculation, the couplings ob-
tained would naturally satisfy the Hermiticity condition

G k ( 1)oyg s (4.3)

This condition says, for instance, that the coupling of
the A. bound state to the Z ~+ channel should equal the
coupling of the Z—bound state to the Ax channel, up
to a known phase factor. Our approximate calculation
fails to ensure this result, however, because it fails to
enforce unitarity of the S matrix in all channels fully,
and one knows from
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TABLE V. Couplings with P=+, T=+, C= —.Each coupling is expressed as a vector with
components bRg(8O, X). The vectors listed here are not orthonormalized.

Us
S=s

U 8 U 27

S=27
U 27

8R(88,1)
SR(S&,S&(s))
bR(Sg, sg~(s))
sR(s, ,'8, (~))
&R(s,s *(~})
&R(8,1o}
&R(s,, io)
~R(8,,27)
~R*(10,8,)
sR*(10,8 *)
SR*(10,10}
SR*(10,27)

—1

5 cosO
—4, v2 sin0

0
0

2/(10)'"
2/(10)'"

v3/5
0
0
0
0

0
—sin8/K2
—cos8

cos8/V2
—sin8

0
0
0
0
0

—1
—cos0/10
sin8/5V2

sin 8/2
cos9/V2'
1/(10)»2
1/(1O) 1~2

3'/5
0
0
0
0

aR(88,8&)

aR(s&,s& )
aR(s&, 1o)
bR(sg, i0)
sR(s&,27)
~R(s„27')
aR+(10,8&)

BR*(10,80*)
SR*(10,10)
~R*(10,iO)
w&*(10,27)

—242 cos8
4 sin8

—+5
+5
(14)I/2

0
0
0
0
0
0

—V2 (cos8++5 sin0)
2 (sins —+5 cossl

—g5
0

—(7/2)'"
—(15/2) I~2

0
0
0
0
0

TABLE Vl. The nonzero elements of 10 27 27 for ~= (Y=O,
tX O' V

I=0 member of 27). For this value of o, the o, and v of nonzero
elements have the same (Y,I,I3). The choice of over-all sign is
arbitrary.

Y, I, I3 fora. and v

10 27 27

1
1
1
1
0
0
0

—1
—1

3
2
1
2
1
2
3
2

0
—1

1
2
1
2

(1/14)'"
{]/14) I/2

(1/14) I f 2

(1/14)'"
—(3/35)'"
—(3/35)'"
—(3/35)'"
-(8/35}'"
—(8/35)'"

"For a self-charge conjugate representation, e, is equal to the
charge-conjugation parity of the I=0, Y=o member of the repre-
sentation. M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).

sistencies of the model are. Many eigenvalues changed
by 0.1 to 0.2 and the eigenvectors changed even more.
The leading eigenvalue Ay=8'g= 0.93, which is what we
use exclusively to determine strong and electromagnetic
coupling shifts, changed only from 0.96 to 0.93, however,
and the associated eigenvector only by 5'P~. (By this we
mean that the inner product of the eigenvector before
projection with the eigenvector after projection is
0.95.) Other eigenvalues which play a, leading role in
weak couplings are also quite stable under projection.
The leading eigenvalues for I'=+, 6= —," S=8
couplings change from 0.92 to 0.89 and 0.85 to 0.82,
with the associated eigenvectors changing by 7'%%u& and by
5'Pz, respectively, and the leading eigenvalue and eigen-
vector for E=—,S=8 couplings are unchanged by the
projection for reasons mentioned in Sec. XI. Thus the
lack of Hermiticity in our model does not appear to
have any serious eGect on our main conclusions.

In the rest of this section, we give the technical de-
tails of the projection. Note that, since AII external
states were not considered, the problem of consistency

between couplings for 6 —+ BpIIp and Bp —& 6 IIq
did not arise in our model. Thus we can conane our
attention to the consistency between B ~ BpII& and
Bp~B IIg.

For parity-conserving couplings with T=+ (i.e., real
couplings), condition (4.3) for Hermiticity is the same
as condition (4.5) for C=+."Thus, the spurious terms
to be projected out in this case are the C= —couplings.
The number of such terms for each S can be determined
by considering some SU(3)—charge-conjugation proper-
ties of BBII couplings, The BBstates V= 1, 8„8„and
27 with J=0 all have 6= +,"and the states I'= 10+10
and 10—10 provide one 6=+ and one 6= —combina-
tion. The J=O II state has 6=+. The total 8 of the

BBII interaction is 6(BB)X6(II)&& phase factor under

8 7 S
interchange of V, i, and 8, k in

&
. . One Ands

Z 0

that both S= 1 couplings (I'= 8, and 8„combined with
the octet of II's to make S=1) are 8=+ since 1 is one
of the symmetric terms in S)&S.This is the reason why
SU(3)-symmetric bootstraps automatically produce
Hermitian couplings: there is no 8= —,S= 1 coupling.
Three of the eight S=8 couplings have 6= —,however,
and two of the six S=27 couplings have 6= —.'8 For
strong perturbations transforming like the Y=O, I=O
members of representation S, C is equal to 6, so we need
to project out three S=8 couplings and two S=27
couplings. The same result holds for electromagnetic
perturbations (I'=0, Iz=0, I=O, I, 2 members of
representation S).

Now A~~ is calculated in terms of couplings labelled

by the representation of the IIB state, rather than the
BB state Lthe 1IB labeling is most convenient because

"The sects of T, C, P, and Hermitian conjugation are linked
through the TCP theorem."For S=8, the three 6= —couplings are the antisymmetric
octet formed from Y=S, and G, the antisymmetric octet formed
from Y=S and II, and thf'. octet formed from H and one of the
combinations of Y= 10 and 10.For S=27, the two 6 = —couplings
are one of the 27's formed from II and Y=27, and one of the 27's
formed from II and a combination of Y=10 and 10.
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the D functions in Eqs. (3.15)—(3.1I) refer to definite
representations of IIB].To obtain the 8= —couplings
in the IIB labeling, we write the condition for C=-
coupling

1)G p8= —(—1)&'|lGp " (4.5)

= —(—1)@'Q(jlx ) '~'bRs(88, X')

(8
S X')(8 8 X')

We take for 0 the I=0, P= 0 component of S so that 6
will have the same value as C. Then we simply apply
(5.2) to various values of (x, P, k until the required num-
ber of linearly independent 6= —couplings is obtained.
The P=+, T=+, 8= —couplings obtained in this
way for S=8 and S=27 are listed in Table V. To pro-
ject out spurious 6= —couplings from A z 8~~, for ex-
ample, one erst orthonormalizes the V"s in Table V
(denote the resulting vectors by U'), and then forms

(~S=8 )lj 2 Pjk(4S=8 )klPljy
kl

(5.3)

3

Pl, =8l, Q(V„=')l—(V, =') . . (5.4)

It is the eigenvalues and eigenvectors of 2'~~ which we
will actually apply to strong and electromagnetic and
(the P=+, T=+, 8=+ part of) weak interactions.

In Sec. XI, in connection with weak interactions, we
will give the alternative procedure to be followed when
one isinterested in 6= —couplings, and wishes to elimi-
nate spurious 8=+ couplings which got mixed into
A~~'~ ~ as a result of approximations.

Vt. RESULTS FOR A~~

We are now ready to determine the eigenvalues and
eigenvectors of A ~~ by calculating the elements in Eqs.
(4.26)—(4.29), "purifying" with the projection of Sec. V,
and then diagonalizing the resulting matrix. The values
of 88x and g needed to calculate (4.28)—(4.29) are given
in Tables III and IV. The requisite SU(3) Clebsch-
Gordan coeKcients are given explicitly in convenient
tables by McNamee and Chilton, "who followed the
conventions of de Swart. "The only coeKcients that
could not be obtained directly from these references
were

10 S=27 X=27

~'P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 1005
(1964).

and express both sides in terms of 8E.'s by means of
Eq. (4.30):

8 S X 8 8 X
r(mx) "&8s—(a„x)E( )( )
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which are needed for S=2/ perturbations on the ABD
couplings. Actually, since the A matrix is independent
of the "direction" the perturbation takes in SU(3)
space, we only need. the coefficients for one value of 0.
VA'th the aid of the Casimir operators, we calculated by
hand the coeScients for a=(I'=0, I=O member of
representation 8=27). The coeKcients are given in
Table VI (note that the overall sign is arbitrary).

As an example, we give Ass for E=+,C=+, T=+,
S=S couplings in some detail. First consider tI= —28'
(F/D=0 4) and. linear D functions. The 12&(12 matrix
As Ps before the projection of Sec. V is given in Table
VII."The eigenvalues and eigenvectors obtained by
diagonalizing it are given in Table VIII. This table is
included mainly for comparison with Table IX, where
we give the eigenvalues and eigenvectors of the matrix
AB=Ps that remains after the projection of Sec. V. It
is this latter table which is used in the ensuing discus-
sions of strong and electromagnetic perturbations. Note
that, as mentioned in the previous section, the leading
eigenvalue and eigenvector of Table IX are almost
unchanged from Table VIII, although other eigenvalues
and. eigenvectors change considerably. The reasons for
this fortunate behavior are not understood.

Next we present two tables which illustrate the degree
of sensitivity of A~~ to the parameters of our model.
Table X gives the eigenvalues and eigenvectors of A~~

for the same conditions as Table IX, except with
0= —28' changed to 8= —40'. This corresponds to
changing F/D from =0.4 to =0.6. One sees in particular
that the leading eigenvalue and eigenvector are quite
insensitive to this change.

Table XI gives the eigenvalues and eigenvectors of
A~~ for the same conditions as Table IX, except with
some effects of nonlinear D taken into account. Speci-
6cally, the D functions discussed following Eq. (4.31)
are used. The factors q are taken to be q~~= —3,
~Bh 0 8X ~LB

metrics introduced by nonlinear D are not taken into
account here; their eGect was estimated in Sec. IV. The
striking result obtained in Table XI is that the eigen-
values are uniformly reduced by about 20%, while the
eigenvectors are essentially unchanged. This reQects the
fact that A is dominated by the o6-diagonal terms
Ass' and A"'~, which are uniformly reduced by 20%
when nonlinear D is taken into account. The dominance
of A~~' and. A"'~ can be traced to the spin crossing
matrix contained in the factor g, which has the values -',

for q~~, —,
' for g~~, but only —-,'for q~~, and -', for q~~.

The dominance can be seen clearly in Table VII, where
all the individual elements of A are displayed.

To summarize the results of varying the parameters of
our model: The leading eigenvector of A8~~~, which
controls the ratios of strong coupling perturbations and
electromagnetic coupling perturbations, is not very

"We are greatly indebted to Barbara Zimmerman, who pro-
grammed and performed the computer calculations of all elements,
eigenvalues, and eigenvectors of A~~ given in this paper.

sensitive to reasonable variations of the F/D ratio and
the form of the D functions.

The calculation of elements of A~~ connecting other
types of coupling proceeds in a similar way. The results
for weak couplings mill be given in Sec. XI.The results
for I'=+, C=+, 2'=+, S=27 couplings, calculated
with linear D functions are given in Tables XII (eigen-
values and eigenvectors of the A2P" obtained before
the projection of Sec. V) and XIII (eigenvalues and
eigenvectors of An"s after the projection of Sec. V).
The point to note here is that Agv~~ does have an eigen-
value near one, although the precise values of the eigen-
value and eigenvector are changed substantially by the
projection of Sec. V and are therefore rather unreliable.

where M' is the position of the exchange singularity and,

C;; is a numerical coeKcient. Inserting (7.1) into (3.17),
one Ands

8M; C;;bar LD, (M*)j'
M G' [D {M)]'M(M —M)

(7.2)

For linear D, the factors to the right of BE. reduce to
(M*—M)/M, and A~'s', which is the coefficient of
BR;, takes the form

A~ s~ =C;; (M —M')/G'M . (7.3)

In Ref. 2 it was observed that A ~"is small in the static
model because (M —M)/M is a small factor (e.g., for
the baryon-exchange contribution to M~, M"=M~ ——M
and the factor vanishes; for the 6-exchange contribu-
tion to M~, M =2M~ —Mg and the factor is about
—s). As mentioned in the Introduction, we took ad-
vantage of this fact and ignored A~~. This allowed us to
study mass shifts before coupling shifts were studied,
and then made possible solutions of the form (1.3) and
(1.4) for coupling shifts.

In the present section we shall estimate A~~ more
carefully and shove that it is indeed very small, its ele-
ments not exceeding about 0.1.

The method for calculating C;; in Eq. {7.1)has already
been described in detail in Sec. IV. For example, we can
take over Eq. {4.17) for the effect of a coupling shift on
the amplitude hT(8&-+X') with only the following
minor changes: (i) For baryon mass shifts, the 6nal state
is specialized to X =8g, since in our formalism a mass

The dispersion relation for Grst-order mass shifts has
been given in Sec. III:

D BTD.
8M;= dW'. (3.17)

2~iG't D (M))' o W' —M

In studying the eGects of coupling shifts on mass shifts,
one considers expressions of the form
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TABLE VIII. The eigenvalues and eigenvectors obtained by diagonalizing the eeproj ected matrix A&& of Table VII. The components of
each eigenvector are listed in the column under the corresponding eigenvalue. The eigenvectors are normalized to i.

0.962 0.839 0.691 0.478
Eigenvalues

0.199 —0.010 —0.040 —0.305 —0.617 —0.726 -0.751 -0.890

BE(8g,i)
BR(8g,8g(s})
BR(8g,8g*(s))
BR(8g,8g(a))
BE(8g,8g*(e))
BE(8g,10)
BR(8g, iO)

aE(8g, 27)
8E"(10,8e)
BE (10,8,*)
BR*{10,10)
aR'(10,27)

0.031
-0.110

0.081
0.557

—0.148
0.163
0.341
0.024

—0.129
0.016
0.166
0.676

0.117
0.230
0.205
0.032

—0.004
0.398

—0.261
—0.342
—0.365

0.277
—0.571

0.091

0.206
-0.361

0.521
0.036
0.129

—0.245
—0.122
—0.120
—0.032

0.573
0.324

-0.106

—0.085
0.120

—0.108
0.410
0.044

-0.129
—0.438
—0.015

0.700
0.194

—0.196
0.139

Kigenvectors
—0.122 —0.859
—0.464 —0.013
—0.213 0.484

0.064 —0.014
0.477 —0.089
0.388 0.048

—0.336 —0.053
0.441 —0.000

—0.177 —0.005
0.018 —0.110

—0.001 —0.000
0.032 —0.010

0.100
0.406
0.318
0.140
0.767

—0.118
0.206
0.039
0.023

—0.232
—0.024

0.015

0.234
0.349
0.354

—0.0/9
—0.308

0.167
—0.112

0.738
0.058
0.071
0.036

-0.008

—0.109
0.133

—0.089
—0335

0.149
0.554
0.370

—0.109
0.405
0.402
0.204
0.048

0.028
—0.293

0.090
0.363

-0.068
0.091
0.492
0.150
0.145
0.060

-0.455
—0.512

0.287
—0.178

0.296
0.098

—0.099
0.451

-0.216
-0.296

0.252
—0.538

0.241
-0.168

-0.143
0.38/

—0.236
0.482

—0.040
0.149

—0.098
—0.060
—0.270

0.171
Q.438

—0.456

TABLE IX. The eigenvalues and eigenvectors obtained by diagonalizing the matrix A& ufter the projection of Sec. V. Here, A"~
again refers to couplings with I' =+, C=+, T=+, 8=8, and 8= —28, and linear D functions were used. The three eigenvectors with
zero eigenvalue refer to C= —couplings.

0.931 0.655 0.489 0.000
Eigen values

0.000 —0.000 —0.018 —0,062 —0.259 —0.493 —0.706 —0.761

BR(8g,l)
BE(8g,8g(s))
BR(8g,8g*(s))
BE(8g,8g(c})
BR(8g,8g*(a))
BR{8g,10)
BE(8g,10)
BE(8g,27)
BE*(10,8,)
BE*(10,8g*)

aE*(10,10)
bE ~(10,2 7)

0.070
-0.251
—0.024

0.564
—0.086

0.048
0.298
0.119

—0.021
0.005
0.300
0.639

0.076
—0.268

0.507
Q.Oil
0.255
0.224

—0.186
—0.079
—0.446

0.543
—0.103

0.042

-0.199
0.030
0.282
0.271
0.099

—0.284
—0.307

0.010
0.681
0.340
0.182

—0.083

—0.441
0.562
Q.ON
0.239
0.032
0.651
0.024
0.025
0.000
0.000

—0.000
0.000

Eigenvectors
—0.082 —0.504
—0.270 —0.158
—0.550 +0.238

0.064 —0.318
0.482 0.173
0.187 -0.160

-0.425 0.472
0.404 0.532
0.000 0.000
0.000 0.000

—0.000 —0.000
0.000 0.000

0.415
0.280
0.129
0.020
0.571

—0.019
0.240
0.026

—0.039
—0.129

0.523
-0.232

—0.145
—0.294
—0.066
—0.166
—0.431

0.247
—0.097

0.006
—0.086

0.095
0.696

—0.319

0.500
0.258
0.041

—0.10/
—0.338

0.143
—0.032

0.650
0.128
0.290

-0.092
0.024

—0.042
0.033
0.436
0.192

—0.117
—0.162
—0.471

0.296
—0.261
—0.589

0.056
—0,003

-0.1/8
0.441

—0.169
-0.317

0.009
-0.357
—0.254
—0.036
-0.285

0.243
0.300
0.467

0.122
—0.146

0.232
—0.517

0.112
0.380

—0.144
—0.135

0.400
—0.267

0.073
0.454

TABLE X. The eigenvalues and eigenvectors of A&& for the same conditions as in Table IX, except with 8= -40' instead of g= —28'.

0.944 0.598 0.524 0.059
Eigenvalue s

0.000 —0.000 —Q.OOO —0.082 —0.318 —0.476 -0.738 —0.746

BR(8g,l)
5R(8y,8e(s))
BE(8g,8g*(s))
BE(8g,8g(e)}
BR(8g,8g~(a))
BE(8g,lQ)

BR(8g,10)
BE(8g,27)
hR*(10,8e)
BR*(10,8g*}
BR'(10,10)
BE*(10,27)

0.100
—0.235
—0.037

0.555
0.076
0.053
0.325
0.092

—0.062
0.015
0.299
0.638

—0.008
—0.393

0.459
—0.039

0.253
0.144

—0.244
—0.110
—0.403

0.556
—0.047
—0.014

0.142
—0.081
—0.205
—0.232
—0.205

0.343
0.206

—0.019
—0.712
—0.342
—0.208

0.067

0.537
0.218
0.179

—0.209
0.434
0.110
0.238
0.151

—0.034
—O.Q82

0.487
—0.246

Eigenvectors
—0.587 0.331

0.313 0.217
0.475 0,442

—0.047 0.149
—0.042 —0.471

Q.287 —0.128
0.445 0.154
0.213 —0.601

—0.000 0.000
—0.000 —0.000
—0.000 0.000

0.000 —0.000

0.003
—0.452

0.138
—0.380
—0.164
-0.619

0.417
0.214

-0.000
—0.000

0.000
—0.000

—0.252
—0.280
—0.110

0.020
—0.427

0.166
—0.139
—0.052
-0.058
—0.019

0.714
—0.313

0.348
0.099
0.205
0.088

-0.481
0.108

—0.265
0.68/
0.030
0.139

—0.096
0.046

O.ill
0.114

—0.438
—0.170
—0.170

0.211
0.397

—0.071
0.130
0.705

—0.039
—0.027

0.073
—0.242
—0.028

0.576
0.059
0.034
0.296
0.096

—0.012
—0.043
-0.283
-0.646

0.151
—0.473

0.157
—0.229
-0.020

0.526
0.053

—0.111
0.550

—0.216
—0.155

0.089
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TABLE XI. The eigenvalues and eigenvectors of A~~ for the same conditions as in Table IX, except with
linear D replaced by curved D functions, as described in the text.

0.748 0.529 0.370 0.000
Eigen values

0.000 —0.000 —0.015 —0.050 —0.242 —0.416 —0.571 —0.633

BR(8&,1)
BR(s„s,(.)y
BE(sg,sg*(s))
BE(8„8,(~))
BE{8,s *(~))
BE(s,, io)
BR(Stt, iO)

BE(sg,27)
BE*(10,8,)
BR*(10,8g*)

BE*(10,10)
BE*(10,27)

0.070
—0.252
—0.027

0.572
—0.090

0.047
0.302
0.121

—0.012
0.003
0.296
0.631

0.043
—0.254

0.553
0.069
0.287
0.163

—0.231
—0.080
—0.329

0.582
—0.060

0.029

—0.212
0.072
0.193
0.260
0.061

—0.315
—0.271

0.014
0.756
0.235
0.180

—0.085

—0.596
0.358

—0.020
0.116
0.236
0.574
0.062
0.335
0.000
0.000

—0.000
0.000

Eigenvectors
—0.201 —0.245

0.244 —0.475
0.603 —0.018

—0.164 —0.349
—0.350 0.291
—0,153 —0.362

0.587 0.236
—0.126 0.564

0.000 —0.000
—0.000 —0.000

0.000 0.000
—0.000 —0.000

0.367
0.234
0.113
0.006
0.491

—0.000
0.211
0.022

—0.055
—0.140

0.637
—0.284

—0.226
—0.324
—0.092
—0.152
—0.513

0.223
—0.139
—0.002
—0.092

0.143
0.608

—0.281

0.502
0.258

—0.032
—0.134
—0.297

0.160
0.051
0.587
0.161
0.409

—0.075
0.012

0.056
0.037
0.452
0.160

—0.189
—0.089
—0.465

0.405
—0.188
—0.551

0.018
—0.002

—0.130
0.372

—0.066
—0.447

0.043
—0.227
—0.303
—0,063
—0.149

0.118
0.304
0.599

0.180
—0.290

0.241
—0.412

0.096
0.500

—0.020
—0.133

0.472
—0.281

0.001
0.270

TABLE XII. The eigenvalues and eigenvectors obtained by diagonalizing the unproj ected matrix A++ for I= +, C= +, T= +, S=27
couplings. Linear D functions and 8= —28' were used in the calculation.

0.963 0.796 0.583 0.180
Eigenvalues

0.086 0.014 —0.212 —0.342 —0.551 —0.762 —0.887

BE(8&,Stt}

BE(8&,8&*)

BE{stt,10)
BE{8,,io)
BR(s&,27)
BR(sy, 27')
BE*(io,s&)

BR*(io,s&*)

BE*(1O,1O)

BE*(10,10)
BE*(10,27)

0.010
0.028

—0.328
0.457

—0.026
0.391

—0.259
—0.056

0.067
—0.027

0.672

0.093
0.195
0.208
0.175

—0.588
—0.036

0.169
—0.124

0.544
—0.433
—0.045

—0.280
—0.435

0.281
0.277

—0.001
0.065
0.227

—0.357
0.295
0.551

—0.015

0.127
—0.342
—0.607
—0.033
—0.255
—0.438

0.413
—0.164
—0.137
—0.026

0.141

Eigenvectors
0.025 0.840
0.086 —0.303
0.039 0.255
0.324 0.250
0.212 0.209

—0.259 0.012
0.345 —0.026
0.745 —0.107
0.244 —0.077
0.142 —0.087
0.131 —0.059

0.054
—0.289
—0.092
—0.058
—0.239
—0.376
—0.725

0.213
0,293
0.199

—0.067

0.099
—0.451

0.001
—0.494
—0.207

0.545
0.165
0.375
0.143

—0.020
0.109

0,349
0.444

—0.009
—0.056
—0.458

0.106
0.063
0.035

—0.183
0.645
0.001

0.223
0.260

—0.158
—0.445

0.418
—0.093

0.051
—0.266

0.573
0.142
0.227

—0.056
—0.042

0.546
—0.252
—0.115
—0.349

0.001
—0.030
—0.240
—0.046

0.660

TABLE XIII. The eigenvalues and eigenvectors obtained by diagonalizing the matrix A~ for P=+, C=+, T=+, S=27 couplings
after the projection of Sec. V. Linear D functions and 8= —28' were used in the calculation. The zero eigenvalues refer to the two
C= —couplings.

0.878 0.627 0.465 0.085
Eigen values

0.000 —0.000 —0.086 —0.326 —0.392 —0.519 —0.862

BE(8e,sg}
BR(s„s,*)
BE{8&,io)
BE{8&,10)
BR(s&,27)
BR{sg,27')
BE*(10,8tt)

BE*(io,s&*)

BE*(1O,1O)

BE*(io,io)
BE*(10,27)

—0.061
0.125
0.392

—0.214
—0.384
—0,285

0.319
—0.047

0.291
—0.204
—0.566

0.491
0.244

—0.205
0.072

—0.285
—0.031
—0.131

0.118
0.170

—0.655
0.280

—0.247
0.272

—0.401
—0.441

0.004
—0.182
—0.097

0.328
—0.528
—0.157
—0.231

—0.052
0.101

—0.025
0.296
0.176

—0.285
0.384
0.736
0.228
0.151
0.139

Eigen vectors
0.544 —0.029

—0.143 0.771
0.220 0.356

—0.464 —0.006
0.573 0.303

—0.299 0.429
0.000 0.000

—0.000 —0.000
—0.000 —0.000
—0.000 0.000
—0.000 0.000

—0.113
—0.102

0.252
—0.071
—0.066

0.012
—0.797

0.399
0.293
0.071

—0.128

—0.113
—0.300

0.009
—0.537
—0.100

0.587
0.288
0.273
0.196

—0.112
0.208

—0.433
0.219

—0.220
—0.292

0.135
—0.341
—0.060
—0.311

0.498
—0.000

0.382

0.392
0.274

—0.154
—0.250
—0.457
—0.016
—0.007

0.017
0.051
0.678
0.100

—0.157
—0.019

0.574
—0.081
—0.277
—0.258

0.004
0.043

—0.423
—0.045

0.557
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TABLE XIV. The matrix A"l~ for P=+, C=+, T=+, S=S couplings calculated vrith 8= —28' and linear
D functions, using Table VII and Eqs. (7.9)-(7.12).

BR(8g,1) BR(8g,8g(s}) BR{8g,8g*(s)) BR(8g,8g(g}) BR(8g,8g*(a)) BR(8g,10) BR(8g, 10} bR(8g, 27) BR*(10,8g) bR+(10,8g~) BR@(10,10) bR(1, 27)

bM&(s) 0.00
m&(~} o.oo
m~ ooo

0.00
0.00

—0.08

0.00
0.00
0.02

0.00
0.00
0.00

0.00
0.00
0.00

0.00 0.00 0.00 0.02 -0.04 -0.08 0.00
0.00 0.00 0.00 0.03 0.02 0.00 0.12

—0.06 0.06 0.05 0.05 —0.01 0.00 0.02

The 86 factor was expressed as

8 S X' 8 8 I'
8G„,p"'=-Zx 8G8(X')Q , (3 9)

V4 O 1 VS P

which, by (4.5), can be re-expressed as

SG„„=Z .(—1) SG,(X'}

(we are only considering couphngs with C=+ here).
For mass shifts, the direct-channel amplitude changes to

—(QG "bM G "3)(H'—M )-' (75)
PR

8 $8
63fp„~=Z'8MB

P O 1

(7.6)

is the baryon mass-shift matrix for a given S, and Z'
is an arbitrary normalization factor. For mass shifts,
then, factor (7.4) is replaced by

6 77

which, by (4.5), can be replaced by

Q Wfp.RG„."'=Z'( —1)@"18MSG

shift changes the position of the direct-channel pole,
but not the residue which controls its coupling to the
final state. (ii) In deriving the operator for projecting
out the reaction 8g ~I' in Sec. IV, we started with the
direct channel amplitude

—(Q Gp, PSG.,p"')(W —MR) '.
P

In view of the foregoing, one can obtain the elements
of AMR from the corresponding elemen. ts of AR" fEqs.
(4.26)—(4.29)j by the following prescription (we confine
our remarks to linear D for simplicity):

(1) AR{sy,x'=sy)R and AR{sy,x'=sy)R* give AM&R

and A~ ~* respectively, while AR* ' '=' }R and
gR+(10,x'=10}R*

give g ~~@ and g~~g+

modidcations below.
(ii) Z' and Z* replace Zs, and Z10*. In order to make

contact with the results of Ref. 2 for mass shifts, we
must use Z'=(8) '~' and Z*'=(10) '~' which corre-
spond to the convention of Sec. V, Ref. 2. These values
are to be compared with Zs, ——(4) 'I' and Z10*——(10) 'I'
(Table IV). As a result of the change from Z to Z',
2~ "and 3~ ~' are multiplied by W2 relative to 3"~
and 2"~*.

(ih) Expression (7.1) for bT; is fed into Eq. (3.17) for
RV; rather than Eqs. (3.15) and (3.16) for 8E. For
linear D, one finds (7.3) AM'R =C@(M* M)M 'G —'
as compared with A~'"&= —C" Therefore A~ ~ is
multiplied by zero relative to A~~, A ~ ~' is multiplied
by (M~ MR)(MR) '—G ', AM'" by (M~—MR}(M~) '
X(G*) ', and AM'"' by 2(M~ —MR)(M~) '(G*} '
Putting all the factors together, we have

gM&R(8g, X) 0 (7.9)

=L2(M —M )yG M )A"{' '~& "(" &

(7.10)

AM R(,x) P(M M )yG* M jAR*( o, o)R(S,X)

(7.11)
AM&R~(10, x) [2(MA MR)fGssMgjAR*(10, 10)R~(10,x)

(7.12)

The numerical values of the coefficients in (7.9)—P.12)
are, using (2.4) and (2.5), about 0, -'„8, and 18, respec-
tively. The matrix A ~~ obtained with these coefficients
is tabulated in Table XIV. One sees that the largest
element has magnitude 0.12, and for nonlinear D the
value would be even smaller. Thus the approximation of
neglecting A. ~~ was quite well justihed.

It is instructive to see how the dominant coupling
shifts drive the mass shifts by forming f;=g; A;;MRS,
where X," is the leading eigenvector for coupling shifts
(the first column of Table IX). We find

The projection operator resulting from (7.8) is, of
course, the same as that resulting from (7.4), except that
Z ieplaces Zx~ 111 (4.17).

f(MR(s)) = —0.023 „

f(MR(a)) =0.078,
f(M~) =0.049.

(7.13)
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TABLE XV. The matrix A~ ('x'h) for P=+, C=+, T=+,
S=1 couplings estimated with 8= —28' and curved D functions of
the form Eq. (8.6) with 5'0=(7/3)M~ for J= ~+, p'0=(7/3)M+
for J=~+.

TABLE XVI. The matrix A&~~('I' & for P=+, C=+, T=+,
S=8 couplings estimated with 8= —28' and clrved D functions of
the form Eq. (8.6) with 5'0= (7/3)M~ for J= ~~+, W0 = (7/3)M
for J=~+.

bE(8y, 8el

aR(8&,8,.)
SR*(10,10)

0
0.02
0.32

0.29
—0.19

0.04

X(M~(s)) = —0.15,
X(M~(a)) =0.60,

X(Mb) =0.78.
(7.14)

By comparison, the leading mass eigenvector LEq.
(5.58) of Ref. 2] is X;~, with

SR(8&,1}
BR(8y,8y(s))
~R(8„8»(s))
bR(8g, 8g(ul)
BR(8y,8ge(u))
~R(8„10)
~R(8„iO)
aR(8&,27)
bR*(10,8g)

SR*(10,8 *)
SR*(10,10)
bR~(10,27)

m~(s)

0.08
0
0.03
0

—0.10
0.07
0.06

—0.21
0.19

—0.36
—0.18

0

avP(pl

0.03
0

0.12
0
0

0.11
0.13
0.01
0.30
0.16

0
1.12

0.03
—0.21

0.13
0
0

—0.44
0.44
0.31
0.16

—0.02
0
0.07

Since the ratios in (7.13) and (7.14) are similar, the main
e6'ect of the coupling shifts is to drive the leading mass
shift. The magnitude of the effect is small, g;, X;~
&(A;,~~X,~=0.09, but even if we have underestimated
the magnitude of A~~, the fact that it drives mainly
the leading mass shift ensures that including it would not
change the determination of the mass-shift ratios by
much.

In the linear-D approximation, we have

Dgp(W') = (W' —M)Dgp'(M~),

Dpz(W) =Dp~(Mb),

and, as a result, Eq. (8.1) gives

(8.3)

(8.4)

VIII. CALCULATION OF A~~

Our remaining task, before turning to the experimen-
tal consequences of the model, is the study of the
inQuence of changes in the mass of exchanged and ex-
ternal particles on the coupling shifts.

Like the other elements of A, A~~ is composed of a
product of Clebsch-Gordan coeKcients and dynamical
factors. Proceeding in close parallel to Sec. VII, we
consider Grst changes in the mass of an exchanged par-
ticle and Gnd that the Clebsch-Gordan product for
AR(8y~x)M(Bexch) is the same as for A 7

while A+* '0 M 4' '" is the same as for
A

* ' * ' ' . Consequently, A ('"'" di6'ers from
3"~ by (a) normalization factors, and (b) dynamical
factors. One Gnds, in the present case, that one must re-
place the normalization factor Zz by Z', as in Sec. VII.
This replacement has no effect on the elements of A™,
while decreasing the elements of A "~ uniformly by a
factor V2.

To estimate the dynamical factors in A~("'", one
may consider as an example the equation

cm
8R*(10~ 27) =

2mi
=0. (8.5)

(W—M)'

with 8'0=2%4, one Gnds a relatively /arge value for
bR*. We conclude that, in contrast to A~~ and A~~, the
elements of A "~ are strongly model-dependent and, in
particular, that they are sensitive to the details of the
denominator function. Consequently, in this paper, we
shall not place any reliance on results that depend on
the absolute magnitude of the elements of A~~. We
shall, however, draw some conclusions from ratios of
elements of A~~, which are less model-dependent.

Bearing this proviso in mind, one may proceed to
calculate the dynamical factors which appear in
A ~~"'" . Since the calculations in the present case are
so involved, the results so model-dependent, and the
method similar to that used in previous sections, we

As usual, we must check the sensitivity of this
result to the form of the D function. Using the better
expression,

Dip(W') = (W' —Mb) (Mb —Wp)/(W' —Wp), (8.6)

8R*(10~ 27) =
Dxp'(M~) Dp7(Mb)

1 Dgp(W')8T(10 —+ 27)Dgg(W')dW'
X

27ri
(8.1)

TABLF XVII. The matrix A~~('x') for P=+, C=+, T=+,
S=1 couplings, expressed in terms of the dynamical parameters
C8 and C10.

In the study of the eftect of a mass shift on bR, bT
has the form

aR(8„8&)
bR(8g, 8y*)
BR*(10,10)

Cs/V2
0

(v'slCio

8T(10—+ 27)~CPM/(W —M)'. (8.2)
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TABLE XVIII. The matrix AR ('xt& for P=+, C=+, T=+,

S=8 couplings, expressed in terms of the mixing angle 8 and the
dynamical parameters Cg, C8', C10, and Clp'.

TABLE XX. The matrix AR~('x~& for P= +, C= +, T=+,
S=8 couplings estimated with 8= —28' and curved D functions of
the form Eq. (8.6) with Wp={7/3)M for J=-',+, Wp=(7/3)M
for J=-'+

bE(S„1)
bE(S„sg(s))
bE(Sg,sg*(s))
bE(Sg,sg(a))
bR(Sg, Sg*(a))
bR(sg, 10)
bE(sg, 1o)
bE(8„27)
aS*(10,8&)

bE*(1o,sg*}
bR'(10, 10)
bE*{10,27)

m~{s)

(cos8/242) C8'

(sin'8/242 —3 cos'8/1092) Cg
—4, sin8 cos8C8'

(sin8 cos8/V2) C8

~ (sin'8 —cos'8) Cg'

(—sing/2+cosg/+5) Cs'

(sing/2+cosg/+5) Cs'
—1'0 (V'2) cos8C8'

(sing/2 —cosg//5) Clp'

(—cos8/2 —sin8/+5}C1p'
C1P/4

(3+30/20) C1P'

bM~(a)

{sin8/2') Cg'

(sin8 cos8/V2) C8
~~ (sin28 —cos'8) C8'

Cg/2V2

0
g cos8C8

—
~& cos8CS'

—{gg) sin8C8'
—g cos8C10'
—

g sln8C10

{QS/4)Cgp
—(v's) C»'

bE(S,1)
bR(S,Sg(s})
bR(sg, sg*(s))
bR(Sg, Sg(a))
bR{sg,sg*(a))
bR(sg, 1o}
bR{8g,10)
bR(8g, 27)
bE*(1o,sg)
bR*(1o,sg )
bR*(10,10)
bR*(10,27)

m~(s)
—0.53

0
—0.57

0.12
0.48

—1.08
—0.27

0.55
1.08
0.75

—0.11
—1.40

bM~(a)

0.28
0.12
0.48

—0.14
0

—0.75
0.75

—0.49
0.40

—0.40
—0.25

1.05

shall content ourselves here with merely presenting the
results.

The results for the exchange mass shifts A M('"'" are
presented in Tables XV and XVI.

'|A"e now turn to the effect of the external mass shifts.
There are four independent elements of A~''"'
whose determination requires dynamical calculations;
these can be chosen to be Cs, Ctp, Cs' (describing
8p ~ XN8p) and Ctp (describing 10~ XW 10). The
remaining elements of A~'(' ") may be expressed in
terms of these four through the group-theory ratios
given in Tables XVII to XIX.

To illustrate how these group-theory ratios were cal-
culated, consider A ' ~ ' " . The group-theory
ratios are the same as for the bubble diagram of Fig. 2,
and can be expressed as

C&s 8 8 8
A R(8g, x)M&(exch)

, , ZZ
(XIV~) ijk as g z

8 8 X 8 S 8 8 S X

p&z ~ u&«p&'
where C is a dynamical factor. Here, the first two factors

project IIBonto the appropriate initial and inal states, "
the third factor represents the external mass splitting,
and the fourth factor projects onto the desired type of
coupling shift.

The dynamical parameters C8, C~o, Cs', and C~o' were
estimated by two different methods:

(1) Scale invariance gives conditions on the "diagonal
elements" C8 and Clo which enter into S=1 shifts,
although it does not determine C8' or Cio'.

(2) The reciprocal bootstrap used in this paper
gives an explicit model for the amplitude, with two poles
on the left. Using this model, we can estimate all four
of the dynamical parameters. "The results of the two
methods differ, but do agree as to sign and order of
magnitude. The dynamical factors estimated in this

way, plus the group theory factors, lead to the results
for A ('"') presented in Table XX.

TABLE XIX. The matrix AR &('" & for P=+, C=+, T=+,
S=27 couplings, expressed in terms of the mixing angle 8 and the
dynamical parameters Cs, C8', C10, and C10'.

Fro. 2. Bubble diagram which con-
tains the group-theory factors needed
for A

bE(s„s,)
bR(sg, sy)
bE(sg, 1o)
bR{sg,io)
bR(s„27}
bR(8„27')
bR*(10,8,)
bT*(1o,s *)
bE*(1O,1O)

bE*(10,10)
bR*(10,27)

(cos'8/5 —sin'8/3) C /V2

(8/15) sln8 cos8C '

(sine/3+cos8//5) C,'

(sing/3 —cosg/+5) Cs'
—P(14)'"/5] cosgCs'

—(g-*,) singCs'

(sing/3+cosg/+5) Cqp'

(—cosg/3+sing/QS) C„'
lglGo

P(10)1/2/g jC,
E(v"7)/&5]CM'-

"The phase of the projected state depends on whether the
meson index j is placed first or second in the Clebsch-Gordan
coefficients. We place it first for consistency with the convention
employed in calculating ARR.

"In addition to the left-hand poles, one must integrate over the
right-hand cut in equations such as (8.1).This is most important
for C10 where the factor (W —M4) ' is large near threshold (the
average ~ mass lies only slightly below the average IIB threshold).
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&a &g II; G 10&G /G (G —13.4SG )/G

p
p
e
Z+ E'

0 E+
A. E+

0.477
0.037—0.675—0.292
0.206—0.432

—0.195
0.009
0.276
0.000
0.000
0.025

0.739
0.025—1.046—0.292
0.206—0.465

TAaLz XXI. Strongly perturbed pj's, II;8 couplings. The first
column gives the unperturbed couplings GI, /G. The second
column gives the coupling shifts BGq,'/G corresponding to the
leading eigenvector of A8™in Table IX, in. an arbitrary normaliza-
tion de6ned in the text. The final column gives the total unper-
turbed coupling (GI, +xbGI„')/G. The strength parameter x=—13.4 is obtained from the ratio F(F»*—+ Am)/I'( *—+ ~), as
explained in the text.

quantity

~ P XP(A,,RM(exch)+A, PM(cxt))g, M(leading)
~

(g g)

LX;M("'d'"g) is given by Eq. (7.»4)j.The numerical re-
sults show that the term in A~~ connecting the en-
hanced eigenvector of A~~ to the leading eigenveetor
3"~ is =1.1. Although the over-all strength of A~~ is
admittedly not reliable, this result of order unity indi-
cates that the leading eigenveetor of A~~ will acquire a
double enhancement according to Eq. (1.4);

8R= (1—A ) A (&~/~)
~ M enhancement (g 9)

M

~p
M
H

E
Ep

m+
E'
E'+

E'

Z+ E-
z E
~~p ~p

+
Ep

E'-

Ep

p
e
N
zP Eo
Z- E+

EP

0.675—0.477
0.037—0.206
0.292—0.432

—0.292
0.271
0.395—0.271—0.675
0.395

—0.206—0.206
0.271
0.395—0.271—0.477—0.477
0.395

—0.292
0.271—0.271
0.395—0.675
0.395

0.675—0.477—0.206—0.432
0.292
0.037

0.477—0.675—0.292
0.206—0.432
0.037

—0.276
0.195
0.009
0.000
0.000
0.024

0.000—0.020
0.111
0.020—0.138—0.077

0.000
0.000—0.020
0.111
0.020—0.098—0.098—0.077

0.000—0.020
0.020
0.111—0.138—0.077

0.138—0.098
0.000—0.126
0.000—0.009

0.098—0.138
0,000
0.000—0.126—0.009

1.046—0.739
0.025—0.206
0.292—0.465

—0.292
0.297
0,246—0.297—0.490
0.498

—0.206—0.206
0.297
0.246—0.297—0,347—0,347
0.498

—0.292
0.297—0.297
0.246—0.490
0.498

0.490—0.347—0.207—0.264
0.293
0.050

0.347—0.490—0.292
0.206—0.264
0.050

IX. APPLICATION TO STRONG
INTERACTIONS

In Sec. VII, we found that A~g is small. Approxi-
mating it by zero, Eqs. (1.1) and (1.2) for 8M and bg

have the solution (matrix equations are understood
here)

g~ —(» A 35M)—ID3E (1.3)

(ii) The numerical results show that the e&ements of
A ~~ connecting the enhanced mass shifts to the second
and third eigenvectors of A~~ are =0.2 and =0.0, re-
spectively. Thus the leading eigenvector is much more
strongly enhanced than the others. In view of the un-
certainties in the calculation of A~~, we remark that
the dominance of the leading eigenvector does not de-
pend on any delicate cancellations. It comes about be-
cause the largest term in A~~ turns out (in agreement
with the calculations of Wali and Warnock') to involve
bR*(10—+ 27), which happens to be strongly present in

the leading eigenvector of 28~~, but not in the next two.
(iii) Since d3Eg7 is very small, the eigenvalue of Agp)i

lying near one receives only a single enhancement.
These conclusions depend on the relative values of the

various elements of 3"~, and are not too sensitive to
the model employed or to the details of the D function.
When in the next section we start to extract experimen-
tal consequences from the results of the foregoing sec-
tions, we will find that we need to have the absollte
value of the elements of 2"~.This over-all scale param-
eter will then be regarded as a physical parameter, and
will be determined by fitting to the data.

n
g+
yp
Z
wP

A.

E
gp

7rp

7+
Ep
E+
2l

0.432—0.432—0.395
0.395—0.395
0.037—0.037—0.395

—0.025
0.025
0.077—0.077
0.077—0.009
0.009—0.043

0.465—0.465—0.498
0.498—0.498
0.050—0.050—0.338

Now let us see what conclusions can be drawn from
these results.

(i) To get a clear idea of the way in which A "~
affects our calculations, it is useful to evaluate the

bg = (1 A«) '(A g~b—M+D-~) (1 4)

In Sec. VI we found that A«has several eigenvectors
with eigenvalues near one, which should dominate (1.4).
Finally, in Sec. VIII we found that Ag~Wf, with M
taken from experiment and Ag~ from theory, strongly
favors the leading eigenvector of A8 8«over the other
eigenvectors with eigenvalues near one. Assuming that
the already-enhanced term Ag~bM dominates Dg, we
can conclude that the strong-coupling shifts follow the
leading eigenvector of As,«(A«=0. 93). This eigen-
vector was printed out in the 6rst column of Table Ix.
The individual particle couplings are obtained from it
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by applying Eqs. (4.30) and (4.31) with S=8 and 0.

equal to the I=O, I'=0 member (which we call "8")
of the octet:

8G»'= —G ' Q(22x) '~2882(82, X)

/8 8 X 8 8 X)
xp/ (9 1)

~ Kk 8 v i j vl

bG2 *'——— g (22x*)
—'~288,*(10,X)

V2 x

(10 8
X)(8

8
X)

Our predictions for the strongly perturbed couplings
will have the form (G+x8G)»', where G»' is the SU(3)-
symmetric coupling, 8G»' is given by (9.1) or (9.2)
with the eigenvector 8R, (arbitrarily normalized to 1)
taken from Table IX, and x is an over-all strength
parameter for the perturbation. G~j/G and G»*'/G* are
obtained from (2.9) and (2.10), and the nonzero ele-
ments are listed in the first columns of Tables XXI and
XxlI, respectively. The perturbations 6G»'/G and
8G»*'/G* are listed in the second columns of these
tables.

The strength parameter x could, in principle, be esti-
mated from (1.4) by using the eigenvalue A2«=0. 93,
the physical 635, the calculated Ag~, and by dropping
Dg. This estimate is highly uncertain, both because
small changes in the eigenvalue of A«produce large
changes in (1—Ag') ' and because, as explained in Sec.
VIII, the magnitude of A&~ is highly sensitive to de-
tails of the D function. For these reasons, we preferred
to estimate x from the experimental ratio of ~+ resonance
decay widths. Of these, the decay I'&* —+Z~ is too
poorly known experimentally. The 3~* decay width is
well known experimentally, but the static model we are
using does not reproduce its shape well and thus does
not give an accurate estimate for its width. (The static
model greatly overestimates the width of the high-
energy tail of this resonance; such energy-dependent
effects may be less for the other, considerably narrower,
members of the decimet. ) Thus we used the ratio
F(l'r*~h2r)/1'("* —+ "2r) to determine x. The result
obtained in Ref. 1 was x= —13.4.33 The total couplings
(G+xbG)». /G and (G*+x8G*)»'/G*, obtained using
this value of x, are listed in the third columns of Ta,bles
XXI and XXII, respectively. In view of the uncertain
situation in the —,'+ decay widths, the precise value of x
used here should not be taken seriously, but the sign and
order of magnitude appear to be reasonable.

Table II in our previous writeup of these results' was
constructed by squaring (G+x8G)» /G and, for a given

"The value of x obtained from the theoretical (1—A«) ' and
A&~ has the same sign and order of magnitude. This can be taken
as evidence that the leading eigenvalue of A« is a little less than,
rather than a little greater than, one.

TmLE XXII. Strongly perturbed Z+;II; couplings. The first
column gives the unperturbed couplings Gq;*'/G*. The second
column gives the coupling shifts HAGI„*'/G* corresponding to the
leading eigenvector of A8« in Table IX, in an arbitrary normaliza-
tion dined in the text. The 6nal column gives the total perturbed
coupling (GI,;*'+xBGq;*')/G*. The strength parameter x= —13.4
is obtained from the ratio I'(I'1*—+he)/F( *—+ ~), as ex-
plained in the text.

N~+ p m' 0.577
n ~+ 0.408
z+ Eo —0.408
zo E+ 0 577

N*0 p ~- 0.408
n no 0577
zo Eo —0.577z- E+ —0.408

N* n m= 0.707z- Eo —0.707

—0.325—0.230—0.136—0.192

—0.230—0.325—0.192—0.136

—0.398—0.235

1.013
0.716—0.226—0.320

0.716
1.013—0.320—0.226

1.241—0.392

ygO

p XO
z+
z+
zo ~+

E+
h. m+

p E
n EO
z+
zo
z- ~+
MO EO

E+

0.408—0.289—0.500
0.289—0.408
0.500

0.289
0.289—0.289—0.500
0.289—0.289—0.289
0.500

—0.144—0.007—0.185
0.007—0.135—0.185

—0.102—0.102—0,007—0.185
0.007—0.095—0.095—0.185

0.602—0.280—0.252
0.280—0.228
0.748

0.425
0.425—0.280—0.252
0.280—0.161—0.161
0.748

P* n E
zo
z-
z

Eo
A m

0.408—0.289
0.289—0.500—0.408
0.500

—0.144—0.007
0.007—0.185—0.135—0.185

0.602—0.280
0.280—0.252—0.228
0.748

MQO z+ E-
zo Eo

MO
M

+
EO

—0.408
0.289—0.289—0.500
0.408
0.500

—0.095
0.067—0.006—0.183
0.008—0.080

—0.281
0.198—0.281—0.254
0.397
0.608

M$H

MO
M
M
H

MH

E —0.289
Eo 0.408—0.408

0.289—0.500
E 0.500

—0.067
0.095—0.008
0.006—0.183—0.080

—0.198
0.281—0.397
0.281—0.254
0.607

E —0.707 —0.163
Eo 0.707 0.163

—0.489
0.489

k, summing over the i and j within a given isospin
multiplet. For example, the ÃEII coupling strength is

(G m++ xgG m+) 2/G2+ (G m 2+xgG xo) 2/G2

The physical implications of the results were discussed
in Ref. 1:The "medium strong" coupling shifts are very
large, and have the right sign to suppress K couplings

Bg II; Gy *'/G* 108GP *'/G~ (G2 ~' 13 4b—Gy *.')/G*

N*++ p ~+ 0.707 —0.398 1.241
z+ E+ —0.707 —0.235 —0.392
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Gpj/G 10hGgj/G (Ggj—0.25hGp, 'l/G

m+
E'
E+
E+

0.4775
0.0373—0.6753—0.2920
0.2064—0.4322

—0.013—0.078
0.000
0.000—0.066
0.078

0.4778
0.0393—0.6752—0,2919
0.2081—0.4341

p
n

gp
Z
A

p
g+
g+
+0
Mp

h.

xp
'ri

Ep
E+
Ep

EQ

3-+
E+
7r+

0.6753—0.4775
0.0373—0.2064
0.2920—0.4322

—0.2920
0.2711
0 3949—0.2711-0.6753
0.3949

0.000—0.013
0.078—0.065
0.000—0.078

0.000—0.115—0.137
0.036
0.239—0.058

0.6753—0.4772
0.0353—0.2048
0.2920—0.4302

—0.2919
0.2739
0.3983—0.2720—0.6813
0.3963

TABLE XXIII. Electromagnetic perturbations on B&;II;
couplings. The first column gives the unperturbed couplings
GI„'/G. The second column gives the coupling shifts BGq /G
defined in Eq. (10.1), calculated using the leading eigenvector of
As« in Table IX. The final column gives the total perturbed
coupling (GI„'+x' BGq )/G. The strength parameter x = —0.25 is
obtained from universality and the experimental electromagnetic
mass shifts among baryons, as explained in the text. This table
does not include the effects of strong symmetry breaking on Gz .

relative to m couplings, in agreement with experiment,
and generally decrease the coupling strengths to high-
mass channels. The latter feature makes it reasonable to
neglect certain high-mass channels in approximate
dynamical calculations'4 even though they might appear
to enter in an important way from SU(3)-symmetry
considerations.

It is interesting to see how the near self-consistency of
the dominant symmetry breaking works out in terms of
specific attractions and repulsions in the broken-SU(3)
bootstrap. We cite two examples:

(i) According to Tables XXI and XXII, N and N*
couple almost exclusively to xX, rather than ZE, etc.,
in the broken-SU(3) bootstrap. Thus, one is led back to
the original self-consistent SU(2) model for N and N*."

(ii) In SU(3), the potential for sZ scattering in the
J"=2+ state receives a repulsion from A. exchange, and
an attraction from Z and I'j* exchange. s' In broken
SU(3), the strength of A. exchange is enhanced relative
to Z and V~* exchange, leading to a more repulsive m.Z
potential. This repulsion provides the detailed mecha-
nism by which the I'&~ decay into the Zm channel is
reduced. "

+0

Mp
Pl

n
g+
gp
+0
Z
~p
M
N

h.
h.

n
+0
Z
Z
M
H

h.

MQ

wp

MQ

tVH

n
y+
gp
gp
Z
~~0

MH

A
A

E
Ep

~+
Ep
E+

E'

E-
EQ

m+
ZQ

E
EQ
7r

E
I:0

1r+
EQ
E+

—0.2064—0.2064
0.2711
0.0000
0.3949—0.2711—0,4775—0.4775
0.3949
0.0000

—0.2920
0.2711—0.2711
0.3949—0.6753
0.3949

0.6753—0.4775—0.2064—0.4322
0.2920
0.0373

0.4775—0.6753—0.2920
0.2064—0.4322
0.0373

0.4322—0.4322—0.3949
0.3949
0.0000—0.3949
0.0373—0.0373
0.0000—0.3949

0.066—0.066—0.036—0.043
0.000—0.036—0.032
0.032
0.000—0.077

0.000
0.036—0.114
0.137—0,239
0,058

—0.239—0.032
0.122
0.117
0.000—0.020

—0.032—0.239
0.000
0.122—0.117
0.020

—0.078—0.078
0.058
0.000—0.077—0.058—0.020—0.020
0.111
0.000

—0.2081—0.2048
0.2720
0.0011
0.3949—0.2702—0.4767—0.4783
0.3949
0.0019

—0.2919
0.2702—0.2682
0.3915—0.6693
0.3934

0.6813—0.4767—0.2095—0.4351
0.2920
0.0378

0.4783—0.6693—0.2920
0.2034—0.4292
0.0368

0.4341—0.4302—0.3963
0.3949
0.0019—0.3934
0.0378
0.0368—0.0028—0.3949

X. ELECTROMAGNETIC APPLICATIONS

Since the A matrix is independent of the "direction"
taken by the symmetry violation in SU(3) space, ' we
can estimate that the first eigenvector of Ay=8« in
Table IX dominates electromagnetic perturbations of
order e' as well as strong perturbations on the 8 and 5
couplings. The individual-particle couplings are again
obtained from it by applying Eqs. (4.30) and (4.31) with
5=8. This time, the interesting couplings involve 0
equal to the I= 1., II=0, I'=0 rather than the I=O,
F=O member of the octet (0 = "3"rather than "8"):

bGgj= —G ' p(ex) '~'hR8(8g, X)

8 8 X )8 8 X)
xx( i i, (m. i)

g4—1

RGB *'=— Q(ex*) 'I'8Rs*(10,X)
x

Our predictions for the perturbed couplings now take
the form (G'"'"s+x' $G )q;~ where (G""'"s)~;~ is the
outcome of Sec. IX, (bG™)~ is given by (10.1) or (10.2)

34 See, for example, B. Kayser, Phys. Rev. 138, 81244 (1964);
F. Gilman, iMd. 147, 1094 (1966)."G.F. Chew, Phys. Rev. Letters 9, 233 (1962).

30 E. Golowich, Phys. Rev. 139, B1297 (1965).
3~ B. Kayser and E. Bloom, Phys. Rev. 144, 1176 (1966). The

authors are indebted to Dr. P. Carruthers for an informative dis-
cussion on this and related points.
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with BE taken from Table IX, and x' is an over-all
strength parameter for the electromagnetic perturba-
tion. As a further consequence of the fact that the A
matrix is the same for electromagnetic and strong
perturbations, we can estimate that the same ratio
8G/BM holds for both. If this is true, we can take
x'~/x'"'" equal to sM~'~/8M~""'", which is known
experimentally. (By Ms we mean the coeKcient of the
normalized octet mass matrix as de6ned in Ref. 2;
this coefBcient is the "strength parameter" for mass
shifts, just as x is the strength parameter for couplings. )
By such means we obtain x'~= —0.25. The results ob-
tained for BBII coupling shifts, using this value of x',
are presented in Table XXIII. DBII coupling shifts can
similarly be calculated from Eq. (10.2).

There are no 6rm data on any electromagnetic shifts
in BBIIor ABII couplings, but at least a few cases have
some experimental interest. One sees from Table XXIII
that the corrections BG~N due to the leading octet
eigenvector are extremely small, a point which is rele-
vant to possible violations of charge independence in
nuclear physics, where one-pion exchange is an im-

portant part of the two-nucleon potential. Similarly, a
calculation of electromagnetic shifts in E*Em coupling,
using (10.2), yields results relevant to the recent ex-
perimental search for differences between S*++-+p+++
and N* ~e+x ." For the &&=1 couplings which

participate in octet SU(3) breaking, we estimate crudely
I'(1V* ~ n+m )—I'(N*++ ~ P+m+)=1 MeV.

XI. APPLICATIONS TO WEAK NONLEPTONIC
INTERACTIONS

In this section we discuss the coupling shifts induced

by the weak interactions. We will work under the
assumption that CP is conserved; some discussion of
CP-violating couplings will be given in Sec. XIII.

As usual, we specify the character of a weak violation
of SU(3) by 0, S, 8, and P, which stands for the 0.

component of a representation 5 whose I=O, F=O
member has charge conjugation 6 and parity P. To
avoid possible confusion, we would like to stress that for
the strangeness-violating weak interaction, 8 and C
may be different, a situation which did not arise in our
previous studies of strong and electromagnetic correc-
tions to SU(3). That is, 8 remains the same for all com-
ponents 0- of the representation S, while C equals 6 for
the I=O, I'=0 component, but is negative for some of
the other components. For example, the Ej' meson has
8=+1 and C=+1, while the EP has 8=+1 (since it
belongs to the same octet), but C= —1. Similarly, a
strangeness-changing weak Hamiltonian with C=+1
can contain a piece which acts like the E~' from an
octet with 8=+1, or a piece which acts like the
"E2"' from an octet with 6= —1, or both. Concerning
this point, the current-current interaction in the Cabibbo

"G. Gidal, A. Kernan, and S. Kim, Phys. Rev. 141, 1261
(1966).

form predicts 8=+1 for the parity-conserving part of
the nonleptonic weak interaction and 6= —1 for the
parity-violating part. " Apart from this attractive
hypothesis, however, there is little evidence either for or
against these 6 assignments. Furthermore, whatever 6
properties the weak interaction has in the SU(3) limit
are likely to be modi6ed by the large strong violations of
SU(3). For these reasons, we have studied weak cou-
plings with 8=+1for each of the cases, parity conserva-
tion and parity nonconservation.

It is important to note that the A matrix refers
to a de6nite 6 and does not connect violations with
different 8."We can therefore treat 8=+1 and 8= —1
separately.

We now proceed to outline our calculation and results
for the four cases P= +1 and 6=~1, remaining al-
ways with CP= 1. We begin with P= 1, 8= 1, then pro-
ceed to P= 1, 8= —1 and take up P=—1 in the latter
part of the section. In our discussion of the parity-
conserving weak interaction, we restrict ourselves to the
strangeness-changing 6I'NO part; the tiny strangeness-
conserving, parity-conserving couplings induced by the
weak interactions are, at most, of academic interest.

Our treatment of P=1, t'=1, AP /0 coupling shifts
follows along the same lines as the treatment of the
strong and electromagnetic BG's, but differs in one im-
portant way: There are no strangeness changing mass
shifts B3f.

That the AYNO weak interaction produces no Qrst-
order mass shifts is quite obvious from a physical point
of view, but it is instructive to see formally how this
comes about. To this end, let us consider a calculation of
bg and 8M correct to ffrst order in strong-SU(3) viola-
tions, electromagnetism and weak interactions. For
simplicity, we suppose that A~g=0 and write

bM = (1/(1—A ~~)jD~, (1.3)

&g = $1/(1 —A«) j(D'+Ag"SM), (14)

where D~ and Dg each contain three terms, one from
each of the strong, electromagnetic, and weak interac-
tions. W'e now wish to isolate the strangeness-changing
(DI'AO) perturbations, which is equivalent to picking
out the perturbations which point in a direction per-
pendicular to the 3 and 8 axes in SU(3) space. One

must, however, be rather careful here. In a totally
SU(3)-symmetric world, the orientation of the 3 and 8
axes would be arbitrary. It is only because SU(3) is
violated that we can give a unique meaning to the 3 and
8 axes. The direction of these axes is, in fact, dehned
solely by the requirement that the physical particles
have de6nite values of Ie and Y, which is equivalent to

'1' M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).' For the I=0, F=O component of a given representation S,
t' is the same as C, and A connects only couplings of the same
C= i . Under SU(3) rotations to other components 0 of S, A, and
6 remain unchanged, so A continues to connect only couplings of
the same C. It also connects couplings of a given C only to them-
selves, but which C is involved varies with the component 0.
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TAM, E XXIV. Kigenvalues of A« for parity-conserving couplings of various C and S, and the contributions of the associated eigen-
vector to the observable 8 ~ 8+7' decay amplitudes. The evaluation was made at 0= —28' and only eigenvalues &0.5 are included.
The normalization and over-all phase of each column are arbitrary; it is the ratios which are signifIcant.

De

S
C

Eigenvalue

A. —+ xO+n
A —+~ +P

Z+ —+ ~++n
g+ ~ ~0+P
Z ~x +n

—+x+3.
+A.

8
+

0.93

0.40—0.56—0.40

0.42

0.19—0.11—0.16

8
+

0.66

—0.20
0.28—0.33

0.43

0 28
0.06
0.08

8
+

0.49

0.00
0.00—0.51

0.05
—0.44—0.18—0.25

8

0.89

0.10—0.14
0.20

0.36

0.71
0.11
0.15

8

0.82

0.13—0.18
0.14

—0.23
—0,19—0,32—0.46

27
+

0.88

—0.14
0.19
0.07

—0.09
—0.03—0.03—0.04

27
+

0.63

0.18—0.25—0.23

0.00
—0.23

0.24
0.34

27

0.83

0.03—0.05—0.41

0.06
—0.32

0.19
0.27

Experiment'

—1.4+0.6
+2.0+0.3

4.1+0.1—3.6+0.4—1.7+0.2—0.4+0.6—1.0+0.2—1.4+0.1

& See Ref. 50.

saying that the mass matrix 635 has no components per-
pendicular to the 3 and 8 axes. (This is somewhat easier
to see if one imagines a world in which the m meson is
sufficiently massive so that decays like A —+xE are
energetically forbidden even though strangeness is not
conserved. ) Thus, by definition, there are no AI'WO
mass shifts and for the strangeness-changing corrections
to SU(3)& we have4'

5G(&I'WO) = L1/(1 —A")]D~r go'. (11 1)

The matrix A« in (11.1) is (for the 6=+1 8g's

under consideration) the same as the A «which appears
in the strong violations of SU(3) (since A is independent
of g). We know that A«has several eigenvalues near
one, so that there is no lack of enhancement for these
couplings. .Specifically, there are five eigenvalues or
order ~ or greater, three for S=8, and two for S=27;
the contributions of each of these five eigenvectors to
the seven observed hyperon decay amplitudes is given
in Table XXIV.

One will recall that for the strong and electromagnetic
violations of SU(3), the mass shifts drove mostly the
one leading octet eigenvector, thus singling it out as
doubly enhanced. The absence of DVWO mass shifts,

"Although we have shown that Wfzzzo is rotated away, one
might wonder whether the eGect of Wf &&&0 on bg is not simply re-
placed by the effect of the rotation. After all, the rotation does
change the wave functions at a vertex such as g pl, o~p~g yqfp&I
by an amount

&Pi = Li& ( & s*~ I 2&/i~2 —~~l7io2~

where 82—E& is the energy splitting introduced by the strong
symmetry breaking. (The way in which mixing of this type appears
in our formalism was described in footnote 14 of Ref. 45.) We have
not estimated this effect for the following reasons: (i) To the ex-
tent that the strong and weak mass shifts (before rotation} are
dominated by a single eigenvector of A, a single SU(3) rotation
removes WIIqyzo for al/ supermultiplets. A uniform SU(3) rota-
tion of a.l supermultiplets leaves couplings which were initially
SU(3) scalars Nnchunged, as stressed by Coleman and Glashow
(Ref. 9). (ii) Actually, the mass shifts contain small admixtures of
other eigenvectors as well. Therefore, somewhat diBerent SU(3)
rotations are needed to remove 03Egy ~0 from different supermulti-
plets, and this leads to coupling shifts. But the leading effects of
the rotation do cancel as indicated above, and the small residual
shifts, not being controlled by the leading eigenvector, are hard to
predict. (iii) Since the effect depends on both the weak and strong
mass shifts, it is "nonlinear" and technically is part of the driving
term rather than the A matrix.

however, prevents us from singling out a unique eigen-
vector for the weak interactions. In this sense, the parity-
conserving weak interactions do not share the single-
enhanced-eigenvector "universality" which seems to be
present in the strong and electromagnetic corrections
to SU(3).

We now turn to I'=1, 6= —1 perturbations. Again,
there will be no strange mass shifts and we deal with an
equation like (11.1). The matrix A" is, however, dif-
ferent in this case.

To calculate 3« for 6= —1, we note that since 2 is
independent of any direction in SU(3) space. We may
as well' construct it by considering a violation in the
I=0, I'= 0 direction which has C= 8= —1, even
though we will ultimately be interested in a direction
where C= —6=+1.We may proceed, then, exactly as
in the construction of A« for 8=+1, except that:

(i) C is now equal to —1, where it appears explicitly
in the equations of Sec. IV.

(ii) As a result of taking C= —1, the "diagonal"
coupling shifts 8R(8o,go(s or a)) and 8R*(10,10) do not
contribute to Eqs. (4.26)—(4.29). Thus the projection
procedure of Sec. V operates on the reduced basis of
"off-diagonal" coupling shifts. The diagonal components
PR(8o, go(s or e))] must be removed from the C=-
vectors of Table V before they are employed in the pro-
jection procedure.

(iii) In Sec. V, we are now instructed to project out
the couplings with C=+1 rather than C= —1, as we
did to obtain A« for 6=+1. If P;, is the projection
matrix which removes the C= —1 BBD couplings
Lmodified in accordance with (ii) above], then the
complementary projection P;,'= 5;, P;; (for BBII cou--

plings) and 8;; (for ABII couplings) will remove the
C=+1 BBII couplings. Again, we have to check the
sensitivity of the leading eigenvectors to this projec-
tion procedure.

Numerically, we found that for 8= —1 there are
three eigenvalues near one, two for S=8, and one for
5=27. These eigenvalues and the contributions of
their associated eigenvectors to the observed hyperon
decays are shown in Table XXIV.
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The sensitivity of these eigenvalues and eigenvectors
to the parameters, 8 and the curvature of D, in our
model was roughly the same as for the 8=+1 case. The
sensitivity to the projection which enforces vertex
symmetry was also comparable to the 6=+1 case.

Since we have a total of eight enhanced eigenvectors
for P=+, five for 8=+1, and three for t'= —1, corn-
parison with experiment is difficult. Some pheno-
menology was discussed in Ref. 1; here, we simply note
that the numbers quoted in Ref. 1 were derived from
Table XXIV.

We turn now to the parity-violating (P= —1) weak
interaction.

The static Chew-Low approximation which we em-
ploy has the special feature that orbital angular mo-
mentum is preserved under the operation of crossing
from the s to 0 channel. It will turn out that this fact
greatly simplifies the treatment of parity-violating
couplings.

The crossing properties of orbital angular momentum
are determined by the relation between the scattering
angles cos8, =1+//2q, ' and cose„=1+//2g„' in the
two channels, where t is the momentum transfer and q
and q, are the c.m. momenta in the two channels.
Clearly, if the two angles are equal, orbital angular mo-
mentum is the same in both channels. Now, in the static
region around 8'=M~, one readily verifies that to order
(II'—3l )(2M ) ', q, ' and g„are equal so that
cos8, =cos0„and, within our approximation, orbital
angular momentum is preserved under crossing.

The importance of this result is seen as follows: To
study the parity-violating BBIIcouplings, we look at the
scattering amplitude for II+8 (J=—,

' P wave) —+ II+8
(J=2 S wave). It follows from the discussion of the
above paragraph, that the cross reaction which deter-
mines the nearby part of the left cut must be 5 waves ~
P waves. Such a reaction must proceed through a J= 2

state, which tells us that J=2 8-exchange contributes
to the left cut, but not J=—,

' 6-exchange. Similarly, if we
want to study the P= —1 ABH coupling, we look at
(J= 2 P wave) ~ (J'=-,' D wave) which has only J= 2
in the cross channel, and 8-exchange does not con-
tribute. Thus, in the notation of Sec. IV, we have
g~~= g~~=0 for parity-violating couplings.

The previous paragraph may be summarized by the
statement that for parity-violating processes, total
angular momentum J as well as orbital angular mo-
mentum is preserved under crossing. This is not, of
course, the case for parity-conserving processes where we

have, for example, (J=-,' P wave) ~ (J=-,' P wave)
which crosses to P waves with both J=~ and J=~,
thereby complicating the treatment of parity-conserving
processes.

There is still a further simplification in the P= —1
case. Returning to the reaction II»+3"'(J=,' P wave) —+
II"'+8"4(J=—,

' S wave) which crosses to 11~3+8"'(J=2

S wave) ~ D"&+8"4(J=—,
' P wave), we note that II"8

in the direct channel and its crossed partner II&3 both
are in 5 waves and couple to the baryon pole with the
parity-violating coupling bG while II"& and II"' both are
in P waves and have the symmetric coupling G. Refer-
ring to Fig. 1, we see that, for P= 1, —cliagram (1b)
does not appear, which means y~~ ——gb~~ ——0.

Thus, we have found that for P= —1 all the "dynami-
cal" factors vanish except g,~ and g,~~. The calcula-
tion of these factors is straightforward and we obtain

y ~~=LDio (3f~)j
X[Dlp(W)/(W M )$gl 2~B ~D—, (11.3)

Given the knowledge of the dynamical factors g, the
remaining task is to evaluate the Clebsch-Gordan fac-
tors. We shall discuss two ways of doing this. The first
way is to proceed exactly as in Sec. IV, obtaining Eqs.
(4.26) and (4.29) with the following modifications:

(i) The g factors are now to be taken from above.
Note that, unlike the g's for parity-conserving couplings,
there is no distinction between g ~~(X= 10) and

p,~~(XW10) because all parity-violating couplings are
"oG-diagonal. " This "oG-diagonal" nature is also re-
sponsible for the remaining modifications, which involve
factors of 2.

(ii) In Table IV, relating to the Zx and nx factors,
the Sg row now takes on the same "off-diagonal" value
as the 8tt* row, and the 10 row takes on the same values
as the 10 row.

(iii) In Table V, relating to the C= —projection, the
components BR(8g,8g), BR(8g,8g(s)), and BR(8y,gg(a))
are to be multiplied by v2 (note that these components
are now present in A both for C=+ and C= —). Tak-
ing the appropriate values for all these factors, we
evaluated (4.26) and (4.29), obtaining the eigenvalues
and eigenvectors of A"*~*and verifying the eigenvalues
and eigenvectors previously reported by A~" in Ref. 3.

The second way of evaluating the Clebsch-Gordan
factors involves a different set of basis states than Sec.
IV, but is ultimately easier and yields more insight. By
using this second method in Ref. 3, we were able to ob-
tain A~~ without resorting to machine calculation (un-
fortunately, these advantages of the second method
apply only to parity-violating decays).

To see why a different choice of basis state yields
simpler equations, recall that only Fig. 1(a) contributes
to bE.„„,„,„, for the P~~2~ S~~~ reaction. Projecting viv2

onto the incoming state Stt, k, we can express the con-
tribution of Fig. 1(a) to 8G diagrammatically by Figs.
3(a) and 3(b). For comparison, diagrams expressing the
Clebsch-Gordan content of A,~Mt, „t~ are presented in

Figs. 3(c) and 3(d). One sees that if in the coupling
calculation, II~ and S, (expressing the transformation

property of the symmetry breaking) are combined into
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Vp

(o).
V&X

/
/

/ V)

/

(4.1). Specifically, 8Tsg&, „4„4 is given by

tS 8 SA»s.„...= Zl l &&vrvg, vgv4 ~

vlvs (Pt PS

(11.6)

Evaluating the exchange diagrams according to (4.10)
and taking account of the fact that gb=0, we obtain

{d)

—1 ]8 8 Sgq

GDsg'(M )2gri vvs~kvt vs kl

jV)'

~vv

Writing

D8,T,bG~„,"3G„4~"&dg '

8"—M~

f'8 8 Sg
G., "'=Gl

Evt rr P4

Fro. 3. Figure 3(b) represents the effect of baryon exchange /pig.
1(a)j on the parity-violating reaction J3I,~ II„+8„,in Fig. 3(a).
In each case, the wavy line represents the SU(3) violation, trans-
forming like the cr component of representation S. Figure 3(d)
represents the group-theory factors in the contribution of the ex-
ternal baryon mass shift to the baryon mass shift LFig. 3(cl]
transforming like the 0' component of representation S'.

the eth member of representation X, then Ã, e plays
the same role in A {parity zioiatipg) as S', 0.' plays in
A~~~"'. Thus we can read og the group-theoretical
factor for A (parity-vioIating) from the relatively simple
factor for A~~~'"', provided we express the coupling
shifts in terms of the basis where 8„4BI, are combined
into representation X instead of the basis of Sec. IV,
where B„II„arecombined into representation X.

We now proceed to work out the equations for the
new basis in detail. We wish to calculate

and using (4.19) and our previous result that rf,ss = 1 to
eliminate the dispersion integral, we reduce (11.7) to

vG.,v"'= X ( )( )vo,„,"'. (1ls)

Comparing (11.8) with the A term in (11.4), we 6nally
obtain

8 8 Sg) 8 8 8g

! (11.9)
vr Vt VS k) Vt G P4

which will be recognized as Eq. (6) of our previous
paper. '

We now turn to the new basis, where

gG&~'= Z Z~SGsPV)

(4
5

P)(8
4

v7)

&Gag'= Z ~sg, s 4'"'&Gs g"+Dsg' (11.4)

In the parity-conserving case, we changed from the
8G»4 basis to the gRs(Sg, X) basis by means of the trans-
formation (4.30). ln the present case, it is more con-
venient to remain in the bG~, ' basis for a time, before
transforming to the new basis.

The basic equation from which A can be deduced is
(3.22). Since the form of Eq. (3.22) is independent of X,
the conversion of (3.22) from the X to the individual-
particle basis is trivial; we obtain

Equation (11.10) is analogous to (3.9), with the second
Clebsch-Gordan coeKcient representing the projection
of 8;BI-, onto representation E, the erst Clebsch-Gordan
coeKcient representing the combination of X with II;
to form a coupling transforming like 5, 8Gs(X) repre-
senting the strength of this coupling, and Z~ repre-
senting a normalization factor. The projection necessary
to invert (11.10) can be derived from (4.14) and (4.15)
and turns out to be

BGs(-V) =I'8Gs

D„br», „,„4vr' Xs 8 5 E) 8 8

1V&ZN rv'» i o nl j tg nGDsg'(Ms) 2gri c
(11.11)

where we have used bE.=—GbG, bT8,~,;; is the ampli-
tude for 1IB in the k component of the Sg state to go to Replacing 5G „,gg by (11.10) on the right side of (11.8),
8"4+II"4, and the labeling on bG then follows from Eq. and multiplying both sides by the projection operator of
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(11.11), we obtain

&8 (8 8 8~y
aG,y)=

E+ZN»1»tn»8»t~n tpt pt k ~

(11.12)

therefore interesting to note that A for this case is less
parameter-dependent than usual.

Note that:

(i) The part of A which affects parity-violating BBII
coupllngs ls 1ndepcndent of the form of the denominator
functions, since the BBII decay decouples from the
ALII decay and the 8 pole Des at the same energy in the
direct and crossed channels.

(ii) The form of A ggp«, tr „oint;ns ensures that vertex
symmetry holds in this case. To see this, it is easiest to
start with Eq. (11.8):

Equation (11.12) is analogous to, and essentially as com-
plicated as, (4.18). The simpli6cation comes when we
recognize that the indices pe and 0 appear only in the
Clebsch-Gordan coefFicients involving S. Now we know,
in general, that A is independent of o.. Therefore, we
may write the part of (11.12) that depends on S, o,
and p3 as

8 8 Sg 8 8 Sg)
&G.tt"= Z !SG.„, . (11.8)

»tto pt p, k pt n p4&

Ke recaH that vertex symmetry holds if the coupling on
the left side of (11.8) has the same Hermiticity property,

8G p'=C( 1)@&f—iGp s, (4.3)

as the coupling on the right side of (11.8).This motivates,
us to compare (11.8) with the corresponding relation

8 8 Sy 8 8 Sy)
86t "'= Q !SG.„;, (11.16)

»t»tu pt py, p4 pt u k l

so that

1
On~~ ~are &

&8

where the reality of the Clebsch-Gordan coefI1cients has
been used. Since d and pt are summed over, we can inter-
change them in (11.6) to obtain

1 8
86s(X)=

g'g v1v2a v4kn pg

(8 8 E 8 8 1V Next we employ the Hermiticity property (4.3) of the
x! Z t~~w~Gs(&') (11 14) &tplt bg on the right side of (11.7) to obtain

kk pt I pt cx s

Thus the A matrix for parity-vio1ating couplings is
diagona1 in X. For a given X, it is the same for all 5
contained in 8)&¹

The analogy between (11.14) and the equation for
A~~&~'& becomes even clearer if we recognize that each
n contributes the same amount to (11.14). This allows
us to deduce that

8 8 Se
g&G(N}g(N')

v1n2e v4k py p2

This is just the group theory factor appearing in A~~&"t~

LFig. 3(d)j, provided one replaced E, n by 5, o.
The comparison between the leading eigenvector of

p«,-ty», iat, ng and experiment is excellent, as de-06'

scribed in Refs. 1 and 3. All six ratios among the ob-
served parity-violating 8~8+s amplitudes are well
accounted for, which makes this our "best case." It is

8 8 Sy)
!tiGg»t" =Cinput( 1)

P1v2a Pj OI P4

Comparing (11.18) with (11.8), we see that

t~6" a »4t out=puCin t(pu1) "~6"a4output »t (11 19)

so that 66 tp t 1etains the same Hermiticity property
as ~Ginput.

It is also interesting to compare the parity-violating
BED couplings, associated with the leading eigenvector
of Agg, with the predictions obtained from SU(6)
under the assumption of SS dominance.

I-eading e~genvector. As described in Ref. 3, the lead-
ing eigenvector of 2 parity-vioiating gave
dominantly antisymmetric octet state 8+rt8, (the
analogy with A~~&'xt& and the fact that A~~'""
dominates A~~ explains why this ls the saQle com-
bination that occurs in the leading eigenvector for the



ii54 DASHEN, DOTHAN, F RAtj TSCHE, AND SHARP

baryon mass shift). This placement of BB in the octet
state determined five ratios among the observed
B~ B+7r decays, and the assumption of 6= —for the
parity-violating decay determined the sixth ratio.

SU(6). In the SU(6) treatment, it is found4' that the
35 representation dominates the parity-violating BBII
coupling which can thus be thought of as a unitary
singlet (BI6B561135spurion») coupling. Since

56X56= 1+35+405+2695 (11.20)

BSXBS=I.+35.+35.
+189,+280.+280.+405„(11.21)

there are four independent ways to construct an over-all
unitary singlet. However, the singlet in 56&56 cannot
produce observable strangeness-changing decays. More-
over, if we assume 6= —for the spurion, then since
6=+ for 56X56 and for II, an over-all 8=+ can be
obtained only from the antisymmetric products of
BSXBS.This last condition singles out 35, from BSX35.
Then 56)&56 must be in 35, and since this is the ad-
joint, BB is in 8„which is close to our 8,+4-8, above.

In addition to A (~ ~ ~ ~" we have also evaluated
A *~~ ~~6*~~~",which is relevant to 0 decays. For the
parity-conserving amplitude, we recall there were
several eigenvalues near one, so 0 decay was enhanced
but the ratios could not be predicted. For the parity-
violating amplitude the largest eigenvalue of A~*0*

was 0.5 if linear D was used, and less if the curved
Balazs D was used. Thus we are again unable to pre-
dict ratios, but we do expect the parity-conserving
amplitude to predominate somewhat.

XII. COMPARISON WITH OTHER STUDIES

The present work. is descended from the initial work
on octet enhancement by Cutkosky and Tarjanne, "
and the study of strong BAII coupling shifts by Wali
and Warnock. ' ' Roughly speaking, Wali and Warnock
estimated A g~ but not A«."Since the largest term in
Ag~bM feeds the same eigenvector that is favored by
A ",their results obtained using only A g~ are in qualita-
tive agreement with ours. By including A «, we obtain a
somewhat fuller picture of strong coupling shifts, as well
as the new results we have enumerated for the weak
interactions.

Technically, the method of Wali and Warnock'
is somewhat different from ours. They use the E/D
method, keeping the numerator SU(3) symmetric

"G.Altarelli, F. Buccella, and R, Gatto, Phys. Letters 14, 70
(1965); K. Kawarabayashi, Phys. Rev. Letters 14, 86 (1965); 14,
169 (1965); P. Babu, ibid. 14, 166 {1965);S. P. Rosen and S.
Pak.vasa, ibid. 13, 733 (1964); M. Suzuki, Phys. Letters 14, 64
(1965).

4'R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1355
(1963).

"Another paper in which mass shifts are used to derive 8~II
coupling shifts is that of E. Johnson and E. R. McCliment, Phys.
Rev. 139, 8951 {1965).

but putting the physical masses into p in

D=1— Sp(W' —W) 'dW'.

This procedure varies the position and residue of the
direct-channel singularities, but not the position of the
exchange singularities. The resulting equations are con-
siderably simpler than ours. In terms of parts of the A

matrix, external mass effects on the direct channel are
well taken into account, the (numerically less important)
exchange-mass shifts are neglected, external mass-shift
effects on the left cut are neglected, and exchange-
coupling shifts are not systematically accounted for by
their method.

Ernst, Wali, and Warnock" have stressed two difficul-

ties common to all these studies: (i) The approximations
do not guarantee "vertex symmetry" (Sec. V); and

(ii) The shifts are so large that higher order effects repre-
sent an important and interesting correction to the linear
perturbation theory we have been using.

Difficulty (i) does not happen to be serious for our

leading eigenvectors —it was shown in Secs. V and XI
that they possess the required symmetry to within a
few percent. Difficulty (ii) would become really im-

portant if higher order e6ects drove eigenvectors of A«
with eigenvalues far from one much more strongly than
the eigenvector with eigenvalue near one, or if they
drove the leading 27 eigenvectors as strongly as the
leading octet eigenvector. It is not known whether this

happens for strong coupling shifts. Empirically, we have
seen that the linear theory gives good results for mass
shifts and parity-violating decays, and that higher order
effects on parity-conserving nonleptonic decays (pro-
ducing abnormal 6 through the combined action of
strong symmetry breaking and weak interactions) are
comparable to but not dominant over the linear effects.

In another recent study, Diu, Rubinstein, and Van
Royen" have calculated A « for BBII and ABII
coupling shifts by the same approach as ours, and ob-
tained eigenvalues in complete agreement with ours.

Another approach to symmetry breaking is the
"tadpole" theory, ' involving octets of 0+ mesons. In a
previous paper" it was shown that if a low-mass 0+
octet exists, A can easily have an eigenvalue near unity,
so that tadpole theory and the methods of the present

paper may actually be related. The connection does not
mecessaH'ly hold, however; 0+ particles do not require an
eigenvalue of A near one or vice versa. 4~ Now in the

4' B. Diu, H. Rubinstein, and R. Van Royen, Nuovo Cimento
43A, 961 (1966).

4' R. Dashen and S. Frautschi, Phys. Rev. 140, B698 (1965).
4' In Ref. 45 we showed that low-mass 0+ hadrons would imply

an eigenvalue of X, the matrix expressing the self-consistent effects
in 0+ emission, near unity at q'=0. They do not, however, imply
that the submatrix of X(q'=0) connecting monopole couplings
(couplings which persist in the limit q~

—+ 0) has an eigenvalue
near unity, and it is this submatrix which has the same eigenvalues
as A. Thus the statement made in that reference that low-mass 0+
hadrons ensure an eigenvalue of A near one is not correct.
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present paper we calculated, and made physical use of,
several diferent eigenvalues of A«near one. They in-
cluded positive-parity octets of either charge conjuga-
tion, and a negative-parity octet of charge conjugation
opposite to the m.Ey octet. It is possible that an octet of
0+ particles corresponding to one of these eigenvalues of
3 exists. But it seems unlikely that separate octets of
tadpoles exist corresponding to each eigenvalue of 3«
near one as well as the eigenvalue of A~~ near one
(which requires a separate set of tadpoles according to
Coleman and Glashow').

XIII. CP-VIOLATING COUPLINGS

The recent discovery of CP violation in E decays"
has opened the possibility that CP is violated in weak
BBIIand DBII couplings, or perhaps even in semistrong
couplings. " The method of the present paper cannot
tell us whether or not CP violations occur, or their
over-all strength, but does give information on the ratios
of couplings if such violations do occur.

The procedure for calculating the A matrix for I' =+,
C= —,and P= —,C=+ couplings has already been
given in Sec. XI, where we were interested in terms with
abnormal 6. The only change comes in Eqs. (4.30) and
(4.31) for obtaining the couplings corresponding to an
eigenvector of A: the P=+, C= —,S=8 coupling
comes from the eighth component (0=8) for strong
interactions, 0.=3 or 8 for electromagnetic interactions,
and 0-= 6 for strangeness-changing weak interactions—
instead of o.=i for "abnorma, l" C- and P-conserving
weak interactions.

As discussed in Sec. XI and Ref. 3, there is no lack of
eigenvalues of 3«near one for CP-violating couplings.
For P=+, C= —,S=8, eigenvalues 1.0 and 0.7 are
found, for P= —,C=+, 5= 1 or 27, the eigenvalue 0.7.
Thus if CP violation exists, it can readily become en-
hanced and competitive with CP-conserving couplings.

The only possible consequence of CP violation we
shall discuss here is the question: What happens to our
predictions for the weak interactions if CP is violated'
%'e can make the following comments:

(i) The phase relations between amplitudes for re-
actions like A. —+ p+~ and p —+A+m+ depend on C
LEq. (4.5)]. If both reactions could be observed, these
relations would give information on C. In pra, ctice,
however, due to the mass spectrum of the baryons, only
decays with 67=+1 are observed (.—+A.m, h, —+lVvr,

Z —+ E~), so C cannot be determined in this way. (0 =6
cannot be directly distinguished from 0.=7 in the ob-
served decays. )

(ii) According to Ref. 3 and Sec. XI, the leading
eigenvector for P= —decays predicts 2++=0, the ratios
of ™pto Zp to Ap and the ratios of ™:to Z: to A

4' J.Christenson, J.Cronin, V. Fitch, and R. Turlay, Phys. Rev.
Letters 13, 138 (1964).

4' T. D. Lee and L. Wolfenstein, Phys. Rev. 138, 81490 (1965);
J. Prentki and M. Veltman, Phys. Letters 15, 88 (1965).
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APPENDIX A. CONVERGENCE OjI'

THE DISPERSION INTEGRALS

As discussed in Ref. 2, the integrals (3.15) and (3.16)
for 8R and (3.17) for RV converge well when the D
functions (3.19) and (3.20), which approach a constant
as 8' —+~, are used. In fact, the convergence of the
integrals for bR and Wf is better than the convergence
of appropriate dispersion integrals representing the un-
perturbed strong interactions in many practical situa-
tions. To see this, it is best to change temporarily from
the static amplitude LEqs. (2.1) and (2.2)j to kinematic,
singularity-free amplitudes. For the J=-,'+ amplitude,
for example, we have

e2sg

T(W) =
((W—M~)' —(M )'j 2ig

(A1)

' See, for example, M. Stevenson, J. Serge, J. Hubbard, G.
KalbQeisch, J. Shafer, F. Solmitz, S. Wojcicki, and P. Wohlmut,
Phys. Letters 9, 349 (1964); R. Dalitz, 1964 Varenna lectures (to
be published).

independently of charge-conjugation properties. CP
conservation implies only one further relation' (which
can be taken as the AI= 2 rule for h. decay). This last
relation is well-satisfied experimentally but might have
some other explanation; thus the success of our theory
for P= —decays does not tell us much about CP
properties.

(iii) The usual phenomenological analysis of non-
leptonic baryon decays" is made with the simplifying
assumption T=+. If CP-violating terms are present in
the amplitude, they have T= —by the TCP theorem
and would be 90' out of phase with CP-conserving terms
according to Eq. (4.7). What the experimental "asyin-
metry parameter" in baryon decay gives us, then, is the
interference between the S-wave amplitude and that
part of the P wave which has the same time-reversal
properties as the S wave (assuming final-state inter-
actions are small). Redoing the phenomenological
analysis with T violation in mind, one finds that the
magnitudes of the 5 wave are essentially unchanged and
the "in-phase" part of the P waves not much changed,
although there is room for "out-of-phase" P waves com-
parable to the "in-phase" P waves. The considerations
of Sec. XI still apply to the "in-phase" P waves: Both
"normal" and "abnormal" C are required for us to ht
them, independently of CP conservation.

To summarize, then, the possibility of CP violation in
baryon decays affects our conclusions very little.
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Now consider some speci6c term such as the contribution
of 3, exchange to the —,'+ channels. It is well known that
spin--, + exchange is divergent, contributing a term

T(W) - (constant)

(we ignore lnW's) which exceeds the unitarity bound by
one power of 8' at large lV. A perturbation on this
term, bT, will generally also approach a constant at
large fF, but this behavior combined with the behavior

D(W) - (constant)

produces only logarithmic divergences in Eqs. (3.15)—
(3.17) for 8R and 83K Thus the convergence at large W
is better by one power of 8" for first-order perturbations
than it is for iterations which one usually makes in
treating the strong interactions.

This advantage applies only to erst-order perturba-
tions; in second order, the unitarity relation ImT = 2'pT,
with input T constant at large W and the phase factor
p H/' at large 8', introduces a worse asymptotic
behavior.

Another difhculty with X/D calculations of strong
interactions is that when correct threshold behavior is
imposed, divergences develop at high energy for all but
the lowest partial waves. Again, no difhculty of this
type occurs in our treatment of erst-order perturba-
tions: e.g., in the above example,

5T'(W) - constant and D'(W) - constant

for all l so (3.15)—(3.17) converge for all /.

We believe that the good convergence of the perturba-
tion integral is responsible for the relatively successful
results of calculations on perturb'ed bootstraps. Con-
tributions from 8' which are far from 3f a,re usually
approximated or left out of bootstrap calculations, both
perturbed and unperturbed. For normal unperturbed
bootstraps, the resulting errors are serious; the method is
quite successful in showing which channels have strong
attractions and therefore resonances or bound states,
but quantitative success in predicting such things as
the positions of resonances is generally not achieved.
Our studies of perturbations on the 8-6 reciprocal
bootstrap, on the other hand, keeping just the usual
singularities near H/'= M, but with the advantage of im-
proved convergence, have yielded results within 30%%u~

of the data for: (i) the neutron-proton mass difference, "
(ii) the ratios of mass differences within. the 8 and A

multiplets, (iii) the ratios of parity-violating nonlep-
tonic decay amplitudes of baryons, ' ' (iv) the ratios of
various electromagnetic couplings of 8 and 6, such as
the D/F ratio for baryon magnetic moments, " and
(v) the ratios of various weak couplings of baryons to
leptons. "
"R. Dashen and S. Frautschi, Phys. Rev. 143, 1171 (1966).

8M=
RLD'(ll) j' 22r2 o

D'(W') 5T(W')
dW' (81)

lV' —M

which occur in the study of perturbations on the
amplitude.

In practice, however, strong interactions always
couple many channels together. Any one channel can
be described in terms of various phases, such as the
phase Reg occurring in the S matrix e"&, or the phase of
the single-channel amplitude

7 —p[s
—2 ™2s2iRe2 1j/22 (82)

which differs from Reg in the presence of absorption.
Corresponding to each choice of phase, a diferent D
function can be dered. 53

Thus we are unavoidably faced with a decision; which
D function, among various possibilities, will we use in
equations such as (81)? This problem was not noticed
in the original single-channel derivation of Eq. (81),
but we wish to bring it out into the open now. The de-
nominator function (3.19) used in this and previous
papers' will emerge from this discussion as an especially
convenient choice, although it is certainly not "the
physical B function. "

Lest the reader become too nervous about this
apparent arbitrariness, we hasten to add that the main
results of this paper are not so sensitive to the details
of the D function. Among the various pa, rts of the A
matrix, A is not very sensitive to details of D, as dis-
cussed in Sec. VI. The overall magnitude of A~~ is

5' R. Dashen and S. Frautschi, Phys. Rev. 135, 81190 (1964).
"For an excellent discussion of the two choices mentioned in

this paragraph, see J. Hartle and C. Jones, Ann. Phys. (N. Y.)
38, 348 (1966).

APPENDIX B. CHOICE OF D FUNCTIONS

In the present study of perturbations, as well as in
the earlier treatment of 8 and D mass shifts, ' only terms
appearing in the static limit have been considered. Also
the form used for the D function, Eq. (3.19), did not
contain physical effects (such as the Roper resonance)
which take one beyond the static model. Thus our re-
sults are to be interpreted as results of the static model.

While the connection of (3.19) (or its linearized ver-
sion) to the sts, tic model is the most straightforwa, rd
reason for using this form of D, it is interesting to
consider what D function would be appropriate if one
went beyond the static model and attempted a more
exact calculation. In the present Appendix we give some
arguments on this dificult question.

For a single-channel amplitude, there is a unique de-
nominator function which has the phase of the ampli-
tude along the right cut and no Castillejo-Dalitz-
Dyson (CDD) singularities. This unique D function was
prescribed" for use in relations such as
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highly sensitive, so we used the theoretica, l estimates of
A~~ only to estimate ratios. A~~ and A~~ are again
less sensitive in our model. "

Let us now review the properties required of D.

(i) Singularities of D on the physical sheet are con-
fined to the right-hand cut and possible CDD poles
Lnote that if D has a CDD pole, the pole gives rise to
an additional term in the contour integrals of Kqs.
(81) and (3.15), and (3.16)].

(ii) D(W) should be suitably bounded at large W to
allow the integrals (3.15) to (3.16) and (81) to converge.
This implies that the representation for D must in-
clude any CDD poles that are present, instead of
multiplying both 1V and D by a (divergent) factor
(W—Worm)

(iii) Along the right-hand cut, D has the phase factor
e ", where 8 is the physical phase shift in the case of
elastic scattering but has various possible definitions
(such as the phase of the 5 matrix or the phase of the
single-channel amplitude) when inelasticity is present.

(iv) D=O at the bound states or resonances under
study.

These properties are incorporated in the Omnes repre-
sentation for D in the presence of one bound state and
lV CDD poles,

the positive sign of y above 150 MeV causes their D to
increase faster than ~W —Ms~ in a sizeable region
around 3f~ before settling down and approaching a con-
stant limit. This is in contrast to the Balazs D function
(3.19), which increases slower than [W—M~~ at all
points along the left cut. As a result, use of the Shaw-
Kong D would require a careful evaluation of DbT and
D'81' in the integrands of (81) and (3.15), and (3.16)
out to considerably larger values of

~
W—Ms

~

than when
the Balazs form, which damps the integrand at large

~

W—Ms ~, is used. "This would be a serious disadvan-
tage because only the singularities of bT near 8'=31~
are somewhat well understood.

Ke prefer to use the Balazs D function rather than the
Shaw-Kong form for two reasons. The 6rst reason has
to do with the fact that the I=~, J"=-,+ scattering be-
comes highly inelastic in the region of the Roper reso-
nance" —if there is a resonance here, it is not primarily
associated with the zÃ channel. Thus it is very likely
that the Roper phenomenon behaves like an "effective
CDD pole" in the mE channel. " The statement of
Levinson's theorem for this chaenef would then become

Reg( )—g(0) = (ScDn —A so g) =O ~ (84)

LThe slm over eigenphases of all the coupled channels
would, of course, still go to —+ if there is no elementary
particle involved, "but this condition does not prevent
the single-channel phase from behaving as in (84).]
In this case, the large W behavior of (83),

Xexp
(W 1II)—8(W)dW'

ares (W 3f)(W W)
(83) D(W) WNB Nan +D$8( ca) B(0)j/n— .

The open questions here are the choice of 8, and the CDD
poles.

One choice which has been studied in detail recently
by Shaw and Kong" is the D function one gets by tak-
ing 8 to be the phase Reg occurring in the 5-matrix
e"&, and assuming no CDD poles in the low-energy
region. The xS phase shift Reg for I= 2, J~= ~~+ scat-
tering is known to be small and negative at low energies.
Recently, it has been found to turn positive above 150
MeV, becoming large" or very likely passing through a
resonance'~ by 600 MeV. At higher energies, its behavior
is unknown, so Shaw and Kong let it come back down
again in a smooth fashion to give D(W) a bounded be-
havior as 5" approaches ~.

Inserting this phase into the Omnes formula, Shaw
and Kong obtain a D function whose curvature differs
considerably from our Balazs form (3.19).In particular,

"It happens that A~~ becomes much more sensitive in the
E—N* than in the 8—6 reciprocal bootstrap, as stressed recently
by G. L. Shaw and D. Y. long (Ref. 5)."G. L. Shaw and D. Y. Kong (Ref. 5)."P. Auvil, C. Lovelace, A. Donnachie, and A. Lea, Phys.
Letters 12, 76 (1964).

"L.D. Roper, Phys. Rev. Letters 12, 340 (1964).

must be brought down to a constant limit by including
the CDD pole. Since the xS amplitude has a zero about
150 MeV above threshold, it is natural to place the CDD
pole of D at this point. "Replacing the Shaw-Kong D
function by one with this pole, one finds that it grows
considerably less rapidly along the left cut and behaves
more like the Balazs D. LZssentially the convergent
factor (W—WcDD) ' is almost cancelling the divergent
factor (W—WR,~,„) along the left cut.]Roughly speak-
ing, the Balazs D can be obtained by the approximation
(W—WR,~„)/(IV—WcDD) = 1, which is not so inaccur-
ate on the left and avoids the new term that would have

'g For example, Shaw and Kong point out that 6 exchange
gets multiplied by a considerably larger factor when their D
is used. Exchange of the higher IIB resonances would also gain in
importance."This type of situation has recently been discussed by a number
of authors; for example, J. Hartle and C. Jones, Phys. Rev. 14Q,
B90 (1965); M. Bander, P. Coulter, and G. L. Shaw, Phys. Rev.
Ietters 14, 270 (1965); E. Squires, Nuovo Cimento 34, 1751
(1964); D. Atkinson, K. Deitz, and D. Morgan, Ann. Phys.
(N. Y.) 37, 77 (1966).

6'L. Cook and B. Lee, Phys. Rev. 127, 283 (1962).
' In their paper, Shaw and Kong present two diBerent models,

one of which involves a CDD pole. Their CDD pole, however, is
placed Sm above threshold and therefore affects the D function
diGerently.
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to be evaluated on the right-hand cut in (81) and (3.15)
and (3.16) at an (uncancelled) CDD pole. "

Next we turn to the second reason for preferring the
Balazs D which applies even if the CDD pole was in-
correctly identified in the first argument. The second
argument runs as follows: The dispersion relations
(81) and (3.11) hold exactly for any D that satisfies
conditions (i), (ii), and (iv) above, independently of
how the phase of D is defined and its CDD poles are
located, as one can verify by reviewing the derivation of
the equations. Thus if we knew 8T exactly, it would not
matter what phase we gave D or how we located its
CDD poles. In practice, however, only the nearby
singularities of 6T in the dispersion relations (81) and
(3.11) can be evaluated. The problem, then, is to choose
from among various exact equations (corresponding to
various choices of D) one which weights the known
nearby singularities heavily compared to intermediate
and distant singularities of D~6TD. Now as we have
already pointed out, the Balazs D damps intermediate
and distant parts of the left cut much better than the
Shaw-Kong D, and this makes it far preferable. The
philosophy here is somewhat analogous to the recent
evaluation of matrix elements of current commutators
by Fubini and Furlan, "where the kinematic conditions
are chosen partly with an eye to improving the con-
vergence of the sum over intermediate states.

As was stated above, Eqs. (81) and (3.11) are still

exact, even if D does not have the Shaw-Kong choice of
phase along its right cut. The price that is paid for using
a different phase is an additional right-hand singularity
of D~bTD. To see what happens, it is sufficient to

We are thinking of the Roper phenomenon as a resonance or
large phase shift mainly associated with inelastic channels, rather
than as an elementary particle. It is worth commenting, however,
on what the situation would be for real elementary particles.
Elementary particles introduce arbitrary parameters into the cal-
culation of mass and coupling perturbations. If D is defined to in-
clude any CDD poles, the arbitrary parameters arise from the
contour integrals around the CDD poles in (3.15) and (3.16). On
the other hand, if the CDD terms are inserted as zeros in S
rather than poles in D, the arbitrary parameters arise from the
subtractions required to make (3.15) and (3.16) converge. In the
previous discussion of this subject in Sec. III, Ref. 2, we omitted
the possibility of including the CDD poles in D.

6' S. Fubini and G. Furlan, Physics 4, 229 (1965).

consider

and
T=p[e"& 1—j/2i

D= [D[e-".

(82)

(86)

In terms of these parameters, the perturbation on OT is

and one finds

pT= 8pLe '&—1j/2i+p8ge "" (87)

ImLD'AT]= ip8p
~

D
~

'Lcos28 —e 2 ™&cos2(Reg —g)]
+(8 Imp)

~

D
~

'pe ' ' & cos2(Reg —6)

+(8 Reg)
~

D
~

'pe ' '~& sin2 (Reit —6) . (88)

The first term, involving the variation of the kinematic
factor p, occurs all along the right cut for any D func-
tion. The second term, involving perturbations on the
absorption cut of the xE channel, would also be pres-
ent above inelastic threshold for any D function (unless
we considered the matrix problem with all channels
included, which of course has its own complications).
It is the third term which occurs only if a D function with
phase 6/Reg is used.

The status of the three terms along the right cut in our
treatment using the Balazs D function is as follows. The
8p term is a mass-shift term, and is crudely incorporated
into our treatment either through direct evaluation of
AMER(Bp/BM~) along the right cut, or implicitly through
the condition of mass-scale invariance (both methods
are used to estimate 3"~ in Sec. VIII). The third term
is small until Reg turns positive above 150 MeV, allow-
ing the coefTicient sin2(Reg —8) to grow large. (The
Balazs function corresponds roughly to a phase which is
small and negative at low energies, passes through —90'
at Wp, and approaches —n- as W approaches pp. ) The
second, inelastic, term begins at about the same place.
Since no good model exists for the Roper phenomenon
and the strong inelasticity above a couple of hundred
MeV in this channel, we have no way to estimate either
the second or third term in this region. Thus we find
that, using either the Balazs or the Shaw-Kong D
function, the dispersion relation receives a contribution
above inelastic threshold which is poorly known because
of our lack of understanding of 0T there.


